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This work aims to compute and analyze the mechanical properties of 3D woven composite
materials that share the same yarn structure but differ in their matrix porosity and yarn’s
fiber volume fraction. Assuming linear elastic behavior, NASA’s PuMA software was used
to characterize the different composites from their constituents’ data, averaging their elastic
properties in three main directions to obtain their effective orthotropic mechanical properties.
This was performed in three steps: firstly, the porous matrix phase was analyzed at the micro-
scale; then, these results were used, along with the mechanical properties of the fibers, to model
the yarns at the meso-scale; finally, results from the constituents were homogenized and used to
model the mechanical behavior of the unit cell at the macro-scale. The 3D woven composite
materials selected for this study are made of a mixture of phenolic resin with porosity values
between 0 and 0.6, and infiltrated carbon fiber yarns with fiber volume fractions between 0.5
and 0.8. Results from this study show the effect of different matrix porosities and fiber volume
fractions on the macro-scale mechanical properties, and were validated through theoretical and
semi-empirical expressions found in the literature.

I. Nomenclature

𝑐 = fitting constant [-]
𝑑 = pore diameter in voxels
𝐸 = Young’s modulus [Pa]
𝐺 = shear modulus [Pa]
ROM = Rule of Mixtures
RVE = Representative Volume Element
TPS = Thermal Protection System
𝑉 = volume fraction [-]
𝜖 = strain [-]
𝜈 = Poisson’s ratio [-]
𝜙 = porosity [-]
𝜓 = maximum packing ratio [-]
𝜉 = Halpin-Tsai reinforcement parameter [-]

𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 :

1, 2, 3 = directions X, Y and Z
𝑓 = fiber
𝐿 = longitudinal direction
𝑚 = matrix
𝑇 = transverse direction
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II. Introduction

Over the last decade, textile-reinforced composites have become crucial in the aerospace industry, replacing more
traditional materials such as metals and ceramics in many applications. Their strong directional properties allow
tailoring structures to their expected loading case while optimizing weight, giving engineers a wide variety of design
options that can replace full assemblies of metal parts. Other advantages are their durability in harsh environments
and high in-plane fatigue resistance. However, multilayered 2D composite materials suffer from poor inter-laminar
mechanical properties and damage tolerance due to lack of through-the-thickness fibers [1] .

To address some of the issues that laminated composite materials present, three-dimensional (3D) textile composites
have been developed for specific applications with multi-directional mechanical and thermal loads [2]. In 3D woven
composites, reinforcement is also weaved through the thickness direction, which leads to enhanced out-of-plane
mechanical properties. This reduces the delamination often experienced by 2D woven composites and decreases crack
risks [3]. An example of a 3D woven composite material within NASA is the recently developed Heatshield for Extreme
Entry Environment Technology (HEEET) shown in Fig. (1), a three-dimensional woven dual-layer carbon phenolic
Thermal Protection System (TPS) material, designed to meet NASA’s needs for planetary science missions with very
high heating entry environments [4].

Fig. 1 HEEET cross-section [5] Fig. 2 Different scales in a woven material [6]

Designing a 3D woven material for a specific application is not trivial due to the high number of design options:
constituents selection, resin infusion process, yarns structure, fiber volume fraction, curing process, and so on. This
paper focuses on multi-scale modeling to obtain the mechanical properties of different 3D woven composites that share
the same yarn structure but differ in their matrix porosity and fiber volume fraction. This approach could also be
expanded to take into account other 3D weave structures to perform full design optimizations of 3D woven composites.

In order to obtain the mechanical properties of the materials investigated, the authors used the PuMA software
[7–9], an open-source software used to perform the solid mechanics simulations. The software is able to either generate
domains either artificially or imported from micro-CT scans and compute material properties such as: porosity, specific
surface area, effective thermal conductivity, pore diameter, tortuosity, and permeability. New capabilities were added
recently to carry out anisotropic analyses of fibrous and woven materials to estimate their local orientations and compute
their effective conductivity following the Multi-Point Flux Approximation (MPFA) method [6, 10]. This paper takes
advantage of the latest addition to this software, a finite volume anisotropic stress analysis solver based on the Multi-Point
Stress Approximation (MPSA) method [11, 12]. For geometric modeling of textiles and composites materials, PuMA
makes use of the open-source library TexGen [13].

The following section details the steps to obtain the mechanical properties at the micro-scale (porous resin),
meso-scale (resin infiltrated yarns), and macro-scale (orthotropic unit cell). Section IV analyzes the mechanical
properties obtained for the studied constituents and their corresponding 3D woven composite materials, and Section V
summarizes the insights from this study and future work.

III. Methodology

The methodology followed to compute the mechanical properties of the 3D woven composites consists of breaking
down the analysis into three steps. First, the porous phenolic resin is generated artificially to obtain its elastic constants.
Then, these results are used along with the fiber’s data to model the behavior of the yarns. Lastly, the results from the
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constituents are used to solve the effective mechanical properties of their corresponding unit cell, which is the smallest
repeatable pattern in the weave architecture. It is assumed that every unit cell in the 3D woven structure has a similar
mechanical behavior, therefore the mechanical properties of the weave can be predicted by just modeling one unit cell
with periodical boundary conditions, as explained in the next paragraphs.

PuMA’s voxel-based stress analysis implementation for voxel grids is based on the MPSA method developed by
Nordbotten et al. [11]. This approach is based on cell-centered discretizations for deformation and expresses the
conservation of momentum in the finite volume sense, approximating the cell-face stress values following the multi-point
approximation method [14]. The MPSA method is known to be convergent for a wide range of grids and effectively
handles anisotropic materials with large jumps in mechanical properties [15].

The procedure to obtain the effective mechanical properties for any material with PuMA follows the Representative
Volume Element (RVE) homogenization method [16], which consists of running six separate simulations: three for the
normal cases, imposing a fixed displacement in each of the three directions (Dirichlet boundary condition), keeping
the opposite face fixed, and applying the right boundary condition to the other four faces (symmetry, periodic, free),
and another three simulations for the pure shear cases. By doing this, it is possible to solve the stress field generated
in the material and obtain the anisotropic elasticity tensor. Having the anisotropic elasticity tensor and assuming
orthotropic behavior of the material, it is possible to obtain the nine orthotropic effective mechanical properties
(E1, E2, E3, 𝜈12, 𝜈23, 𝜈13, G1, G2, G3). This paper focuses on the cases with normal load conditions disregarding the
pure shear cases, as they are easier to validate with expressions present in the literature.

(a) Micrograph of cured porous phenolic resin [17] (b) Micrograph of carbon fibers [18]

Fig. 3 Microscopic images of porous phenolic resin and resin impregnated carbon fibers

The matrix phase for all 3D woven composites studied is made of phenolic resin with porosity (𝜙) values between 0
and 0.6. A micrograph of this material, in which it is possible to see the spherical pores, can be observed in Fig. (3a).
On the other hand, the yarns are made of resin-impregnated carbon fibers, represented in Fig. (3b), with fiber volume
fractions between 0.5 and 0.8. The following sub-sections explain how the mechanical properties of the constituents
were modeled separately before solving their respective unit cell.

A. Matrix Modeling

The choice of phenolic resin as matrix phase in this study was motivated by its presence in TPS materials historically
used by NASA. Non-porous carbon phenolic ablators were used on the Pioneer (Venus) and Galileo (Jupiter) entry
probes [19, 20]; more recently, the highly porous phenolic-impregnated carbon ablator (PICA) was used for the Stardust,
Mars Science Laboratory and Perseverance missions [21, 22]. In addition, future NASA missions with high heating entry
environments are expected to use HEEET or 3MDCP [23], a new generation of 3D woven TPS materials impregnated
with porous phenolic resin.

The function of the porous phenolic matrix in 3D woven TPS materials is to block the flow of hot gases going into
the material and to insulate the internal surface from excessive temperatures. On the other hand, fibers are responsible
for carrying the mechanical loads. Defects in the matrix component, such as voids and micro-cracks, are commonly
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introduced during the manufacturing process and do not compromise the structural integrity. As a result, the porous
material can fully satisfy the requirements to block flow and provide adequate insulation [24].

This paper analyzes the influence of porosity on the mechanical properties of the matrix and the weave’s unit cell.
The size and distribution of voids in phenolic resins can be controlled through the curing process by using catalysts
and different cure cycles [17]. The porous phenolic resin models analyzed in this study have a porosity between 0 and
0.6 and were generated using a function included in PuMA to add intersecting random spherical voids to fully dense
materials, as shown in Fig. (4). The following typical mechanical properties [17] were used for the fully dense isotropic
phenolic resin: E = 4.5 GPa and 𝜈 = 0.3.

(a) 𝜙 = 0.2 (b) 𝜙 = 0.4 (c) 𝜙 = 0.6

Fig. 4 Voxelized models of porous phenolic resin matrix

To make sure these models accurately represent the mechanical behavior of the material, a sensitivity analysis was
carried out to minimize the uncertainty associated with the variability in pore distribution, and the effect of modeling
the pores with voxels by varying the pore diameter. The grid size used for all models was 100 × 100 × 100 voxels and
the range of pore diameters studied range from 4 (coarser sphere) to 20 (smoother sphere) voxels, as shown in Fig. (5).

(a) Pores with d = 4 voxels (b) Pores with d = 12 voxels (c) Pores with d = 20 voxels

Fig. 5 Voxelized representation of different pore diameters

The relation between porosity and Young’s modulus has been widely studied in the literature for certain materials
and pore structures and the outcome from most of these analyses are fitting expressions based on experimental data
[25–28]. Some of these studies include relationships for porous solids with spherical voids based on Eq. (1). Bert [29]
proposed to use Eq. (1) accounting for the stress concentration factor, 𝐾 , for an isolated void and the maximum porosity,
𝜙𝑚𝑎𝑥 , through the relation 𝑐 = 𝐾𝜙𝑚𝑎𝑥 . He also stated that for materials with spherical voids following a hexagonal
close-packed distribution, these parameters should have the values: 𝐾 = 2 and 𝜙𝑚𝑎𝑥 = 0.7405.
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𝐸𝜙 = 𝐸0

(
1 − 𝜙

𝜙𝑚𝑎𝑥

)𝑐
(1)

More recently, Roberts [30] carried out a Finite Element Method (FEM) study to analyze how porosity and pore
shape influence mechanical properties. He found that the Young’s modulus for a solid with random overlapping
spherical pores can also be modeled through Eq. (1) with the following empirical correlation parameters: 𝑐 = 1.65 and
𝜙 = 0.818. The results for the porous phenolic materials analyzed in this study are shown in Section IV.A, along with
their comparison with the models from Bert and Roberts.

B. Yarn Modeling

The yarn models analyzed in this study are made of carbon fibers infiltrated with porous phenolic resin. This choice
of constituents was also motivated by their ubiquitous presence in TPS materials used by NASA, as explained in Section
III.A. Although this study only uses a single material for the fibers, with this methodology, it would also be possible
to analyze the influence of blended yarns made of two or more different types of fibers, including different packing
distributions and volume fractions.

Fibers in composite materials in general, and 3D woven materials in particular, are expected to carry most of the
mechanical loads. To study the influence of different fiber-to-resin volume fractions within the yarns, they were modeled
following a hexagonal packing structure with volume fractions between 0.5 and 0.8. Representative volume elements
corresponding to these configurations can be observed in Fig. (6a), and these models were discretized into a voxel mesh
of dimensions 25 × 100 × 173 (X,Y Z) as shown in Figs. (6b, 6c). The mechanical properties used for the carbon
fibers are as follows: EL = 230 GPa, ET = 15 GPa, 𝜈LT = 0.2, 𝜈TT = 0.2, and the mechanical properties used for the
infiltrated phenolic resin were taken from the results of the porous matrix simulations for their respective porosity
between 0 and 0.6.

(a) Fibers distributed following a hexagonal packing (b) Yarn RVE (𝑉 𝑓 = 0.6) (c) Yarn RVE (𝑉 𝑓 = 0.8)

Fig. 6 Representation of the yarn models

The results were compared against the Rule of Mixtures (ROM) [31] to validate the mechanical properties computed
for the yarns. This rule is a method to approximate properties of composite materials based on the assumption that a
composite property is the volume weighted average of the properties of its constituents: fibers and infiltrated resin.
The expressions for the ROM applied to mechanical properties can be observed in Eq. (2). It is generally accepted
that results for the longitudinal component along the direction of the fiber, EL and 𝜈LT, give accurate predictions. On
the other hand, the transverse component, ET, is usually underestimated and should be considered as the lower-bound
modulus [32]. This is because the ROM model does not consider the shape of the fibers and their distribution.

𝐸𝐿 = 𝐸 𝑓𝐿𝑉 𝑓 + 𝐸𝑚𝑉𝑚 𝐸𝑇 =
𝐸 𝑓𝑇𝐸𝑚

𝐸 𝑓𝑇𝑉 𝑓 + 𝐸𝑚𝑉𝑚
𝜈𝐿𝑇 = 𝜈 𝑓𝐿𝑇𝑉 𝑓 + 𝜈𝑚𝑉𝑚 (2)
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A better estimation of the Young’s modulus for the transverse direction can be obtained with the Halpin-Tsai
expression [33]. This equation was modified by Nielsen [34] to account for the maximum packing, 𝜓, as shown in
Eq. (3). This formula also depends on the fiber distribution and shape through an empirical parameter, 𝜉, which is
a measure of the reinforcement provided by the fibers. According to [35], for a hexagonal distribution of fibers, the
following parameters should be used: 𝜓 = 0.907 and 𝜉 = 1. When 𝜓 = 1, Nielsen’s expression becomes Halpen-Tsai’s.

𝐸𝑇 = 𝐸𝑚

1 + 𝜉𝜂𝑉 𝑓

1 − 𝜓𝜂𝑉 𝑓

(3)

where,

𝜂 =
𝑟 − 1
𝑟 + 𝜉 𝑟 =

𝐸 𝑓𝑇

𝐸𝑚

(4)

Another approximation to the transverse Young’s modulus was provided by Chamis [36] following an analytical
micro-mechanics approach. Chamis’ equations do not include any empirical parameters and are widely used due to
their simplicity and greater accuracy compared to the ROM. The expression for the transverse Young’s modulus can be
observed in Eq. (5).

𝐸𝑇 =
𝐸𝑚

1 −
√︁
𝑉 𝑓

(
1 − 𝐸𝑚

𝐸 𝑓𝑇

) (5)

In Section IV.B the results from this study obtained with PuMA are compared with the theoretical and semi-empirical
equations described above.

C. Unit Cell Analysis

After characterizing the different constituents involved in this study, their effective mechanical properties were
used to feed the solid mechanics model of their respective materials. The unit cell structure, common to all 3D
woven materials analyzed in this paper, is represented in Fig. (7b). It was discretized into a voxel mesh of dimensions
150 × 150 × 60 (X,Y Z) after determining that a finer discretization increased the computation time while providing
similar results, and the same methodology used at the micro-scale was applied to obtain the effective orthotropic
mechanical properties of each material.

(a) 3D woven composite material (b) Unit cell

Fig. 7 Model of the studied 3D woven material and its corresponding voxelized unit cell

The results for the unit cell models can be found in Section IV.C. Differently from the constituents’ properties, the
validation of the RVE’s properties against experimental data or FEM simulations is out of the scope of this study. Future
work will focus on an in-depth analysis of PuMA’s elasticity solver, including rigorous validation cases at the micro and
macro-scales for a wide variety of materials and load conditions.
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IV. Results

This section summarizes the results obtained for the different constituents and unit cell models following the
methodology explained in Section III. As stated before, the scope of this study covers the first three simulations (normal
cases) of the RVE homogenization method, so the effective mechanical properties analyzed are the Young’s moduli and
Poisson’s ratios.

A. Matrix Results

A representation of some phenolic matrix simulations to obtain the components of the elasticity tensor in the X
direction can be observed in Fig. (8). The top three sub-figures represent the internal displacement in the X direction
after imposing a displacement to the X positive (right) face of one voxel (𝜖x = 1%). The sub-figures at the bottom
represent the stress field in the X direction associated with the imposed strain. As expected, an increase in porosity
leads to an increase in the maximum stress value due to the higher stress concentration localized in some regions. As a
result, the mechanical properties of the matrix models are expected to be highly dependent on their porosity values.

(a) 𝜙 = 0.2 (b) 𝜙 = 0.4 (c) 𝜙 = 0.6

Fig. 8 Displacement (top) and direct stress (bottom) fields in the X direction for the porous phenolic matrix

The process of modeling porosity through a random distribution of porous voids introduces some level of variability
in the results. To address this issue, up to 30 simulations were carried out for each one of the load cases, minimizing the
uncertainty associated with this generation process down to a standard error <2% for all cases. In addition, since the
voxel discretization of the pores may affect the results, a sensitivity analysis was carried out to assess the optimum
pore diameter (in voxels) for this study. Results from this procedure are shown in Fig. (9a), which relates the Young’s
modulus of the porous phenolic with its pore diameter in voxels for three different porosities along with its standard
deviation. According to these results, the Young’s modulus decreases with pore coarseness (fewer number of voxels) for
pore diameters between 4 and 16 voxels, and it plateaus for pore diameters >16 voxels. This can be explained by the
fact that a finely discretized sphere has a lower stress concentration factor than a coarse one. For this reason, the pore
diameter selected for this study is 20 voxels.
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(a) Young’s moduli for different pore diameters and porosities (b) Young’s moduli comparison for different porosities

Fig. 9 Mechanical properties of the phenolic matrix for different porosities

According to Fig. (9), materials with higher porosity have lower Young’s modulus. Data from Fig. (9b) shows a
perfect agreement between the results from this study, obtained with PuMA, and Roberts’ equation [30]. The maximum
error between both is just 1.03% for the case with porosity 0.6. This study also shows a very good agreement with the
expression from Bert [29], but the error at porosities >0.4 is noticeably higher.

B. Yarn Results

Figure (10) shows the internal stress distribution in the transverse direction (Z) after a forced displacement of one
voxel imposed to the Z positive (top) face (𝜖z = 0.578%) with periodic boundary conditions on the four sides. It is
possible to observe the paths the stress follows through the matrix for the different fiber volume fraction cases. The
higher concentration of stress happens in the case Vf = 0.8 due to the proximity between fibers, which leaves a narrower
path for the stress through the phenolic resin.

There is no representation of the stress distribution in the longitudinal (X) direction because, as expected, for an
imposed strain, all fibers share the same stress values and the matrix carries very little load. Due to this, the averaged
effective mechanical properties should greatly vary with different fiber volume fraction values.

(a) 𝑉 𝑓 = 0.5 (b) 𝑉 𝑓 = 0.6 (c) 𝑉 𝑓 = 0.7 (d) 𝑉 𝑓 = 0.8

Fig. 10 Direct stress of the yarn in the transverse (Z) direction

Figure (11) shows the mechanical properties of the yarns obtained for the range of porosities and volume fractions
studied. It is possible to observe in Fig. (11a) that the transverse Young’s modulus increases with an increase in the
fiber volume fraction of the yarn. This can be explained by the fact that the higher stiffness of the fibers acts as a
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reinforcement. On the other hand, the porosity of the resin phase weakens the material in the transverse direction. These
results were compared against the theoretical and semi-empirical equations explained in Section III.B. The expression
from Halpin-Tsai [33] shows the best agreement with the results from this study at all fiber volume fractions, while
the results from Nielsen [34] show good agreement for Vf < 0.6, and the equation from Chamis [36] shows a better
agreement than Nielsen’s at high fiber volume fractions.

(a) Transverse Young’s modulus (b) Longitudinal Young’s modulus and Poisson’s ratio

Fig. 11 Mechanical properties of the yarns for different porosities and fiber volume fractions

The longitudinal Young’s modulus and the Poisson’s ratio are represented in Fig. (11b). Both elastic constants show
excellent agreement with the expressions from the ROM. The longitudinal Young’s modulus is strongly connected with
the fiber volume fraction of the yarns following a linear relation, and the porosity of the resin phase has little effect since
the fibers carry most of the load. On the other hand, the Poisson’s ratio is strongly dependent on both the fiber volume
fraction and the porosity of the infiltrated phenolic resin.

C. Unit Cell Results

As explained in Section III.C, the same methodology used at the micro-scale for the constituents was applied to
obtain the effective mechanical properties of the unit cell. Fig. (12) shows the internal stress distribution in X, Y, and Z
directions under the different normal load conditions applied following the RVE homogenization method. The matrix
phase is hidden for visualization purposes.

(a) Out-of-plane (X) direction (b) In-plane (Y) direction (c) In-plane (Z) direction

Fig. 12 Direct stress induced in the unit cell in the out-of-plane (X), and in-plane (Y, Z) directions
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As expected, for the X case with the strain applied in the out-of-plane direction, Fig. (12a), the yarns weaved through
the thickness (binder yarns) reinforce the matrix and contribute to the out-of-plane stiffness. On the other hand, for the
the Y and Z cases, Figs. (12b, 12c), the yarns with the least crimp carry most of the loads.

The results for the Young’s modulus in the three principal directions are represented in Fig. (13a) for all porosities
and fiber volume fractions in the yarns. As it can be observed, the fiber volume fraction especially affects the directions
Y (E2) and Z (E3), while the X (E1) direction is mostly driven by the porosity of the phenolic resin. This means that in
the through the thickness direction (X), not only the binder yarns but also the porous matrix has an important structural
role. As expected, the highest Young’s modulus corresponds to the Y (E2) direction, which has the highest number of
yarns with the least crimp.

(a) Young’s moduli of the unit cell (b) Poisson’s ratios of the unit cell

Fig. 13 Mechanical properties of the unit cell for different porosities and yarns’ fiber volume fractions

The Poisson’s ratios for all porosity and fiber volume fraction cases can be observed in Fig. (13b). The out-of-plane
Poisson’s ratios, 𝜈12 and 𝜈13, present the highest values, are mainly affected by the porosity of the phenolic resin, and
their value decrease when increasing the fiber volume fraction. On the other hand, the in-plane Poisson’s ratio, 𝜈23,
shows the opposite behavior and increases with the fiber volume fraction. This behavior is especially clear for high
matrix porosity values.

V. Conclusion

This work described a methodology to carry out multi-scale analyses of porous 3D woven materials. Still, it can be
applied to any type of composite material to obtain its homogenized orthotropic mechanical properties. The PuMA
software allowed to firstly analyze the constituents at the micro-scale (matrix/yarns) and then use those results to
accurately model the unit cell at the macro-scale for multiple yarn fiber volume fractions and matrix porosity values.

Results for the constituents and the unit cell were commented in Section IV, with regards to how different porosities
and fiber volume fractions affect the mechanical behavior of the different materials studied. In addition, it was possible
to validate the results for the porous matrix and the yarns by comparing them to analytical expressions listed in the
literature.

Future work will extend the applicability of this study to the pure shear cases, and it will focus on an in-depth analysis
of PuMA’s elasticity solver, including rigorous validation cases for a wide variety of materials and load conditions.
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