

Origami-based Composite Space Structures


Rebecca Hall

Jin Ho Kang, Keith L Gordon, Sheila Thibeault, and Jeff Hinkley

December 15, 2021

RD RD RECTORATE

2021 Fall Student Research Symposium

Personal Introduction

- Rebecca Hall
- ✤Grew up in Houston, TX
- UCF Mechanical Engineering Student
- Work with Langley Research Center in the Advanced Materials and Processing Branch
- Active member of Students for the Exploration and Development of Space
- Interested in the development of payloads and habitable structures in space as a long-term career

Challenge

Mars and Moon missions need deployable structure for surface habitats and

payload transferring systems

Existing approaches have limitations

- Thin-walled tubular composite booms cannot support large loads
- Inflatables need continuous gas supplement
- Gas and cutting mechanisms can fail

Challenge is to create robust, foldable structure

Objective

Proof of concept of new technology for load-bearing space structures

- Compact for stowage and launch
- Reliably deployed in space
- Rigidizes to maintain structural integrity

Approach

*Use origami, composite materials, UV curing resins, and shape memory polymers.

Project phases:

- Literature survey
- Conceptual design
- Materials selection and proposed manufacturing method
- Substructure element tests
- Design refinement

✤Ultimate product: detailed research proposal.

History of Deployable Structures

*There has been a major gap in the development of deployable space structures

- ✤In the 60s there were early demonstrations like the ECHO Satellite, but little development since
- Most rely on inflatable deployment
- *Only major tests in space have been BEAM and the Russian Volga Airlock on Vokshod 2

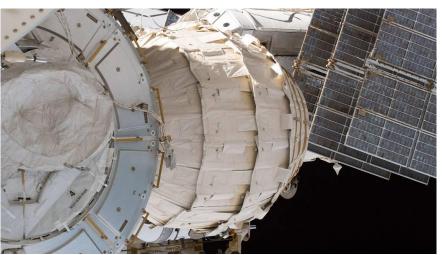


Image credit: NASA

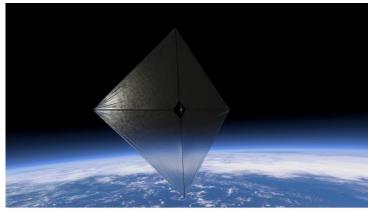
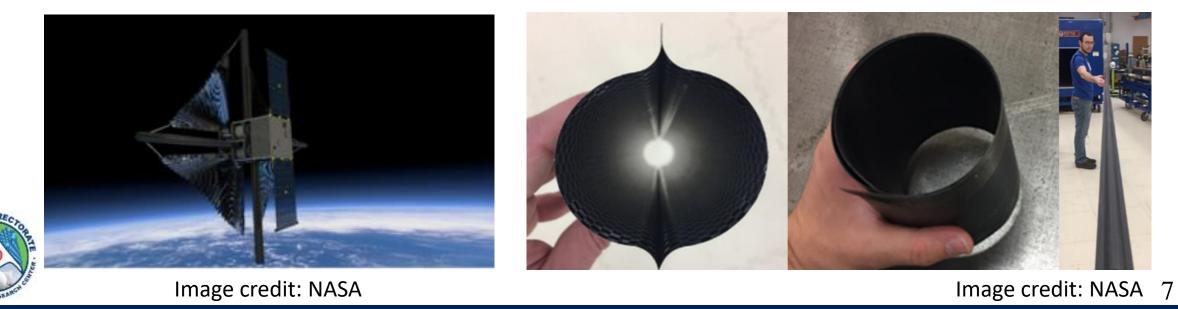
NASA Langley Research Center

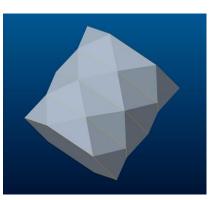
Advanced Materials and Processing Branch

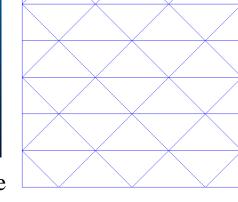
History of Deployable Structures

Solar Sails

 IKAROS JAXA Solar Sail launched in 2010
 ACS3 Advanced Composite Solar Sail System developed by Langley

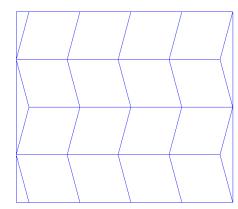




Image credit: NASA



Structural Choice

- Origami inspiration
 Yoshimura structure
 Hinge development
 - Membrane hinges
- Taking into account thickness
- Other considerations
 - Miaru Ori fold
 - Shape morphing architected sheetsMicrolattices and compliant arrays



Yoshimura Structure

Miura Ori Structure Miura Ori Flat Layout

Image credit: NASA

8

Materials Selection

UV Curing Resins

Shape Memory Polymers

Other Considerations

CHEM foam

Thermally Cured Thermoset Composites

Aluminum and Film Laminates

Second Order Transition Change Composites

Foam Rigidization

10

Materials Selection

UV Curing Resin and Additive Candidates

Material	Supplier	Properties
ATI-ROC-P600-2	Adherent Tech	 Can cure at low temperatures Can polymerize at 10°C Low outgassing Can be cured with only sunlight Rigid On Command system already tested in isogrid booms
EPV 3408CO	Polymer-G	 One component low viscosity 100% reactive liquid that can be cured by exposure to UV lamp at 395nm wavelengths High stability in outdoor environment High temperature and hydrolytic stability.
SpeedCure 2-ITX	Sartomer	 2-Isopropylthioxanthone Absorption maxima at 259 and 383nm Specialized for composite and depth curing Several other options

Results

Our current results from the literature survey stage

Structure

Yoshimura Hexagon based tube structure

*Materials

♦ UV curing polymer, film, glass fiber composite

Potential Manufacturing methods

Mandrel or flat projection

Potential Testing Methods

✤Resin curing determination, materials coupon testing, load bearing tests

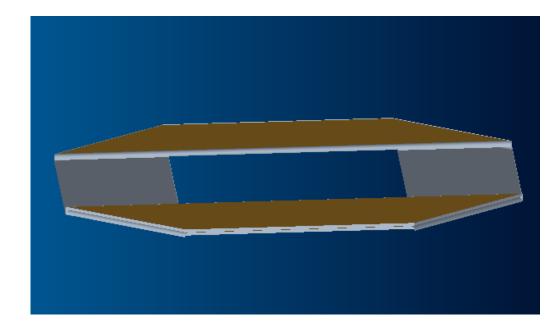
NASA Langley Research Center

Prototype Model for Proof of Concept and Testing

This is a rendering of a CAD model of the prototype structure using the Yoshimura folding pattern.

Image credit: NASA

NASA Langley Research Center


Advanced Materials and Processing Branch

12

Compacted Position of Structure

A rendering of a CAD model of the compact variation of the structure for pre-deployment stowage.

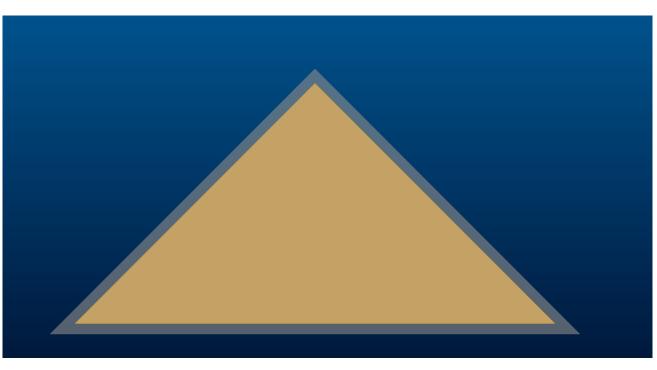


Image credit: NASA

13

Individual Composite Layered Unit Cell Panel

A rendering of a CAD model of a single triangular unit cell of the composite panels.

Image credit: NASA

Rigidizable Layer

Solid composite panel

Rigidizable Layer

A cross section of the unit cell

Prototype Deployment Geometry Demonstration

NASA Langley Research Center

Image credit: NASA

16

Analysis/Summary

✤We have determined that there is a gap in the technology and we have the potential to develop a new deployment option in the burgeoning field of deployable space structures as NASA aims to develop LEO habitable stations, return to the Moon, and head to Mars

✤To fill this gap, we have decided to design a composite deployable Yoshimasa structure that uses UV curing or shape memory polymer resins in membrane hinges to rigidize

Next Steps/Outlook/Future Work

- The next stage is to determine manufacturing method and do testing on the prototype and materials.
- Long term, the goal is to scale up the design, testing, and increase the TRL of rigidizable deployable space structure using UV curing resins or shape memory polymers.
- The end goal would be to see this technology used in Lunar and Martian

18

Acknowledgements

- Thank you to the Universities Space Research Association for my grant
- Thank you to my research team Jin Ho Kang and Keith Gordon, Jeff Hinkley, and Sheila Thibeault for all of the help, contributions, and knowledge shared
- Thank you to the AMPB branch and Jan Puchalski for help with PTC Creo
- Thank you to the intern coordinators for guiding me in this experience

✤ Jessica Gangitano, Patricia Sanchez, and Jalisa Thomas