

Interim Report I

5 Inch Thick 2219-T87 Plate Low Ductility Investigation

– Material analysis on broken tensile samples

EM31 Investigation Team

EM31/NASA-Marshall Space Flight Center

November 22, 2021

Investigation planning & coordination: Po Chen, Ben Rupp

Metallography & optical microscopy: Matt Medders, Sam Mcleroy, Po Chen

SEM/fractography: Ellen Rabenberg

DSC: Ching-Hua Su, Jeff Quick, Po Chen

Electrical conductivity (EC): Ching-Hua Su

1. DSC is intended to compare incipient melting temperature and mass % of Al-Cu eutectic phase

- 2. EC is an indirect way to compare precipitate size and distribution.
 - In general, the material that has larger precipitate size and wider spacing between precipitate particles has higher EC

Samples Received from EM21 for Low Ductility Investigation

Broken tensile samples

Specimen ID, Test temperature	Fracture elongation (%)		
9492854 720-4, RT	6.67%		
9492854 720-2, LN2	7.23%		
9492854 720-23, LH2	2.55%		
930071 722C-3, RT	1.70%		
930071 722C-5, LN2	1.00%		
930071 722C-10, LH2	1.15%		
930082 723C-2, RT	1.33%		
930082 723C-6, LN2	1.25%		
930082 723C-10, LH2	1.10%		

To be investigated

Investigation on-going

Sample Preparation and Analysis Status for Broken Tensile Samples

	% EL	Priority	Sample preparation		Metallurgical Analysis		DSC/EC Analyses	
Specimen ID			Met samples	DSC/EC samples	Optical microscopy	SEM	DSC	EC
9492854 720-4, RT	6.67%	2	\checkmark	\checkmark	\checkmark			
9492854 720-2, LN2	7.23%	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9492854 720-23, LH2	2.55%	1	\checkmark	\checkmark	√			
930071 722C-3, RT	1.70%	2						
930071 722C-5, LN2	1.00%	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
930071 722C-10, LH2	1.15%	2						
930082 723C-2, RT	1.33%	2						
930082 723C-6, LN2	1.25%	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
930082 723C-10, LH2	1.10%	2						

 \checkmark : denotes completion of sample preparation or metallurgical analysis

- 1. Divide the broken tensile samples into two groups, priority 1 & 2
- 2. Focus on 3 LN_2 samples from 3 different lots to determine root cause of low ductility in a timely fashion

Material Analysis Plan for Thick 2219 Plate Samples

11/22/2021

Key Findings after the Material Analysis on Three Broken Tensile Samples

		Key Findings						
Specimen ID, Test T	Ductility	Grain size	% Rx	Remnant dendrite cells	Fracture mode	Density of coarse Cu-rich θ phase (Al ₂ Cu) at GB	Incipient melting temperature (DSC)	EC
9492854 720-2, LN2	7.23%	smaller	higher	fewer	TG	low	≈ 548 °C	lower
930071 722C-5, LN2	1.00%	larger	lower	more	IG	high	≈ 548 °C	higher
930082 723C-6, LN2	1.25%	larger	lower	more	IG	high	≈ 548 °C	higher

Rx: Recrystallization; TG: Transgranular fracture; IG: Intergranular fracture GB: Grain boundary; EC: Electricity conductivity, DSC: Differential Scanning Calorimetry

Detrimental effects of coarse Cu-rich particles (θ phase - Al₂Cu):

1. They are stress risers and will increase K_t during tensile testing and promote crack initiation

- 2. The greater the number of coarse Cu-rich particles, the easier for micro-cracks to connect
- 3. Many connected micro-cracks lead to larger cracks and a drastic reduction in fracture elongation

Optical Microscopy Results - Charts 8 – 18

OM lead: Matt Medders

Grain Structure Comparison – 720-2 vs. 723C-6

Higher Rx, smaller GS, fewer dendritic cells

Lower Rx, larger GS, distinct prior dendritic structure

720-2 LN2 - 7.23%

723C-6 LN2 - 1.25%

The small (pinkish) particles are Cu-rich θ phase, Al₂Cu

Coarse Cu-Rich Particles Size & Distribution in Sample 720-2

720-2 LN2 - 7.23%

- 1. The small (pinkish) particles are Cu-rich θ phase, Al₂Cu
- More uniform distribution of Cu-rich particles (Al₂Cu-θ phase)
- 3. No clear sign of coarse Cu-rich particles at prior dendritic boundaries

Coarse Cu-Rich Particles Size & Distribution in Sample 722C-5

722C-5 LN2-1.0%

- 1. The small (pinkish) particles are Cu-rich θ phase, Al₂Cu
- 2. Non-uniform distribution of Cu-rich particles (Al₂Cu- θ phase)
- 3. More coarse Cu-rich particles are present along the prior dendritic boundaries

Cross-Sectional View of Fracture Surface - 720-2 $LN_2 - 7.23\%$

- 1. Predominant transgranular fracture mode
- 2. No sign of continuous cracking along grain boundaries

No sign of brittle fracture

Close-up View of Fracture Surface - 720-2 $LN_2 - 7.23\%$

 $720-2 LN_2 - 7.23\%$

Signs of ductile fracture

Signs of ductile fracture

- 1. Predominant transgranular fracture mode, No sign of continuous cracking along grain boundaries
- 2. Some isolated micro-cracks, but micro-cracks do not connect through broken Cu-rich particles

Cross-Sectional View of Fracture Surface - 722C-5 $LN_2 - 1.0\%$

- 1. Predominant Intergranular fracture mode
- 2. Clear signs of continuous cracking on Cu-rich particles along grain boundaries

Signs of brittle fracture

Fracture path along Cu-rich particle boundary

Cross-Sectional View of Fracture Surface - 722C-5 $LN_2 - 1.0\%$

A band of Cu-rich particles

11/22/2021

Cross-Sectional View of Fracture Surface - 723C-6 $LN_2 - 1.25\%$

Long subsurface cracks \perp 11/22/2021 to the tensile direction

Cross-up View of Subsurface Cracks - 723C-6 $LN_2 - 1.25\%$

Predominant intergranular fracture mode

Cracking through GB and Cu-rich particles

Cross-up View of Subsurface Cracks - 723C-6 LN₂ – 1.25%

Predominant intergranular fracture mode

Cross-up View of Subsurface Cracks - 723C-6 LN₂-1.25%

Predominant intergranular fracture mode

SEM/X-ray Map Results - Charts 20 - 31

SEM lead: Ellen Rabenberg

SEM Fractography of Sample 720-2

720-2 LN2 - 7.23%

SEM image – entire fracture surface

White particles are Cu-rich precipitates

Distribution of Cu-rich particles in Al-matrix

Cu-rich particles are finer and have more uniform distribution

SEM Fractography of Sample 720-2, LN2 – 7.23%

Cu-rich particles have more uniform distribution

SEM Fractography of Sample 720-2

720-2 LN2 - 7.23%

Distribution of Cu-rich particles in AL-matrix

White particles are Cu-rich precipitates

Most Cu-rich particles are in dimples

- 1. Cu-rich particles are finer and have more uniform distribution, signs of ductile fracture
- 2. Fine Cu-rich particles are in the middle of dimples, indicative of higher ductility

SEM/X-ray Map for Sample 720-2

720-2 LN2 – 7.23%

AI K series

50µm

EDS confirms the white particles in SEM image (green color on x-ray map) are Cu-rich

SEM Fractography of Sample 722C-5

722C-5 LN2-1.00%

SEM image – entire fracture surface

White particles are Cu-rich precipitates

Distribution of Cu-rich particles in AL-matrix

Cu-rich particles are coarser and have non-uniform distribution

SEM Fractography of Sample 722C-5 LN2 – 1.00%

Cu-rich particles have non-uniform distribution

SEM Fractography of Sample 722C-5

722C-5 LN2 - 1.00%

Clusters of Cu-rich particles with micro-cracks

Cracking along or through Cu-rich particles

- 1. Cu-rich particles are coarser and have a tendency to aggregate together
- 2. Cu-rich particles are hard and brittle, acting as stress risers during tensile deformation

3. Many micro-cracks are present in the regions that have numerous Cu-rich particles

SEM/X-ray Map for Sample 722C-5

722C-5 LN2-1.00%

Fe Kα1

50µm

EDS confirms the white particles in SEM image (green color on x-ray map) are Cu-rich

50µm

SEM Fractography of Sample 723C-6

723C-6 LN2-1.25%

SEM image – entire fracture surface

White particles are Cu-rich precipitates

Distribution of Cu-rich particles in AL-matrix

Cu-rich particles are coarser and have non-uniform distribution

SEM Fractography of Sample 723C-6 LN2 – 1.25%

Density of Cu-rich particles is unusually high in this region

SEM Fractography of Sample 723C-6

723C-6 LN2 – 1.25%

Clusters of Cu-rich particles with micro-cracks

White particles are Cu-rich precipitates

Cracking along or through Cu-rich particles

- 1. Cu-rich particles are coarser and have a tendency to aggregate together
- 2. Cu-rich particles are hard and brittle, acting as stress risers during tensile deformation

3. Many micro-cracks are present in the regions that have numerous Cu-rich particles

SEM/X-ray Map for Sample 723C-6

723C-6 LN2-1.25%

EDS Layered Image 1

EDS confirms the white particles in SEM image (green color on x-ray map) are Cu-rich

Summary of Key Findings

V The high ductility sample (9492854-720-2, LN2) has the following microstructural features:

- Higher degree of recrystallization, smaller grain size,
- Transgranular fracture, lower area fraction of coarse particles (qualitative analysis)
- Lower electricity conductivity that can be attributed smaller Cu-rich particles and smaller spacing between them

The low ductility samples (930071-720C-5, 930082-723C-6 LN2) has the following microstructural features:

- Lower degree of recrystallization, distinct signs of prior dendritic structure, large grain size
- Intergranular fracture, higher area fraction of coarse particles (qualitative analysis)
- Higher electricity conductivity that can be attributed larger Cu-rich particles and wider spacing between them

The drastic reduction in tensile ductility can be attributed to the following factors:

- The presence of numerous coarse Cu-rich particles (Al₂Cu, θ phase) at grain boundaries
- They are stress risers and will increase K_t during tensile testing and promote crack initiation
- The greater the number of coarse Cu-rich particles, the easier for micro-cracks to connect
- Many connected micro-cracks lead to larger cracks and a drastic reduction in tensile fracture elongation