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Autonomous operations are a crucial aspect in the context of Urban Air Mobility and other
emerging aviation markets. In order to enable this autonomy, systems must be able to build
independently an accurate and detailed understanding of the own vehicle state as well as the
surrounding environment, this includes detecting and avoiding moving objects in the sky, which
can be cooperative (aircraft, UAM vehicles, etc.) as well as noncooperative (smaller drones,
birds, ...). This paper focuses on the object tracking part that relies on adaptive multi-sensor
fusion, taking into account specific properties and limitations of different sensor types. Results
show the impact of dropouts of individual sensors on the accuracy of the tracking results for
this adaptive sensor fusion approach.

I. Introduction

Recently, there have been numerous developments in the area of urban air taxi operations, also known as urban
air mobility or on-demand mobility applications that help to meet the challenging mobility needs of an increasing

population density in metropolitan areas, taking into account the limited capacity of the currently available transporta-
tion infrastructure. Two of the enabling technologies of this transportation concept are the use of new vehicle concepts
and advanced automation technologies, such that a safe, efficient, and accessible on-demand service for passengers
and cargo is established. Some of these future concepts for on-demand mobility aim for fully autonomous vehicle
operations, proposing the use of advanced sensing and algorithms to replace the functions of an on-board pilot [1].

Autonomous functionality promises to offer improved efficiency and cost savings. Increased vehicle autonomy is
currently spearheaded by the automotive (such as Google’s self-driving car project Waymo, as well as Lyft, etc.) and
the UAV industries [2, 3]. Additionally, the exploration of new on-board sequencing, spacing and collision avoidance
functions is encouraged by the market in order to increase overall capacity and efficiency in the airspace. [3] In this
context, perception systems, capable of building an accurate and detailed understanding of the vehicle state and its
surrounding environment, are critical to safe autonomous operations. This surrounding environment includes moving
objects in the sky, which can be cooperative (aircraft, UAM vehicles, etc.) as well as noncooperative (smaller drones,
birds, ...). The distinction between both lies in the fact that there is some form of data exchange (ADS-B or similar)
with the former category in order to coordinate path planning and collision avoidance. This exchange of information
is nonexistent for the latter category, which means that other sensors will be required to detect and track these objects
independently from the own ship. Object detection and tracking are two essential prerequisites for the purpose of
collision avoidance.
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A. Focus of this paper
This paper focuses on the object tracking part that relies on adaptive multi-sensor fusion, taking into account specific
properties and limitations of different sensor types. The sensor fusion is done by means of a Kalman Filter. More
precisely, the sensor fusion strategy is made adaptive, so that lower sampling rates of specific sensors are taken into
account, as well as loss of signal (for example because the object is outside the field of view or the useful range for
a particular sensor, or because of a sensor malfunction resulting in a sensor signal dropout), and invalid data. This
capability is achieved by incorporating valid flags in the weighting matrix of the Kalman filter.

B. Literature survey
This research is partly inspired by previous work published in DO-365. Appendix F in DO-365 discusses a Kalman
Filter based integration approach to combine data from a radar tracker, ADS-B tracker and an AST (active surveillance
transponder) tracker [4]. Ref. [5] detects moving objects based on grids, by differentiating between moving and
stationary objects in occupancy grids. This is based on the continuous occupation of the grid cells. This publication
also contains a literature review of other object tracking methods and a tradeoff between lasers and cameras. Ref. [6]
discusses the various elements of a conventional multiple target tracking (MTT) system. Multiple hypothesis tracking
(MHT) is the generally accepted preferred method for solving data association problems this this kind of MTT systems.
Petrovskaya developed a tracking module that provides reliable tracking of moving vehicles from a high-speed moving
platform [7]. The sensors involved are laser range finders. The estimation was done using a single Bayes filter per
vehicle. This setup was able to detect poorly visible black vehicles. Ref. [8] tracks with a Kalman Filter based sensor
fusion algorithm with different coordinate frames. Sensors used are pulsed radar, aided by two infrared and two visible
cameras. It was found that an extended filter in rectangular coordinates was most adequate for airborne applications.
Ref. [9] presents a taxonomy of object tracking using 3D sensors. Object tracking algorithms are divided into 2 main
categories based on object representation scheme, namely Tracking-by-detection (or Discriminative) Approaches and
Model-free (or Generative) Approaches. Two baseline 3D object tracking algorithms are discussed, taking LIDAR
point cloud data (PCD’s) as input (after the ground removal process). The first one is a baseline Kalman Filter 3D object
tracker which is a 3D constant acceleration KF with Gating Data Association for robust object centroid tracking in
consecutive PCD’s. The second algorithm is a baseline Mean Shift (MS) 3D object tracker, which relies on an iterative
procedure to locate objects. Ref. [10] sketches the path from sensor raw data to the list of object hypotheses. However,
this method relies heavily on classifications of parking lots, and the assumption that vehicles move along lanes, which
is not necessarily a valid assumption in the context of UAM vehicles. Previous work by one of the co-authors focused
on visual tracking of maneuvering targets [11].

C. Paper Structure
The structure of this paper is as follows. Sections II and III describe respectively two different two vehicle scenarios
and the relevant sensor characteristics which have been used to evaluate the performance of the developed object
tracker. Section IV focuses specifically on the image data processing, where Section V elaborates how these processed
image data are combined with other (simulated) sensor measurements in a Kalman Filter based object tracker setup.
Section VI shows some preliminary results, which included nominal results as well as situations with occasional sensor
dropouts. Finally, Section VII gives some overall conclusions and recommendations based on this work.

II. Scenario
Two scenarios are considered in this publication to evaluate the object tracking capabilities of the developed setup.

The first scenario involves two dissimilar vehicles on different tracks. The second scenario considers two identical
vehicles on the same track but with a constant time separation.

A. Scenario 1
The first scenario involves two dissimilar vehicles, namely a quadrotor configuration and a lift-plus-cruise (LPC)

configuration which consists of a set of four lifting rotors and a separate pulling propeller for forward flight. Both
configurations are shown in Fig. 1 and were given the callsigns ‘Duck’ (quad) and ‘Goose’ (LPC) respectively.

Goose flies from San Francisco Airport to the rooftop of the parking structure at the intersection of Mission and
Fifth in downtown San Francisco. Cruise altitude is 1,000 ft and cruise speed is 120 kts. This flight profile includes a
full transition from vertical takeoff to forward cruise flight along three consecutive waypoints and a descent followed
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(a) lift-plus-cruise configuration ‘Goose’ (b) quadrotor configuration ‘Duck’

Fig. 1 Vehicle configurations

by a vertical final approach to the rooftop. Duck flies from the ferry building along a circuit, followed by the same
descent to the same aforementioned parking rooftop. In cruise, Duck flies with 60 kts at 500 ft. For this scenario, both
tracks were timed in such a way that they result in a ‘collision’ point during descent towards the landing zone, at the
top of descent for Duck, when Goose approaches Duck from above.

 36'  32'  122°W 
 28.00' 

 24'  20'  36' 

 39' 

  37°N 
 42.00' 

 45' 

 48' 

   SFO

(a) Trajectory of Goose

 26'  25'  122°W 
 24.00' 

 23'  22'  46' 

 47' 

  37°N 
 48.00' 

 49' 

 50' 

(b) Trajectory of Duck

Fig. 2 Trajectories of both vehicles

B. Scenario 2
The second scenario consists of two identical trajectories of two identical vehicles. Two quadrotors (see Fig. 2(a))

‘Duck’ and ‘Goose’ fly both from the ferry building to the aforementioned parking rooftop in downtown SF (see Fig.
2(b)). The cruise altitude is 500 ft and the cruise speed is 60 kts. There is a 10 seconds delay between both, and no
loss of separation occurs between both vehicles during this scenario.
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III. Sensor Characteristics
There are five types of sensors that could be used in a general Urban Air Mobility vehicle in the current state

of the art, namely ADS-B or some other kind of position sharing communication channel for cooperative vehicles,
electro-optical camera’s, infrared cameras, lidar and radar. Each sensor type has different sensed variables, together
with their respective sensor characteristics, such as limitations on field of view and useful range, noise, latency, update
rate and resolution. Some characteristic values from the literature of state-of-the-art sensor hardware [12] are given in
Table 1. Some sensors have a fairly narrow field of view, which can be compensated by placing an array of sensors
with varying alignment angles to cover an overall wider field of view, depending on weight and power constraints of
the vehicle.

Figure 3 illustrates how both vehicles Duck and Goose see each other in scenario 1 by means of an EO camera
and radar equipment respectively, with the characteristics specified in Table 1. Fig. 3(a)–3(b) show the elevation and
azimuth of the other vehicle, as detected by Duck in Fig. 3(a) and Goose in Fig. 3(b) respectively. The enlarged areas
illustrate the time delay of 0.1s for the EO camera. Fig. 3(c)–3(d) show the range, elevation, azimuth and range rate of
the other vehicle, as detected by Duck in Fig. 3(c) and Goose in Fig. 3(d) respectively. The enlarged areas illustrate
the latency of 0.1s as well as the significant noise levels for the radar measurements.

(a) What Duck sees of Goose by EO camera (b) What Goose sees of Duck by EO camera

(c) What Duck sees of Goose by radar (d) What Goose sees of Duck by radar

Fig. 3 EO camera and radar measurements for both vehicles in scenario 1

These sensors don’t give any information beyond a certain distance (and radar also below a distance threshold),
and have a limited field of view as well. However, these constraints have not been taken into account here. Field of
view limits can be circumvented by placing multiple sensors in an array, and current range limits are too restrictive for
the scenarios that were considered. Moreover, it is assumed that these limitations will improve significantly as new
state-of-the-art sensors with the latest technology will become available.

4



Ta
bl

e
1

Se
ns

or
ch

ar
ac

te
ri

st
ic

s

se
ns

or
A

D
S-

B
EO

ca
m

er
a

IR
ca

m
er

a
lid

ar
ra

da
r

se
ns

ed
va

ria
bl

es
po

si
tio

n:
lo

n,
la

t[
de

g]
az

im
ut

h
[d

eg
]

az
im

ut
h

[d
eg

]
az

im
ut

h
[d

eg
]

az
im

ut
h

[d
eg

]
al

tit
ud

e
[f

t]
el

ev
at

io
n

[d
eg

]
el

ev
at

io
n

[d
eg

]
el

ev
at

io
n

[d
eg

]
el

ev
at

io
n

[d
eg

]
ho

rs
pd

:V
n,

Ve
[k

ts
]

ra
ng

e
[f

t]
ra

ng
e

[f
t]

ve
rt

sp
d:

hd
ot

[f
t/s

]
do

tr
an

ge
[f

t/s
]

ID
:c

al
ls

ig
n

lim
its

on
fie

ld
of

vi
ew

–
±1

.2
de

g
±3

.1
de

g
az

:±
30

de
g

az
:±

60
de

g
el

:±
15

de
g

el
:±

40
de

g
m

ax
us

ef
ul

ra
ng

e
–

18
,7

00
m

2,
40

0m
1,

00
0m

2,
00

0m
do

tr
an

ge
:1

4.
56

m
/s

m
in

us
ef

ul
ra

ng
e

–
0m

0m
0m

20
m

do
tr

an
ge

:−
14

.5
6m

/s
no

is
e

si
gm

a
–

9 .
1
·1

0−
3 d

eg
6 .

79
·1

0−
2 d

eg
az

/e
l:

2 .
5
·1

0−
2 d

eg
az

:1
de

g
ra

ng
e:

2
·1

0−
2 m

el
:3

de
g

ra
ng

e:
3.

25
m

ra
ng

ed
ot

:2
m

/s
la

te
nc

y
0.

5s
0.

1s
0.

1s
0.

01
s

0.
1s

up
da

te
ra

te
1/

s
30

fp
s

30
fp

s
10

0H
z

10
H

z
re

so
lu

tio
n

lo
n/

la
t/a

lt:
1
·1

0−
8 d

eg
1.

3
·1

0−
3 d

eg
9.

7
·1

0−
3 d

eg
az

/e
l:

2.
5
·1

0−
2 d

eg
az

/e
l:

1d
eg

V
n/

Ve
:4

kt
s

ra
ng

e:
1
·1

0−
2 m

ra
ng

e:
3.

25
m

hd
ot

:6
4f

t/m
in

do
tr

an
ge

:0
.9

1m
/s

5



IV. Image Data Processing
Visual object detection (VOD) from digital images is a heavily researched problem in the field of Computer Vision

(CV). Early methods of VOD often required starting positions, a priori models of what to search for, or other aiding
information. The advent of Machine Learning (ML)-based VOD methods represent a major milestone in the field
with the adoption of Convolutional Neural Nets (CNN) as visual processing models. These methods are trained to
locate and detect specific targets depending on the application. CNNs are structured as cascaded neural layers which
transform inputs into an n-dimensional vector representation. In CNN-based object detection, a training phase tunes
the model weights. Abstracted sub-patterns (or “features”) are generated in the process. A training dataset with
annotated objects serves as the ground truth which the model attempts to converge to. Deep Learning (DL) extends
CNN by increasing the number of layers. In the case of single VOD, the model expects a single object to be present
in the image. A testing dataset is used to validate the efficacy of the trained model, and this process is repeated with
new hyperparameters corresponding to the architecture, until the model is suitably accurate without being over-trained.
Multi-Object Detection (MOD) works similarly to VOD but can detect an arbitrary number of objects from an arbitrary
number of classes to be detected within an image. Two primary tasks are required in MOD: detection and classification.
Detection is the process of identifying where in the image objects are located. Locations may be represented by a
single point (e.g., “center-of-gravity”), a bounding box (often represented as pair of opposing corner points) which
incorporates the projected dimensions of the object, or the arbitrarily-shaped group of pixels exclusively belonging
to the object known as a mask. Classification sorts these objects into classes corresponding to their ground truth
annotations. The classification model is pre-trained with representative sets of images for each class, and as such the
algorithm will ideally only detect the objects for which it has been trained.

Two-stage detectors are a class of CNN-based MOD algorithms which combine the detection and classification
in a sequential fashion, first identifying regions of the image corresponding to potential objects and subsequently
identifying said objects. Single-stage MOD on the other hand employs a faster means of processing image at the cost
of slightly poorer accuracy than two-stage methods∗. In single-stage detectors, a single network is used to accomplish
segmentation and detection, or a predefined set of dense subregions are used in lieu of learning-based segmentation.
As such, this class of MOD algorithms is ideal for faster processing on CPUs (and, in some cases, real-time processing
on GPUs) and makes them preferable to two-stage algorithms when MOD is being used in-the-loop for controls and
avoidance.

You Only Look Once (YOLO) is a single-stage MOD algorithm first proposed in 2016 in [13]. The algorithm
achieves single-stage processing using a predefined set of dense subregions to identify the dominant objects within. The
variant of YOLO used in this work (YOLOv3) is the third official release of the algorithm wherein an updated network
is trained and miscellaneous improvements are introduced [14]. YOLOv3 as a tradeoff between appropriate algorithm
performance and the availability of repositories at the time of the research conducted. A pytorch-based implementation
of YOLOv3 available under the GPL-3.0 license was utilized for this work [15]. The primary YOLOv3 darknet model
comes pre-trained on COCO 2017 [16] when cloning the original repository. At the time of writing this manuscript, a
YOLOv5 repository has been folded into the now archived repository for the YOLOv3 variant.

Visual sensing is simulated in this work via a simple pipeline. Flight videos for a Beechcraft Baron 58 are generated
in an X-plane simulation for the two scenarios described in Section II. The camera vantage point is a first-person view
roughly approximating where placement of a front-facing camera on a UAM/AAM aircraft could be placed in practice.
The imagery is then processed using MOD to estimate where objects of concern are located relative to the ownship.
Frames from the flight videos serve as input to a script running a pre-trained YOLOv3 darknet model. The pseudocode
for this script is based on sample code in [15]. The input frames are passed through the darknet YOLOv3 model on
each iteration for the primary loop.

Annotated videos are rendered as outputs from the YOLOv3 program. Two representative image frames are
depicted in Figure 4 which illustrate how the algorithm tags detections. Our implementation of the example script
from [15] outputs a plain-text file containing same the detection information for parsing and filtering. Detections
are comma-delimited and frames are newline-delimited in the output file. A simple filtering script parses and strips
away superfluous detection instances from the output file (i.e., detections not relevant to the object tracking Kalman
filter), after which only frame instances containing “airplane”-labelled objects are preserved. Frame instances where
the detector does not register the other aircraft when in frame or when the aircraft is out of frame constitute skips in
detection.

The filtering script also converts the top-left/bottom-right bounding box coordinates to the center point of the
∗Misidentification or misinterpretation of a region of the image as an appropriate object is false positive, and missed objects which should have

been detected and classified constitute false negatives.
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bounding box. The center point is calculated via the following equation:

𝑝𝑐 = 𝑝𝑡𝑙 +
𝑝𝑏𝑟 − 𝑝𝑡𝑙

2
(1)

where 𝑝𝑡𝑙 = (𝑥𝑡𝑙 , 𝑦𝑡𝑙) is the bounding box top-left corner, 𝑝𝑏𝑟 = (𝑥𝑏𝑟 , 𝑦𝑏𝑟 ) is the bounding box bottom-right corner,
and 𝑝𝑐 = (𝑢, 𝑣) is the center point of the detection bounding box measured in pixels. Dimension data (e.g., height and
width) are excluded from the Kalman filter in this work, though this data could be useful in a modified version of the
Kalman filter for approximating the rate of change of the detected object’s projected size. The center coordinates for
the highest-confidence “airplane” detection in each frame is then passed to the object tracking Kalman filter.

As the simulated camera is rigidly fixed relative to the ownship reference frame, the conversion from image space
into the camera frame space (which is body-fixed) is as follows:

𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1


−1

𝑠


𝑢

𝑣

1

 =

𝑋𝐶

𝑌𝐶

𝑍𝐶

 (2)

where 𝑓𝑥 , 𝑓𝑦 , 𝑐𝑥 , and 𝑐𝑦 are intrinsic camera parameters, and 𝑋𝐶 , 𝑌𝐶 , and 𝑍𝐶 are the coordinates of the center point
of the bounding box in the camera frame. Azimuth 𝛾 and elevation 𝛼 for the detected object may then be derived from
the detected object’s position relative to the body-fixed frame via:

𝛾 = arctan
(
𝑋𝐶

𝑓

)
(3)

𝛼 = arctan
(
𝑌𝐶
𝑓

)
(4)

(a) First YOLO processed image (b) Second YOLO processed image

Fig. 4 Two YOLOv3 annotated image examples from x-plane simulations of the aircraft encounter described
in Section II. The detection details include the class of the detected object (e.g., “airplane”), the bounding box
for the detection, and the confidence level of the detection as a float between 0 and 1.

Fig. 5 Bounding box coordinates for the top-left (𝑝𝑡𝑙) and bottom-right(𝑝𝑏𝑟 ), and the center (𝑝𝑐), by YOLOv3.
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V. Object Tracker Setup
The actual object tracker is a conventional Kalman Filter as elaborated in detail in Ref. [4]. The filter gain calculation

is modified in order to incorporate valid flags for the different sensor measurements, which makes this method adaptive
and robust against invalid data, loss of signal, outliers and lower sampling rates. The current implementation uses
measurements from an EO camera and a radar, but this modular architecture is fairly straightforward to extend so that
other sensors can be incorporated as well. Fig. 6 illustrates the general overview how the Kalman Filter is set up. The
prediction step assumes constant velocity for calculating the predicted state x̂𝑘 based on the previous state x𝑘−1. The
state consists of six elements, namely the three position coordinates and the three velocity coordinates, all in ENU
coordinates (East–North–Up). Another prediction strategy is using multiple models for constant velocity, constant
acceleration and constant turn rate, where the one is selected that fits the measurements best. While this approach
would increase accuracy and flexibility, it would also increase complexity and computational load, while experiments
have shown that the current accuracy under constant velocity assumption is satisfactory. A minor delay for the tracking
signal occurred in turns, but well within the acceptable margins. A predicted measurement ẑ𝑘 is calculated, which is a
function of the predicted state h (x̂𝑘 ). This predicted measurement consists of the measured variables that are provided
by both sensors, namely range and range rate, azimuth and elevation from the radar as well as azimuth and elevation
from the EO camera. By comparing the actual measurement z𝑘 with the predicted measurement ẑ𝑘 , one can calculate
the innovation 𝜀 = z𝑘 − ẑ𝑘 = z𝑘 − h (x̂𝑘 ). Main drivers for the innovation are errors in the predicted state (due to
the constant speed assumption) and sensor disturbances. As last but one, the Kalman gain matrix W is calculated by
means of the predicted covariance P̂𝑘 , measurement matrix H = 𝑑h(x)

𝑑x , and the innovation covariance matrix S. This
Kalman gain matrix W is weighted with valid flags to deal appropriately with the sensor measurements as explained
previously. The corrected state x𝑘 is calculated by means of predicted state x̂𝑘 , the innovation 𝜀 and the Kalman gain
matrix W via the following equation: x𝑘 = x̂𝑘 +W · 𝜀. Finally, the corrected covariance P𝑘 is calculated. The complete
procedure is described in more detail below.

Fig. 6 General overview of the Kalman Filter setup

A. State Prediction x̂𝑘

The one step ahead prediction of the state vector is split up as follows:

x̂𝑘 =

[
x̂𝑘1

x̂𝑘2

]
(5)
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With the position in the upper half of the vector:

x̂𝑘1 =

ˆ
𝐸

𝑁

𝑈

 𝑘 =


𝐸

𝑁

𝑈

 𝑘−1

+ Δ𝑡 ·

¤
𝐸

𝑁

𝑈

0𝑘−1

(6)

And the velocity in the lower half of the vector:

x̂𝑘2 =

¤̂
𝐸

𝑁

𝑈

 𝑘 =

¤
𝐸

𝑁

𝑈

0𝑘−1

(7)

Note that the coordinates are East–North–Up and that the velocity is assumed to be close to constant. Moreover:

¤
𝐸

𝑁

𝑈

0𝑘−1

= L> ·

¤
𝐸

𝑁

𝑈

𝑇𝑘−1

(8)

where L> is the rotation matrix from the target ENU-frame to the ownship ENU-frame, as elaborated in the Appendix.

B. State Error Covariance Prediction P̂𝑘

P̂𝑘 = FP𝑘−1F> + Q (9)

with:

F =



1 0 0 Δ𝑡 0 0
0 1 0 0 Δ𝑡 0
0 0 1 0 0 Δ𝑡

1 0 0
03×3 0 1 0

0 0 1


Q = G𝚪G> (10)

and:

G =



0.5Δ𝑡2 0 0
0 0.5Δ𝑡2 0
0 0 0.5Δ𝑡2

Δ𝑡 0 0
0 Δ𝑡 0
0 0 Δ𝑡


𝚪 =


𝜎2
𝑒 0 0

0 𝜎2
𝑛 0

0 0 𝜎2
𝑢

 (11)

C. Predicted Measurement Calculation ẑ𝑘
The predicted measurement vectors of radar and EO camera consist of range 𝜌, elevation 𝛼, azimuth 𝛾, and range

rate ¤𝜌, and are described as follows:

ẑ𝑘 =
[
ẑ𝑘radar ẑ𝑘EOcam

]>
(12)

ẑ𝑘radar =
[
𝜌̂ 𝛼̂ 𝛾̂ ¤̂𝜌

]>
(13)

ẑ𝑘EOcam =
[
𝛼̂ 𝛾̂

]>
(14)
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since the EO camera cannot infer any distance information due to the lack of stereo view and depth perception. The
individual measured variables are defined as follows:

𝜌̂ =
√
𝑋̂2
𝐵 + 𝑌2

𝐵 + 𝑍̂2
𝐵 =

√
𝐸̂2 + 𝑁̂2 + 𝑈̂2 (15)

𝛼̂ = arctan
−𝑍̂𝐵

𝜌̂hor
(16)

𝛾̂ = arctan
𝑌𝐵

𝑋̂𝐵

(17)

¤̂𝜌 =
𝑋̂𝐵 · Δ ¤̂𝑋𝐵 + 𝑌𝐵 · Δ ¤̂𝑌𝐵 + 𝑍̂𝐵 · Δ ¤̂𝑍𝐵

𝜌̂
=

𝐸̂ · Δ ¤̂𝐸 + 𝑁̂ · Δ ¤̂𝑁 + 𝑈̂ · Δ ¤̂𝑈
𝜌̂

(18)

where:
𝜌̂hor =

√
𝑋̂2
𝐵 + 𝑌2

𝐵 (19)

and:
ˆ
𝑋𝐵

𝑌𝐵

𝑍𝐵

 = M> ·

ˆ
𝐸

𝑁

𝑈

 𝑘 = M> · x̂𝑘1

¤̂
𝑋𝐵

𝑌𝐵

𝑍𝐵

 = M> ·

¤̂
𝐸

𝑁

𝑈

 𝑘 = M> · x̂𝑘2 (20)

where M> is the rotation matrix from the ENU reference frame to the body fixed reference frame, as defined in the
Appendix.

D. Kalman Filter Gain W
The following steps are performed in order to calculate the gain of the filter:
1) Calculate measurement matrix H
2) Calculate innovation covariance matrix S
3) Calculate gain matrix W

Each step will be elaborated in detail next:

1. Measurement matrix H

The measurement matrix H is basically the Jacobian of the predicted measurement vector ẑ𝑘 =
[
ẑ𝑘radar ẑ𝑘EOcam

]>
=[

ĥradar (x̂𝑘 ) ĥEOcam (x̂𝑘 )
]>

with respect to the state vector x̂𝑘 =
[
x̂𝑘1 x̂𝑘2

]>
, with x𝑘1 being the position components

and x𝑘2 the velocity components, both in the ENU reference frame. Decomposing in 4 blocks results in the following
structure:

H (x𝑘 ) =
𝑑ĥ (x̂𝑘 )
𝑑x̂𝑘

=


𝑑ĥradar (x̂𝑘1 ,x̂𝑘2 )

𝑑x̂𝑘1

𝑑ĥradar (x̂𝑘1 ,x̂𝑘2 )
𝑑x̂𝑘2

𝑑ĥEOcam (x̂𝑘1 )
𝑑x̂𝑘1

𝑑ĥEOcam (x̂𝑘1 )
𝑑x̂𝑘2

= 02×3

 (21)

Note that the radar measurements include the sensed range rate ¤𝜌, which depends on the velocity components and
thus x𝑘2 . The EO camera measurements include only elevation 𝛼 and azimuth 𝛾, thus depending only on the position
components and thus x𝑘1 . Each block in Eq. (21) is elaborated next:

𝑑ĥradar
(
x̂𝑘1 , x̂𝑘2

)
𝑑x̂𝑘1

=


𝑑𝜌̂
𝑑𝐸

𝑑𝜌̂
𝑑𝑁

𝑑𝜌̂
𝑑𝑈

𝑑𝛼̂
𝑑𝐸

𝑑𝛼̂
𝑑𝑁

𝑑𝛼̂
𝑑𝑈

𝑑𝛾̂
𝑑𝐸

𝑑𝛾̂
𝑑𝑁

𝑑𝛾̂
𝑑𝑈

𝑑 ¤̂𝜌
𝑑𝐸

𝑑 ¤̂𝜌
𝑑𝑁

𝑑 ¤̂𝜌
𝑑𝑈


=




𝑑𝜌̂
𝑑𝑋𝐵

𝑑𝜌̂
𝑑𝑌𝐵

𝑑𝜌̂
𝑑𝑍𝐵

𝑑𝛼̂
𝑑𝑋𝐵

𝑑𝛼̂
𝑑𝑌𝐵

𝑑𝛼̂
𝑑𝑍𝐵

𝑑𝛾̂
𝑑𝑋𝐵

𝑑𝛾̂
𝑑𝑌𝐵

𝑑𝛾̂
𝑑𝑍𝐵

 · M>

𝑑 ¤̂𝜌
𝑑𝐸

𝑑 ¤̂𝜌
𝑑𝑁

𝑑 ¤̂𝜌
𝑑𝑈


=




𝑋̂𝐵
𝜌̂0

𝑌̂𝐵
𝜌̂0

𝑍̂𝐵
𝜌̂0

𝑋̂𝐵 ·𝑍̂𝐵

𝜌̂hor0 𝜌̂
2
0

𝑌̂𝐵 ·𝑍̂𝐵

𝜌̂hor0 𝜌̂
2
0

−𝜌̂hor
𝜌̂2

0
−𝑌̂𝐵
𝜌̂2

hor0

𝑋̂𝐵

𝜌̂2
hor0

0


· M>

𝑑 ¤̂𝜌
𝑑𝐸

𝑑 ¤̂𝜌
𝑑𝑁

𝑑 ¤̂𝜌
𝑑𝑈


(22)
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with:

𝑑 ¤̂𝜌
𝑑𝐸

=
1
𝜌̂0

(
Δ ¤̂𝐸 − 𝐸̂

𝜌̂0
¤̂𝜌
)

(23)

𝑑 ¤̂𝜌
𝑑𝑁

=
1
𝜌̂0

(
Δ ¤̂𝑁 − 𝑁̂

𝜌̂0
¤̂𝜌
)

(24)

𝑑 ¤̂𝜌
𝑑𝑈

=
1
𝜌̂0

(
Δ ¤̂𝑈 − 𝑈̂

𝜌̂0
¤̂𝜌
)

(25)

The denominators 𝜌̂0 in Eq. (22),(23),(24),(25) and 𝜌̂hor0 in Eq. (22) are singularity protected as follows:

𝜌̂0 = max
(
𝜌, 𝜀𝜌

)
(26)

𝜌̂hor0 = max
(
𝜌hor, 𝜀𝜌hor

)
(27)

where 𝜀𝜌 and 𝜀𝜌hor are fairly small positive values to prevent singularities.

𝑑ĥradar
(
x̂𝑘1 , x̂𝑘2

)
𝑑x̂𝑘2

=


𝑑𝜌̂

𝑑 ¤𝐸
𝑑𝜌̂

𝑑 ¤𝑁
𝑑𝜌̂

𝑑 ¤𝑈
𝑑𝛼̂
𝑑 ¤𝐸

𝑑𝛼̂
𝑑 ¤𝑁

𝑑𝛼̂
𝑑 ¤𝑈

𝑑𝛾̂

𝑑 ¤𝐸
𝑑𝛾̂

𝑑 ¤𝑁
𝑑𝛾̂

𝑑 ¤𝑈
𝑑 ¤̂𝜌
𝑑 ¤𝐸

𝑑 ¤̂𝜌
𝑑 ¤𝑁

𝑑 ¤̂𝜌
𝑑 ¤𝑈


=




𝑑𝜌̂

𝑑 ¤𝑋𝐵

𝑑𝜌̂

𝑑 ¤𝑌𝐵
𝑑𝜌̂

𝑑 ¤𝑍𝐵
𝑑𝛼̂
𝑑 ¤𝑋𝐵

𝑑𝛼̂
𝑑 ¤𝑌𝐵

𝑑𝛼̂
𝑑 ¤𝑍𝐵

𝑑𝛾̂

𝑑 ¤𝑋𝐵

𝑑𝛾̂

𝑑 ¤𝑌𝐵
𝑑𝛾̂

𝑑 ¤𝑍𝐵

 · M>

𝑑 ¤̂𝜌
𝑑 ¤𝐸

𝑑 ¤̂𝜌
𝑑 ¤𝑁

𝑑 ¤̂𝜌
𝑑 ¤𝑈


=

[
03×3

𝐸̂
𝜌̂0

𝑁̂
𝜌̂0

𝑈̂
𝜌̂0

]
(28)

𝑑ĥEOcam
(
x̂𝑘1

)
𝑑x̂𝑘1

=

[
𝑑𝛼̂
𝑑𝐸

𝑑𝛼̂
𝑑𝑁

𝑑𝛼̂
𝑑𝑈

𝑑𝛾̂
𝑑𝐸

𝑑𝛾̂
𝑑𝑁

𝑑𝛾̂
𝑑𝑈

]
=

[
𝑑𝛼̂
𝑑𝑋𝐵

𝑑𝛼̂
𝑑𝑌𝐵

𝑑𝛼̂
𝑑𝑍𝐵

𝑑𝛾̂
𝑑𝑋𝐵

𝑑𝛾̂
𝑑𝑌𝐵

𝑑𝛾̂
𝑑𝑍𝐵

]
· M> =


𝑋̂𝐵 ·𝑍̂𝐵

𝜌̂hor0 𝜌̂
2
0

𝑌̂𝐵 ·𝑍̂𝐵

𝜌̂hor0 𝜌̂
2
0

−𝜌̂hor
𝜌̂2

0
−𝑌̂𝐵
𝜌̂2

hor0

𝑋̂𝐵

𝜌̂2
hor0

0

 · M> (29)

2. Innovation covariance matrix S
The innovation covariance matrix is calculated as follows:

S = HP̂𝑘H> + Rsensors (30)

where: Rsensors = diag
[
𝜎2
𝜌radar 𝜎2

𝛼radar 𝜎2
𝛾radar 𝜎2

¤𝜌radar
𝜎2
𝛼EOcam 𝜎2

𝛾EOcam

]
. A diagonal matrix of sensor valid flags is

defined next: Msensorsvalid = diag [𝜇radar 𝜇radar 𝜇radar 𝜇radar 𝜇EOcam 𝜇EOcam]. These valid flags 𝜇• are one for valid
sensor readings or zero for invalid ones. These flags allow to take into account lower sampling rates for specific sensors,
signal dropouts (e.g. object is outside field of view), sensor malfunctions, invalid signals, etc. This setup assumes that
there is a monitoring algorithm in place that drives the valid flag values accordingly. This valid flag matrix is needed
for calculating the inverse of the innovation covariance matrix:

S−1
valid = Msensorsvalid · S−1 · Msensorsvalid (31)

3. Gain matrix W
The Kalman filter gain matrix is calculated with all the aforementioned information as follows:

W = P̂𝑘H>S−1
valid (32)

Wvalid = WMsensorsvalid (33)

Invalid flags in Msensorsvalid will result in zero columns in Wvalid. As a consequence, that sensor information will not be
used for the correction step. This means that the prediction step will have a higher relative importance for the states
that are the main drivers of these invalid measurements, except when there are other valid sensor measurements that
contain significant information of these states. This is illustrated in the results section.
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E. State Update x𝑘

The innovation is calculated first, which is the difference between the predicted measurements and the actual sensor
measurements, including sensor limitations and perturbations:

𝜀 = z𝑘 − ẑ𝑘 = z𝑘 − h (x̂𝑘 ) (34)

This innovation 𝜀 is then used to calculate the state update by means of the previously computed Kalman Gain matrix:

x𝑘 = x̂𝑘 + Wvalid · 𝜀 (35)

F. Geodetic Coordinates Calculation
Next step is calculating the absolute position of the target in WGS-84 coordinates. This is achieved by combining

the own position and the relative position of the target with respect to own position, which is the first half of the
corrected state vector x𝑘1 . Since both are defined in different reference frames, they are first converted to the ECEF
(earth centered earth fixed) reference frame, then added together and converted back to WGS-84.

The own position is converted straight from WGS-84 (i.e. latitude, longitude and altitude) to ECEF via the
transformation elaborated in the appendix, resulting in the position coordinates [𝑋 𝑌 𝑍]>ECEF. The relative position
of the target with respect to the own position in ECEF coordinates is calculated as follows:

𝑋

𝑌

𝑍

 (𝑆→𝑇 )ECEF

= T


𝐸

𝑁

𝑈

 𝑘 = Tx𝑘1 (36)

where T is the rotation matrix from the ENU reference frame to the ECEF reference frame, as defined in the Appendix.
The absolute position of the target in ECEF coordinates is then calculated as follows:

𝑋

𝑌

𝑍

𝑇ECEF

=


𝑋

𝑌

𝑍

ECEF

+

𝑋

𝑌

𝑍

 (𝑆→𝑇 )ECEF

(37)

As the last step, this absolute target position is converted back to WGS-84 (i.e. latitude, longitude and altitude) via
the reverse transformation elaborated in the Appendix.

G. Velocity Update
The velocity components of the target, which are the second half of the corrected state vector x𝑘2 are defined with

respect to the ownship ENU reference frame, these are transformed to the target ENU reference frame as follows:

¤
𝐸

𝑁

𝑈

 𝑘𝑇 = L>

¤
𝐸

𝑁

𝑈

 𝑘 = L>x𝑘2 (38)

H. State Error Covariance Update P𝑘

By first defining:
W𝐻 = I6×6 − WvalidH (39)

where I6×6 is a 6-by-6 identity matrix, the state error covariance matrix is then updated in the ownship reference frame:

P𝑘 = W𝐻 P̂𝑘W>
𝐻 + WvalidRsensorsW>

valid (40)

which is finally converted to the target reference frame via the aforementioned rotation matrix L:

P𝑘𝑇 =

[
L 03×3

03×3 L

]
P𝑘 (41)
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VI. Select Results
A selection of results is presented here, consisting of four different configurations: first a nominal configuration

with default sensors is shown for scenario 1. Thereafter occasional dropouts are considered for the EO camera as well
as for the radar, both also for scenario 1. Lastly, nominal results are presented with processed image data as elaborated
in Section IV, applied on scenario 2.

A. Nominal Results
First a nominal configuration is considered with default fully functioning sensors, applied for scenario 1 as described

in Section II.A. This specific example focuses on the situation where Duck is tracking Goose. Fig. 7(a) compares the
estimated tracks (predicted as well as corrected) with the noisy radar measurement. This shows that most radar noise
is along the vertical axis, caused by the largest standard deviation for elevation noise (see Table 2) combined with the
long distance between both vehicles. This noise magnitude becomes significantly smaller when the vehicles get closer
to each other, as shown close to the origin of Fig. 7(a), which is the landing spot. Fig. 7(b) compares the corrected track
with the true reference (which is unknown to the object tracker). This figure shows that the filter effectively removes
much of the radar noise thanks to the addition of the less noisy EO camera data.

Table 2 Noise 𝜎 values for the sensors

noise 𝜎 EO camera radar
range – ±3.25𝑚

range rate – ±2𝑚/𝑠
elevation 0.0094𝑑𝑒𝑔 ±3 deg
azimuth 0.0094𝑑𝑒𝑔 ±1𝑑𝑒𝑔
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Fig. 7 Estimated track in three dimensions for nominal scenario 1

Fig. 8(a) compares the estimated track in East–North–Up coordinates, which is the first half of the estimated state
vector x𝑘1 , with the true track. The estimate is a good fit, and the fitting errors in each dimension, as shown in Fig. 8(b),
are small. These fitting errors are also small when compared to the actual noise in the radar data, as shown side-by-side
in Fig. 9.

Fig. 10(a) compares the estimated velocity components in East–North–Up coordinates, which is the second half of
the estimated state vector x𝑘2 , with the true velocity components. The estimated velocity components are significantly
noisier, especially in the vertical dimension. Fig. 10(b) shows the standard deviations for respectively the predicted
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Fig. 8 Estimated track time histories for nominal scenario 1
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Fig. 9 Fitting error and noise levels for nominal scenario 1
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track components, the corrected track components and the corrected velocity components. A few observations here
are that the standard deviations are lowered from the prediction to the correction step, as extra sensor information is
coming in, and the standard deviations have the largest magnitude for the velocity components, as expected. Larger
sigma values in the prediction step give more weight to the correction step.
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Fig. 10 Estimated velocity and standard deviations for nominal scenario 1

Fig. 10 compare the actual measurements with the state-based calculated measurements. The predicted measure-
ment is calculated based on the predicted state based on the previously defined function ẑ = h (x̂). The difference
between actual measurement and predicted measurement is the innovation: 𝜀 = z − ẑ. The corrected measurement is
calculated based on the corrected state in a similar fashion. Fig. 11(a) shows the results for the radar measurements
and Fig. 11(b) for the EO camera observations. Once again, these graphs show a good fit, and will serve as baseline for
the next two examples with sensor dropouts. Fig. 11(a) also shows the much noisier elevation measurement by radar,
but a significantly less noisy reconstructed measurement based on the estimated states.
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Fig. 11 Comparison of measurements with state calculated measurements for nominal scenario 1
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B. Results for Occasional EO Camera Dropouts
This example is set up similarly as the previous nominal one for scenario 1, but here the camera fails for two short

time spans during the simulated flight, first for 20 seconds, thereafter for 50 seconds. Fig. 12 shows the estimated track
and compares it with the true reference, as seen from two different vantage points, seen from the South and from the
West respectively. These figures show predominantly vertical deviations in the estimated position, which are mainly
caused by the largest noise magnitude in the radar elevation measurements, as shown in Table 2.

37.8

37.75

lo
n

 [
d

e
g

]

37.7

37.65

0

lat [deg]

37.6
-122.46 -122.45 -122.44 -122.43 -122.42 -122.41 -122.4 -122.39 -122.38

500

a
lt
 [

ft
]

1000

1500

true

corrected track

(a) Estimated track with true reference, seen from the South

-122.4

-122.42

lat [deg]

-122.440

lon [deg]

500

37.8 37.75

a
lt
 [

ft
]

37.7 37.65

1000

37.6

1500

true

corrected track

(b) Estimated track with true reference, seen from the West

Fig. 12 Estimated track in three dimensions for scenario 1 with occasional EO camera dropouts

Fig. 13(a) compares the estimated track in East–North–Up coordinates with the true track, and the fitting errors in
each dimension are shown in Fig. 13(b). The deviations are in all axes, but they are mostly noticeable along vertical
axis due to the magnitude scales, which is consistent with the previous observations. Despite the loss of camera
information, these fitting errors are still relatively small when compared to the actual noise in the radar data, as shown
side-by-side in Fig. 14.
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Fig. 13 Estimated track time histories for scenario 1 with occasional EO camera dropouts
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Fig. 14 Fitting error and noise levels for scenario 1 with occasional EO camera dropouts

Fig. 15(a) compares the estimated velocity components with the true velocity components. The differences are
noticeable when the camera fails, again especially in the vertical dimension. Fig. 15(b) shows the standard deviations
for position and velocity in a similar way as earlier. All standard deviations increase significantly in the relevant time
spans, again the most in the upward direction.
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(b) Standard deviations for track and speeds

Fig. 15 Estimated velocity and standard deviations for scenario 1 with occasional EO camera dropouts

An important observation for the reconstructed measurements in Fig. 16 is for the reconstructed elevation signal
for the EO camera during the dropout timespans. During these timespans, the reconstructed camera measurement is
much noisier, since it is reconstructed based on states that are estimated with noisy radar measurements only. This
noisy deviation is less apparent for longer distances.
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Fig. 16 Comparison of measurements with state calculated measurements for scenario 1 with occasional EO
camera dropouts

C. Results for Occasional Radar Dropouts
This example is similar as the previous two, but here the radar fails for two short time spans, namely first 15 seconds,

thereafter another 10 seconds. The estimated track is shown in Fig. 17. There is no substitute in the camera signals
for the range and range rate measurements in the radar observations, highlighted in Table 3, and due to the lack of
information the track starts to drift along the line of sight, as illustrated in Fig. 17. During the first time span, Duck
is still on the ground, thus the drift is tilted upward. Duck is in flight for the second timespan, which results in a less
upward deviation. The correction happens immediately after the first new radar measurement is received.
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Fig. 17 Estimated track in three dimensions for scenario 1 with occasional radar dropouts

Fig. 18(a) compares the estimated track in East–North–Up coordinates with the true track, and the fitting errors in
each dimension are shown in Fig. 18(b). Initially, the drift builds up very slowly, but increases exponentially over time.
The fitting error is huge compared to the noise, but there is fundamental information missing here.

Fig. 19(a) compares the estimated velocity components with the true velocity components. The differences are
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Table 3 Measuremed quantities for the sensors

variable EO camera radar
range 7 3

range rate 7 3

elevation 3 3

azimuth 3 3
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Fig. 18 Estimated track time histories for scenario 1 with occasional radar dropouts
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noticeable when the radar fails, in all dimensions. Fig. 19(b) shows the standard deviations for position and velocity in
a similar way as earlier. All standard deviations increase significantly in the relevant time spans, all observations here
are consistent with previous trends.
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(b) Standard deviations for track and speeds

Fig. 19 Estimated velocity and standard deviations for scenario 1 with occasional radar dropouts

An important observation for the reconstructed measurements in Fig. 20 is for the reconstructed range and range
rate signals for the radar during the dropout timespans. During these timespans, the reconstructed range and range rate
values drift away exponentially, since there is some fundamental information missing here. These trends confirm the
earlier observation that the drift in range and range rate is along the line of sight.

0 100 200 300 400 500 600
0

1

2

ra
n
g
e
 [
m

]

104 Radar measurements

0 100 200 300 400 500 600

0

20

40

e
le

v
a
ti
o
n
 [
d
e
g
]

0 100 200 300 400 500 600
0

200

400

a
z
im

u
th

 [
d
e
g
]

0 100 200 300 400 500 600

time [s]

-100

-50

0

ra
n
g
e
 r

a
te

 [
m

/s
]

measured values

based on predicted track

based on corrected track

(a) Comparison radar measurements with state calculated measurements

0 100 200 300 400 500 600
-20

0

20

40

e
le

v
a

ti
o

n
 [

d
e

g
]

EOcam measurements

0 100 200 300 400 500 600

time [s]

0

100

200

300

400

a
z
im

u
th

 [
d

e
g

]

measured values

based on predicted track

based on corrected track

(b) Comparison EO camera measurements with state calculated mea-
surements

Fig. 20 Comparison of measurements with state calculated measurements for scenario 1 with occasional radar
dropouts
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D. Nominal Results with processed image data
This example is based on scenario 2, where the camera information consists of processed image data, as was

explained in Section IV. For this example, the camera field of view limits were taken into account, which were ±18deg
for the elevation and ±30deg for the azimuth. The image processing software occasionally also missed to detect Goose
for a few instances while inside the field of view. Just like before, the biggest noise level occurs in the radar elevation
signal as previously shown in Table 2, combined with a longer range this causes primarily vertical deviations, as shown
in Fig. 21.
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Fig. 21 Estimated track in three dimensions for scenario 1 with processed image data

Fig. 22(a) compares the estimated track in East–North–Up coordinates with the true track, and the fitting errors
in each dimension are shown in Fig. 22(b). The deviations are in all axes, but they are mostly noticeable along the
vertical axis due to the magnitude scales (lower signal to noise ratio). Despite the loss of camera information, these
fitting errors are still significantly smaller when compared to the actual noise in the radar data, as shown side-by-side
in Fig. 23.
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Fig. 22 Estimated track time histories for scenario 1 with processed image data
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(b) Actual radar noise added to track

Fig. 23 Fitting error and noise levels for scenario 1 with processed image data

Also for the speed components as shown in Fig. 24(a), the differences are noticeable when the camera fails, again
especially vertically. Also worth noting is that the estimated velocity component up seems significantly less noisy here.
However, an important sidenote here is that the maximum distance between the two vehicles in scenario 2, considered
here, is considerably less than the distance between both during most of scenario 1. The standard deviations in Fig.
24(b) also increase in the relevant time spans when no image processing data are available. The ‘dropout’ timespans
are most straightforward to distinguish in these standard deviations time histories, and are consistent with the other
findings in the previous figures of this example.
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(b) Standard deviations for track and speeds

Fig. 24 Estimated velocity and standard deviations for scenario 1 with processed image data

22



VII. Conclusions and recommendations
In this research, a baseline Kalman Filter based object tracker was developed in the context of Urban/Advanced

Air Mobility, where a capability is needed such that eVTOL vehicles can track each other as well as non-cooperative
objects (drones, birds) based on on-board sensors only. The sensors considered in this baseline approach are EO
camera and radar. Both have their specific advantages and drawbacks. Radar measurements are notably more noisy
than camera observations. However, camera measurements provide azimuth and elevation only, thus lacking range
information. This sensor fusion strategy is made adaptive, so that lower sampling rates of specific sensors are taken
into account, as well as loss of signal (for example because the object is outside the field of view or the useful range
for a particular sensor, or because of a sensor malfunction resulting in a sensor signal dropout), and invalid data. This
capability is achieved by incorporating valid flags in the weighting matrix of the Kalman filter. Initial results shown in
this research confirm satisfactory performance, which is negatively impacted by a loss of signal of one of the sensors,
in the way as one would expect. Loss of camera information results in a more noisy estimate, especially in the vertical
plane. A momentary drop in radar data results in drift of the estimate, due to the lack of range information.

Subsequent research in this project is in the field of distributed sensing, where multiple vehicles as well as ground-
based observers (such as radars) with similar as well as dissimilar sensor suites exchange sensor data and/or track
estimates, in order to circumvent or minimize the negative impact of the aforementioned loss of signal of one or
multiple on-board sensors.

Acknowledgments
This work was performed under the NASA Aeronautics Research Mission Directorate (ARMD), Transformative

Tools and Technologies (TTT) Project. The authors would like to thank Caleb Adams, Keerthana Kannan and George
Gorospe for their invaluable contributions to this project. Moreover, a special acknowledgment to Chester Dolph and
Evan Kawamura for the good collaboration in combining our individual research work for moving forward to the next
steps of object tracking using real sensor data and Kalman filtering applied for vision based landing guidance.

Appendix: Reference Frame Transformations for Kalman Filter
Throughout this publication, five different reference frames are used: geodetic (WGS-84), Earth-Centered Earth-

Fixed (ECEF), East–North–Up (ENU), body fixed and sensor spherical reference frames. They are all illustrated in
Fig. 25.

Fig. 25 Reference frames used by Kalman Filter

The geodetic reference frame expresses the spherical coordinates as longitude 𝜆𝑠 with respect to the Greenwich
meridian, latitude 𝜙𝑠 with respect to the equator and altitude ℎ𝑠 above the average sea-level. The ECEF reference
frame is Cartesian with the origin in the Earth center and its coordinates are as follows: the 𝑍ECEF axis extends through
true North, 𝑋ECEF points through the earth surface where the equator and Greenwich meridian intersect, and 𝑌ECEF is
finally perpendicular on the two previous axes. The ENU Cartesian reference frame is vehicle centered with the axes
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pointing East–North–Up. As illustrated in Fig. 25, the ‘up’ direction is location dependent, as well as the others. As a
consequence, the ENU frames for ownship and target are differently oriented. This difference increases for increasing
distances between both. This must be reflected in the calculations. Next is the body fixed reference frame, which
is Cartesian and centered at the vehicle’s center of gravity. The 𝑋𝐵 axis points forward, 𝑌𝐵 axis points to the right
and the 𝑍𝐵 axis is downwards. Finally, the vehicle centered spherical reference frame expresses the coordinates as
range 𝜌 (distance from center of gravity), elevation 𝛼 (vertical angle with respect to the 𝑋𝐵 − 𝑌𝐵-plane) and azimuth
𝛾 (horizontal angle with respect to the forward axis). The sensor measurements from radar and camera are expressed
in this spherical reference frame. Note that both latter vehicle fixed reference frames are vehicle attitude dependent.

The transformations between the different aforementioned reference frames are illustrated in Fig. 26. The trans-
formations between body-fixed, ENU, ECEF as well as between different ENU’s of different vehicles at different
locations are pure angular rotations by means of the respective rotation matrices M (𝜙, 𝜃, 𝜓) over the three Euler angles
between body fixed and ENU, T (𝜆𝑠 , 𝜙𝑠) over longitude and latitude between ENU and ECEF and L (𝜆𝑠 , 𝜙𝑠 , 𝜆𝑡 , 𝜙𝑡 )
over longitude and latitude of both locations between different ENU’s at different locations. The mappings between
body fixed and sensor spherical as well as between geodetic and ECEF are more complex nonlinear transformations.
Each of them is elaborated next.

Fig. 26 Transformations between the different reference frames

Transformation from body-fixed to spherical and backwards
The sensor spherical coordinates are defined as a function of the body-fixed coordinates as follows:

𝜌 =
√
𝑋2
𝐵 + 𝑌2

𝐵 + 𝑍2
𝐵 (42)

𝛼 = arctan
−𝑍𝐵

𝜌hor
(43)

𝛾 = arctan
𝑌𝐵
𝑋𝐵

(44)

(45)

where:
𝜌hor =

√
𝑋2
𝐵 + 𝑌2

𝐵 (46)

And the other way around:

𝑋𝐵 = 𝜌 cos𝛼 cos 𝛾 (47)
𝑌𝐵 = 𝜌 cos𝛼 sin 𝛾 (48)
𝑍𝐵 = 𝜌 sin𝛼 (49)
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Rotation from body-fixed to ENU and backwards
From body-fixed to ENU is a sequential rotation over the three Euler angles roll 𝜙, pitch attitude 𝜃 and yaw 𝜓[17]:

M (𝜙, 𝜃, 𝜓) =


sin𝜓 cos 𝜃 cos 𝜙 cos𝜓 + sin 𝜙 sin𝜓 sin 𝜃 − sin 𝜙 cos𝜓 + cos 𝜙 sin𝜓 sin 𝜃
cos𝜓 cos 𝜃 − cos 𝜙 sin𝜓 + sin 𝜙 cos𝜓 sin 𝜃 sin 𝜙 sin𝜓 + cos 𝜙 cos𝜓 sin 𝜃

sin 𝜃 − sin 𝜙 cos 𝜃 − cos 𝜙 cos 𝜃

 (50)

The transpose is used for the backwards direction.

Rotation from ENU to ECEF and backwards
From the vehicle centered ENU to the earth centered ECEF is a sequential rotation over the longitude 𝜆𝑠 and

latitude 𝜙𝑠 of the current position[17]:

T (𝜆𝑠 , 𝜙𝑠) =

− sin𝜆𝑠 − cos𝜆𝑠 sin 𝜙𝑠 cos𝜆𝑠 cos 𝜙𝑠

cos𝜆𝑠 − sin𝜆𝑠 sin 𝜙𝑠 sin𝜆𝑠 cos 𝜙𝑠

0 cos 𝜙𝑠 sin 𝜙𝑠

 (51)

The transpose is used for the other way around.

Rotation between ENU’s
A rotation between ENU’s is basically a rotation from the first ENU to ECEF and subsequently from ECEF back

to the second ENU:
L (𝜆𝑠 , 𝜙𝑠 , 𝜆𝑡 , 𝜙𝑡 ) = T> (𝜆𝑡 , 𝜙𝑡 ) · T (𝜆𝑠 , 𝜙𝑠) (52)

Substituting Eq. (51) results in:

L (𝜆𝑠 , 𝜙𝑠 , 𝜆𝑡 , 𝜙𝑡 ) =
= T> (𝜆𝑡 , 𝜙𝑡 ) · T (𝜆𝑠 , 𝜙𝑠)

=


− sin𝜆𝑡 − cos𝜆𝑡 sin 𝜙𝑡 cos𝜆𝑡 cos 𝜙𝑡
cos𝜆𝑡 − sin𝜆𝑡 sin 𝜙𝑡 sin𝜆𝑡 cos 𝜙𝑡

0 cos 𝜙𝑡 sin 𝜙𝑡


𝑇 

− sin𝜆𝑠 − cos𝜆𝑠 sin 𝜙𝑠 cos𝜆𝑠 cos 𝜙𝑠

cos𝜆𝑠 − sin𝜆𝑠 sin 𝜙𝑠 sin𝜆𝑠 cos 𝜙𝑠

0 cos 𝜙𝑠 sin 𝜙𝑠


=


cos (𝜆𝑡 − 𝜆𝑠) sin (𝜆𝑡 − 𝜆𝑠) sin 𝜙𝑠 − sin (𝜆𝑡 − 𝜆𝑠) cos 𝜙𝑠

− sin (𝜆𝑡 − 𝜆𝑠) sin 𝜙𝑡 cos 𝜙𝑡 cos 𝜙𝑠 + sin 𝜙𝑡 sin 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠) cos 𝜙𝑡 sin 𝜙𝑠 − sin 𝜙𝑡 cos 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠)
sin (𝜆𝑡 − 𝜆𝑠) cos 𝜙𝑡 sin 𝜙𝑡 cos 𝜙𝑠 − cos 𝜙𝑡 sin 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠) sin 𝜙𝑡 sin 𝜙𝑠 + cos 𝜙𝑡 cos 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠)


(53)

Transformation from ECEF to geodetic and backwards

ECEF ⇒ geodetic
The target position in WGS-84 geodetic coordinates is obtained following the 15-step process presented below

(extracted from RTCA DO-317A)[4]:

𝑟ecef =
√
𝑋2
𝑡 + 𝑌𝑡 2 (54)

𝐸2 = 𝑎2 − 𝑏2 (55)
𝐹 = 54𝑏2𝑍2

𝑡 (56)

𝐺 = 𝑟2
ecef +

(
1 − 𝜀2

)
𝑍2
𝑡 − 𝜀2𝐸2 (57)

𝐶 =
𝜀4𝐹𝑟2

ecef
𝐺3 (58)

𝑆 =
3
√

1 + 𝐶 +
√
𝐶2 + 2𝐶 (59)
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𝑃 =
𝐹

3
(
𝑆 + 1

𝑆 + 1
)2

𝐺2
(60)

𝑄 =
√

1 + 2𝜀4𝑃 (61)

𝑟𝑜 =
−𝑃𝜀2𝑟ecef

1 +𝑄
+

√
𝑎2

2

(
1 + 1

𝑄

)
−

𝑃
(
1 − 𝜀2) 𝑍2

𝑡

𝑄(1 +𝑄) −
𝑃𝑟2

ecef
2

(62)

𝑈 =
√(

𝑟ecef − 𝜀2𝑟𝑜
)2 + 𝑍2

𝑡 (63)

𝑉 =
√(

𝑟ecef − 𝜀2𝑟𝑜
)2 + (

1 − 𝜀2) 𝑍2
𝑡 (64)

𝑍𝑜 =
𝑏2𝑍𝑡

𝑎𝑉
(65)

𝜙𝑡 = tan−1
(
𝑍𝑡 + 𝜀′2𝑍𝑜

𝑟ecef

)
(66)

𝜆𝑡 = tan−1
(
𝑌𝑡
𝑋𝑡

)
(67)

ℎ𝑡 = 𝑈

(
1 − 𝑏2

𝑎𝑉

)
(68)

where:
𝑎 = 6.378137 · 106𝑚, semimajor axis of the Earth
𝑏 = 6.3567523142 · 106𝑚, semiminor axis of the Earth
𝜀 = 0.081819190842622, first eccentricity of the Earth
𝜀′ = 0.082094437935831, second eccentricity of the Earth
𝜙𝑡 = target latitude [rad]
𝜆𝑡 = target longitude [rad]
ℎ𝑡 = target geodetic altitude [m]

geodetic ⇒ ECEF
The ownship’s Earth-Centered, Earth-Fixed (ECEF) position is calculated by[4]:

𝑋𝑆

𝑌𝑠

𝑍𝑠

 =


(𝑁𝑠 + ℎ𝑠) cos 𝜙𝑠 cos𝜆𝑠
(𝑁𝑠 + ℎ𝑠) cos 𝜙𝑠 sin𝜆𝑠(
𝑁𝑠

(
1 − 𝜀2) + ℎ𝑠

)
sin 𝜙𝑠

 (69)

where:
𝜙𝑠 = ownship geodetic latitude [rad]
𝜆𝑠 = ownship geodetic longitude [rad]
ℎ𝑠 = ownship geodetic altitude [m]
𝑁𝑠 = 𝑎√

1−𝜀2 sin2 𝜙𝑠

𝑎 = 6.378137 · 106𝑚, semimajor axis of the Earth
𝜀 = 0.081819190842622, first eccentricity of the Earth
If the altitude of the ownship is measured as height above Mean Sea Level (MSL) from a barometric sensor, it should
be converted to WGS-84 Height Above Ellipsoid (HAE) using the following steps:

𝜉 (𝜙𝑠) = 𝑔0eq

1 + 𝑘 sin2 𝜙𝑠√
1 − 𝜀2 sin2 𝜙𝑠

(70)

𝑅 (𝜙𝑠) =
𝑎

1 + 𝑓 + 𝑚𝑟 − 2 𝑓 sin2 𝜙𝑠

(71)

ℎ𝑆 =
𝑅 (𝜙𝑠)ℎ

𝑅 (𝜙𝑠) 𝜉 (𝜙𝑠)
𝜉 ( 𝜋

4 ) − ℎ
(72)
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where:
𝜙𝑠 = ownship geodetic latitude [rad]
𝜀 = 0.081819190842622, first eccentricity of the Earth
𝑔0eq = 9.7803253359𝑚/𝑠2, theoretical gravity at the equator
𝑔0pl = 9.8321849378𝑚/𝑠2, theoretical gravity at the poles

𝑘 =
𝑏 ·𝑔0pl
𝑎 ·𝑔0eq

− 1
𝜉 (𝜙𝑠) = normal gravity on the surface of an ellipsoid at 𝜙𝑠 [𝑚/𝑠2]
𝑎 = 6.378137 · 106𝑚, semimajor axis of the Earth
𝑏 = 6.3567523142 · 106𝑚, semiminor axis of the Earth
𝑓 = 𝑎−𝑏

𝑎 , flattening of the Earth
𝑚𝑟 = 0.003449787, gravity ratio
𝑅 (𝜙𝑠) = radius of the Earth at 𝜙𝑠 [m]
ℎ = measured ownship height above MSL
ℎ𝑠 = ownship geodetic altitude [m]
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