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Artificial Neural Networks
!

❖ Computing systems inspired by the 
biological NNs in animal brains!

❖ Consist of neurons (computational units) 
organized in multiple layers!

❖ Neurons can be active or not; last layer 
contains decisions !

❖ Perform feature extraction and input 
transformation!

❖ Learn (progressively improve 
performance) to do tasks by considering 
examples!

❖ Can represent complex non-linear 
relationships

 

Neuron
Example activation  
function: ReLU  
(Rectified Linear Unit) 
 



Applications
!

!
❖ Immense popularity …!
❖ Pattern analysis!
❖ Image classification !
❖ Sentiment analysis!
❖ Speech/audio recognition!
❖ Medical diagnosis!
❖ Perception modules in self-driving cars!

!
!
!
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Challenges
Safety and Security Concerns!

❖ Lack of robustness!
❖ Small (imperceptible) changes to an input lead to 

misclassifications!
❖ Even for highly trained, highly accurate networks!

❖ Lack of explainability!
❖ It is not well understood why a network gives a particular 

output!
❖ Lack of formal specifications!

❖ Networks learn from examples, without high-level specifications!
❖ Scalability!

❖ Networks are very large, highly interconnected structures; often 
have huge input spaces; these characteristics prevent thorough 
verification/testing!

What about the data?!
❖ Enough data? Poisoned/unreliable data? Bias? !
❖ Data management?

from DARPA



SafeDNN: Safety of Deep Neural Networks

❖ RSE project!

❖ Explores techniques and tools to ensure that 
systems that use Deep Neural Networks 
(DNN) are safe, robust and interpretable.!

❖ Project Members!

❖ Corina Pasareanu!

❖ Divya Gopinath!

❖ Many students and collaborators

https://ti.arc.nasa.gov/tech/rse/research/safednn/

https://ti.arc.nasa.gov/tech/rse/research/safednn/


Recent Advances
Property Inference!
❖ Property Inference for Deep Neural Networks (ASE’19)!

Explainability!
❖ A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors 

(CVPR’20)!

Verification!
❖ Fast Geometric Projections for Local Robustness Certification (ICLR’21)!
❖ NEUROSPF: A tool for the Symbolic Analysis of Neural Networks (ICSE’21, FoMLAS’21)!
❖ DeepCert: Verification of Contextually Relevant Robustness for Neural Network Image Classifiers 

(SAFECOMP’21) !
❖ Probabilistic Analysis of Neural Networks (SEAMS’20, ISSRE ’20)!
❖ Parallelization Techniques for Verifying Neural Networks (FMCAD’20)!
❖ DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks (ATVA’18)!

Repair!
❖ NNRepair: Constraint-based Repair of Neural Network Classifiers (CAV’21)



Property Inference
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!
❖ Key Ideas!

❖ Infer “likely” properties of a DNN as rules of the form Pre => Post!
❖ Decomposing a “black-box” model into a set of rules should aid in 

interpreting and understanding model behavior!
!

❖ Formalizing properties!
❖ A constraint in terms of the (on/off) activation patterns of          

neurons of the network!
❖ ReLU(x) is on if (x>0) and off if ReLU(x)=0; equiv. if (x>0) then x 

else 0; !
❖ Piecewise linear nodes equivalent to conditional statements    of 

traditional programs, hence the logic of the network can be 
captured in the (on/off) activation patterns of neurons!
!

❖ Properties can be proved to be valid on the network using a decision 
procedure (ex. Reluplex), and/or associated with a statistical metric 
of confidence such as number of satisfying instances

Property Inference For Neural Networks
Divya Gopinath, Hayes Converse, Corina S. Pasareanu, Ankur Taly:!

Property Inference for Deep Neural Networks. ASE 2019



❖ Input properties encode predicates on the 
input space which imply a certain output 
property!

❖ Pre is conjunction of constraints on all neurons 
from the first hidden layer until a certain layer!

❖ Convex regions of consistent labeling in the 
input space!

❖ Built with concolic execution and iterative 
relaxation

(N2,0 > 0 /\ N2,1 = 0 /\ N2,2 > 0 /\ N3,0 > 0 /\ N3,1 = 0) 
=>     y0 > y1 (label 0)  ( N3,0 = 0 /\ N3,1 > 0) =>   y0 < y1 (label 1)  

Input Property Layer Property

❖ Layer properties group inputs based on 
common characteristics at an 
intermediate layer!

❖ Pre is conjunction of (on/off) constraints on 
(some/all) neurons of an intermediate layer !

❖ Intent is to capture properties based on the 
semantic features the network has learnt!

❖ Built with decision-tree learning over 
activations!

Types of Properties



❖ Provide robustness guarantees!
❖ Generate adversarial examples                          

(cex to Reluplex proofs)!
!

Applications                                               
(Robustness and explanations)

safe under-approximating box

mis-classified input and 
under-approximating box

❖ Formal explanations for perception networks!
❖ Visualization of multiple images that satisfy the same property and 

identification of commonality!
❖ Highlight portions of the image that impact the neurons in the property, 

akin to  attribution techniques!
❖ Contrast to existing techniques (LIME, Shap) which work on single image!!!

 Center line 
extending beyond 
the top of digit

 Tilt to the right

Tilt to the right  Thick boundary



❖ Build simpler models (distillation)!
!

Distillation  of  an  eight  layer  MNIST  network using  
properties  inferred at  the  first  max  pooling  layer.

Applications                                   
(Distillation)



❖ Properties extracted by the approach act as 
specifications of functionality!
○ 31900 ≤ range ≤ 37976, 1.684 ≤ θ ≤ 2.5133, ψ = -2.83, 

414.3 ≤ vown ≤ 506.86, vint = 300, has turning 
advisory COC!

○ range = 499, -0.314 ≤ θ ≤ -3.14, -3.14 ≤ ψ ≤ 0, 100 ≤ 
vown ≤ 571, 0 ≤ vint ≤ 150, has turning advisory 
Strong Left!

○ range = 48608, θ = -3.14, ψ = -2.83, vown(full 
range), vint (full range) has turning advisory COC

ACAS-Xu (Airborne Collision Avoidance System-Xu) 
Clear of Conflict (COC)!
!
Strong Left!
!
Weak Left!
!
Strong Right!
!
Weak RightDNN controller

Applications                                               
(Property inference, Proof Decomposition)

❖ Decomposed proofs of properties of 
the form A => B , using “layer 
patterns” σ, !

❖ by checking A => σ and σ => B 
separately w/ Reluplex;!

❖ significant speedup obtained; 
checked property that timed out 
with monolithic verification !



Explainability

Image: iStock Phot



Extracting Semantic Explanations of a Detection Module

Key idea: leverage high-level semantic features encoded in a SCENIC program to derive rules (sufficient conditions) that 
explain the module; rules generated with decision tree learning, anchors and activation patterns 
Benefits: better explain and debug the module.

Edward Kim, Divya Gopinath, Corina S. Pasareanu, Sanjit A. Seshia:!
A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors. CVPR 2020



Results

Scenario # Rules
(BaselineÑRule Precision)

Scenario 1 x coordinate • -198.1
(65.3% Ñ 89.4%)

hour • 7.5 ^
weather = all except neutral ^

Scenario 2 car0 distance from ego • 11.3m ^
(72.3% Ñ 82.3%) car0 model = {Asea, Bison, Blista,

Buffalo, Dominator, Jackal, Ninef,
Oracle}

Scenario 3 car0 red color • 74.5 ^
(61.7% Ñ 79.4%) car0 heading • 220.3 deg

car0 model = {Asea, Baller, Blista,
Scenario 4 Buffal, Dominator, Jackal, Ninef,

(89.6% Ñ 96.2%) Oracle}

Table 2: Rules for correct behaviors of the detection module
with the highest precision from Table 6

Scenario # Rules
(BaselineÑRule Precision)

x coordinate § -200.76 ^
Scenario1 distance § 8.84 ^

(34.7% Ñ 87.2%) car model = PRANGER
hour • 7.5 ^

Scenario 2 weather = all except Neutral ^
(27.7% Ñ 44.9%) car0 distance from ego † 11.3

weather = neutral ^
Scenario 3 agent0 heading = § 218.08 deg ^

(38.3% Ñ 83.4%) hour § 8.00 ^
car2 red color § 95.00
car0 model = PATRIOT ^
car1 model = NINEF ^

Scenario 4 car2 model = BALLER ^
(10.4% Ñ 57.3%) 92.25 † car0 green color § 158 ^

car0 blue color § 84.25 ^
178.00 † car2 red color § 224

Table 3: Rules for incorrect behaviors of detection module
with the highest precision from Table 7

Scenario 3 describes scenes where three cars are merg-
ing into the ego cars lane. The location for Scenario 3 is
carefully chosen such that the sun rises in front of the ego
car, causing a glare. The SCENIC program describes three
cars merging in a platoon-like manner where one car is fol-
lowing another car in front with some variations in distance
between front and rear cars. The metric for distance pertur-
bation is in meters. The images from Scenario 3 are shown
in Figure 9.

Finally, Scenario 4 describes a set of scenes when the
nearest car is abruptly switching into ego cars lane while
another car on the opposite traffic direction lane is slightly
intruding over the middle yellow line into the ego cars lane.
Failure to detect these two cars out of four cars may po-

tentially be safety-critical. The images from Scenario 4 are
shown in Figure 10. The locations of all four cars, in Sce-
nario 4 SCENIC program, are hard-coded with respect to
ego car’s location. The SCENIC program would have be-
come much more interpretable had we described car loca-
tions with respect to lanes. The reason we had to code in this
undesirable manner is due to the simulator as illustrated in
Section 6.

5. Success and Failure Scenario Descriptions
The refined SCENIC programs characterizing success/-

failure scenarios are shown in Figure 11, 12, 13, and 14.
The red/green parts of programs represent the rules auto-
matically generated by our technique, which are cut and
pasted to original SCENIC programs. These success/failure
inducing rules are shown in Table 2 and 3. As aforemen-
tioned, we generated new images using SCENIC programs
that characterize failure scenarios. Examples of these im-
ages from failure scenarios are shown in Figure 15, 16, 17,
and 18.

5.1. Setup

The object detector was trained on 10,000 GTA images
with one to four cars in various locations of the map pro-
ducing different background scenes. The GTA-V simulator
provided images, ground truth boxes, and values of the en-
vironment features.

For each scenario, we generated 950 images as a train set
and another 950 images as a test set.

We denote the labels corresponding to the maxpool
layer 5 decision pattern as p5c(correct) and p5 ic(incorrect)
and the remaining as correct unlabelled and incor-
rect unlabelled respectively. We augmented the feature vec-
tor with some extra features that are not part of the feature
values provided by the simulator but could help with ex-
tracting meaningful rules. For example, in Scenario 1 the
distance from ego to otherCar is not part of the feature val-
ues provided by GTA-V. However, it can be computed with
Euclidean distance metric using (x,y) location coordinates
of ego and otherCar. Also, the difference in heading angle
between ego and otherCar is also added as extra feature to
represent “badAngle” variable in the program.

From the train set, we extracted rules to predict each la-
bel based on the feature vectors.. These rules were evalu-
ated on the test set based on precision, recall, and F1 score
metrics.

For DT learning we adjusted the label weight to account
for the uneven ratio among labels for both black-box and
white-box labels.

For the Anchors method, we applied it on each instance
of the training set until we had covered a maximum of 50
instances for every label ( correct,incorrect for Black Box,
and p5c, p5 ic, correct unlabelled, incorrect unlabelled for
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Verification



Fast Geometric Projections for Local Robustness Certification

Goal: Local Robustness

• A model ! satisfies local robustness with robustness radius " on a point # if 

∀#!. # − #! " ≤ " ⟹ ! # = ! #!

• Valid for any norm, but we focus on the ℓ# norm, which is less well-studied

!
"

decision boundary

Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, Corina S. Pasareanu:!
Fast Geometric Projections for Local Robustness Certification. ICLR 2021



Defenses
Defenses

Heuristic Certification Probabilistic

• Adversarial training
• TRADES

Certification

training procedure

model-agnostic 
verification

model-agnostic 
verification

• Kolter-Wong
• Maxim Margin Regularization
• GeoCert
• MIP
• …

• Randomized Smoothing



Certification of Local Robustness

How can We Certify Local Robustness?

!
"

decision boundary
∀#!. # − #! " ≤ " ⟹ ! # = ! #!

Treating a NN as general function is too abstract

Idea: use a more refined understanding of the geometry of a class of networks

How can We Certify Local Robustness?

!
"

decision boundary
∀#!. # − #! " ≤ " ⟹ ! # = ! #!

Treating a NN as general function is too abstract

Idea: use a more refined understanding of the geometry of a class of networks



ReLU Networks as Polyhedral Complex

❖ Piecewise linear networks partition input domain into a polyhedral complex!

❖ Input regions correspond to activation patterns!

❖ Boundaries of regions can be computed with gradients!

❖ Given a region, can compute distance to boundary using constraint solving 
(e.g., GeoCert, MIP): expensive!

❖ Our contribution:!

❖ Use geometric projections (no constraint solving)!

❖ Acceleration with GPUs!

❖ Sound but not complete



Fast Geometric Projections (FGP) Method
Fast Geometric Projections (FGP) Algorithm

Projections offer a fast, sound way to see which boundaries are within our ε-radius

begin by exploring the starting region: 
for each boundary of starting region, 
check if the boundary is in the ε-ball

explore each of the neighboring 
regions whose boundaries were in 
the ε-ball

if a decision boundary is found, project 
onto it to verify an adversarial example 
was found

this boundary is within 
ε from the pointthis boundary 

farther than ε
from the point



Results
Verification Results

On adversarially-trained dense networks, FGP outperforms GeoCert by 3 
orders of magnitude and MIP by 4 orders of magnitude

UNKNOWN results account for only 3-5% of cases, while GeoCert and MIP 
time out on 10-100% of cases 



Probabilistic Analysis of Neural Networks

❖ Properties of Neural Networks!

❖ Proved with formal verification tools (Reluplex/Marabou from Stanford)!

❖ Properties often do not hold; point-wise robustness checks output binary answers but lack 
detail; verification tools do not scale!

❖ Probabilistic properties!

❖ More natural, e.g. accuracy!

❖ Checked with statistical methods: scale but provide no guarantees, tend to ignore “rare” events!

❖ Our proposition !

❖ Probabilistic analysis through symbolic execution and volume computations!

❖ Benefits: increase impact of sampling and provide precise confidence!

❖ Collect mathematical constraints along neuron activations and apply volume 
computations to compute probabilities

Hayes Converse, Antonio Filieri, Divya Gopinath, Corina S. Pasareanu:!
Probabilistic Symbolic Analysis of Neural Networks. ISSRE 2020



Technique
❖ Symbolically/concolically execute concrete inputs!

❖ Observe activation patterns; organize them in a tree!

❖ Reject inputs that add no information (i.e., 
previously seen activation patterns)

❖ Add decision conditions to constraints based on network output (logits) layer!

❖ Compute volume of constraints!

❖ Stop at user defined criterion (coverage, number of paths, rejection percentage, …)!

!
❖ Similar to previous work on probabilistic symbolic execution, but adapted to neural networks



Input Distributions and Probabilities
❖ Uniform distribution: !

❖ Pr(D)=Vol(constraints for D)/Vol(full domain)!

❖ Non-uniform distribution: partition input domain, create histogram 
distribution: (si,pi)!

!

!

❖ AC are activation conditions (together with decision conditions) leading to 
event D!

❖ Confidence:!

❖ % of input domain covered by the analysis



Applications
❖ Implemented techniques in SpaceScanner!

❖ Robustness/sensitivity analysis for ACAS-Xu !
❖ DNN controllers in next-generation Airborne Collision Avoidance Systems for 

unmanned aircraft!

❖ Fairness analysis for decision making networks!

❖ Results for ACAS-Xu!
❖ Found the network to be highly robust in assigning Clear-of-Conflict (COC) decisions!
❖ Found the network to be more vulnerable to adversarial perturbations for the 

advisories weak-left, strong-left and strong-right!
❖ Statistical analysis produces comparable results but misses cases when probability of 

misclassification is non-zero



Repair



NNRepair: Constraint-based Repair of Neural Network Classifiers

❖ Problem: The network is faulty!
❖ Low accuracy, lack of robustness, poisoned training data!

❖ Retraining could be used to alter the neural network parameters and repair for faults. !
❖ Difficult and expensive subject to uncertainties.!
❖ Result in a network that is quite different from the original one.!
❖ May not be possible (in the absence of additional data)!

❖ NNrepair: constraint solving for repairing neural networks!
❖ Similar to traditional program repair.!

❖ Fault localization identifies the network parameters that are the likely source of 
defects. !

❖ Repair uses constraint solving to apply small modifications to the network 
parameters to remedy the defects.

Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, Corina S. Pasareanu:!
NNrepair: Constraint-based Repair of Neural Network Classifiers, CAV’21



Types of Repair
❖ Last-layer repair !

❖ Attempts to modify the decision constraints at the last layer. !

❖ For last-layer repair, the oracle of the repair is the desired label.!

!

❖ Intermediate-layer repair: !

❖ Attempts to fix failures by modifying the behavior of neurons at an inner 
layer of the network. !

❖ For intermediate-layer repair, the oracle for the repair is the “activation 
pattern”; keeps the repair local!

❖ Potentially more scalable



Framework

Repair constraints encode network decision for positive examples 
and modify (i.e., correct) network decision for negative examples



Example: Intermediate-layer Repair
❖ Consider input X4 = [1.5; 2.0]!

❖ It is misclassified to “1” (ideal is 
“0”)!

❖ For all the inputs correctly 
classified to “0”, the neuron pair 
(N2, N3) in second layer has 
activation pattern (off, on)!

❖ For the failing input, this pattern 
is not satisfied; the activation for 
(N2, N3) is (on, on)



Example: Intermediate-layer Repair
❖ Modify the neuron activations of the second 

layer on the failing input to satisfy pattern 
(off,on)!

❖ Identify the weights to be modified using 
an attribution-based approach!

❖ Use constraint solving to compute the 
values of the new weights!

❖ Changing the weight of the edge connecting 
N1 and N2 from -1.5 to -1.9 changes the 
activation pattern for (N2; N3) to (off, on) on 
the failing input!

❖ Preserves the behavior of the neurons (their 
activation pattern) and the output of the 
model on passing inputs



Results
❖ Demonstrated our technique in the context of three different scenarios: !

❖ Improving the overall accuracy of a model!

❖ Fixing security vulnerabilities caused by poisoning of training data!

!

❖ Improving the robustness of the network against adversarial attacks !

!

!

❖ NNrepair can improve the performance of the network by 45.56% on 
poisoned data and 10.40% on adversarial data. 



Other Repair Techniques
❖ MODE [Ma et al. ESEC/FSE’18]: differential analysis + retraining!

❖ NNRepair has similar performance: better on MNIST-HQ but worse on 
MNIST-LQ!

❖ Apricot [Zhang et al. ASE’19] generates a set of reduced models and repairs 
weights based on average weight of reduced models!

❖ Sotoudeh and Thakur [2019] uses SMT solving to repair ACASXu networks!

❖ Other …!

!

❖ None of these techniques address all three scenarios that we consider!

❖ Previous techniques focus only on last layer repair



Future Work



Future Work

❖ Automated repair for poisoned NN!

❖ Structural testing coverage for neural networks!

❖ Learning with formal guarantees!

❖ Relating NN properties to system-level properties of an 
autonomous system



Thank you!

https://ti.arc.nasa.gov/tech/rse/research/safednn/

https://ti.arc.nasa.gov/tech/rse/research/safednn/

