SafeDNN: Understanding and Verifying Neural Networks Corina Pasareanu (NASA Ames, KBR, CMU) ## Artificial Neural Networks - * Computing systems inspired by the biological NNs in animal brains - Consist of neurons (computational units) organized in multiple layers - Neurons can be active or not; last layer contains decisions - Perform feature extraction and input transformation - Learn (progressively improve performance) to do tasks by considering examples - Can represent complex non-linear relationships Example activation function: ReLU (Rectified Linear Unit) f(x) = max(0,x) $$h_{W,b}(\mathsf{x}) = \mathsf{f}(W^T x) = f(\sum_{i=1}^3 W i x i + b)$$ ## Applications Image Classification - Immense popularity ... - Pattern analysis - Image classification - Sentiment analysis - * Speech/audio recognition - Medical diagnosis - * Perception modules in self-driving cars Autonomous Driving Sentiment Analysis Speech Recognition ## Challenges #### Safety and Security Concerns - Lack of robustness - Small (imperceptible) changes to an input lead to misclassifications - Even for highly trained, highly accurate networks - Lack of explainability - It is not well understood why a network gives a particular output - Lack of formal specifications - Networks learn from examples, without high-level specifications - Scalability - Networks are very large, highly interconnected structures; often have huge input spaces; these characteristics prevent thorough verification/testing #### What about the data? - Enough data? Poisoned/unreliable data? Bias? - * Data management? This is a cat. **Current Explanation** ## SafeDNN: Safety of Deep Neural Networks https://ti.arc.nasa.gov/tech/rse/research/safednn/ - RSE project - * Explores techniques and tools to ensure that systems that use Deep Neural Networks (DNN) are safe, robust and interpretable. - Project Members - * Corina Pasareanu - Divya Gopinath - Many students and collaborators ### Recent Advances #### **Property Inference** * Property Inference for Deep Neural Networks (ASE'19) #### **Explainability** * A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors (CVPR'20) #### Verification - * Fast Geometric Projections for Local Robustness Certification (ICLR'21) - * NEUROSPF: A tool for the Symbolic Analysis of Neural Networks (ICSE'21, FoMLAS'21) - * DeepCert: Verification of Contextually Relevant Robustness for Neural Network Image Classifiers (SAFECOMP'21) - * Probabilistic Analysis of Neural Networks (SEAMS'20, ISSRE '20) - * Parallelization Techniques for Verifying Neural Networks (FMCAD'20) - * DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks (ATVA'18) #### Repair NNRepair: Constraint-based Repair of Neural Network Classifiers (CAV'21) # Property Inference ## Property Inference For Neural Networks Divya Gopinath, Hayes Converse, Corina S. Pasareanu, Ankur Taly: Property Inference for Deep Neural Networks. ASE 2019 #### * Key Ideas - * Infer "likely" properties of a DNN as rules of the form Pre => Post - * Decomposing a "black-box" model into a set of rules should aid in interpreting and understanding model behavior #### * Formalizing properties - * A constraint in terms of the (on/off) activation patterns of neurons of the network - * ReLU(x) is on if (x>0) and off if ReLU(x)=0; equiv. if (x>0) then x else 0; - Piecewise linear nodes equivalent to conditional statements of traditional programs, hence the logic of the network can be captured in the (on/off) activation patterns of neurons - * Properties can be proved to be valid on the network using a decision procedure (ex. Reluplex), and/or associated with a statistical metric of confidence such as number of satisfying instances ## Types of Properties - * Layer properties group inputs based on common characteristics at an intermediate layer - Pre is conjunction of (on/off) constraints on (some/all) neurons of an intermediate layer - * Intent is to capture properties based on the semantic features the network has learnt - * Built with decision-tree learning over activations #### **Input Property** (N2,0 > 0 / N2,1 = 0 / N2,2 > 0 / N3,0 > 0 / N3,1 = 0)=> y0 > y1 (label 0) - * **Input properties** encode predicates on the input space which imply a certain output property - Pre is conjunction of constraints on all neurons from the first hidden layer until a certain layer - Convex regions of consistent labeling in the input space - Built with concolic execution and iterative relaxation #### **Layer Property** (N3,0 = 0 / N3,1 > 0) => y0 < y1 (label 1) # Applications (Robustness and explanations) - * Provide robustness guarantees - * Generate adversarial examples (cex to Reluplex proofs) - * Formal explanations for perception networks - * Visualization of multiple images that satisfy the same property and identification of commonality - * Highlight portions of the image that impact the neurons in the property, akin to attribution techniques - * Contrast to existing techniques (LIME, Shap) which work on single image safe under-approximating box mis-classified input and under-approximating box # Applications (Distillation) * Build simpler models (distillation) Distillation of an eight layer MNIST network using properties inferred at the first max pooling layer. ### **Applications** ### (Property inference, Proof Decomposition) #### ACAS-Xu (Airborne Collision Avoidance System-Xu) - * Properties extracted by the approach act as specifications of functionality - $31900 \le \text{range} \le 37976$, $1.684 \le \theta \le 2.5133$, $\psi = -2.83$, $414.3 \le \text{vown} \le 506.86$, vint = 300, has turning advisory **COC** - o range = 499, $-0.314 \le \theta \le -3.14$, $-3.14 \le \psi \le 0$, $100 \le vown \le 571$, $0 \le vint \le 150$, has turning advisory **Strong Left** - o range = 48608, θ = -3.14, ψ = -2.83, vown(full range), vint (full range) has turning advisory **COC** - * Decomposed proofs of properties of the form A => B, using "layer patterns" σ , - * by checking $A => \sigma$ and $\sigma => B$ separately w/ Reluplex; - * significant **speedup** obtained; checked property that timed out with monolithic verification # Explainability ### Extracting Semantic Explanations of a Detection Module Edward Kim, Divya Gopinath, Corina S. Pasareanu, Sanjit A. Seshia: A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors. CVPR 2020 **Key idea:** leverage high-level semantic features encoded in a SCENIC program to derive rules (sufficient conditions) that explain the module; rules generated with decision tree learning, anchors and activation patterns **Benefits:** better explain and debug the module. ## Results #### Rules for correct detection | C | D 1 | |-------------------------------|---| | Scenario # | Rules | | (Baseline→Rule Precision) | | | Scenario 1 | x coordinate ≥ -198.1 | | $(65.3\% \rightarrow 89.4\%)$ | | | | hour ≥ 7.5 ∧ | | | weather = all except neutral \land | | Scenario 2 | car0 distance from ego ≥ 11.3 m \wedge | | $(72.3\% \rightarrow 82.3\%)$ | car0 model = {Asea, Bison, Blista, | | | Buffalo, Dominator, Jackal, Ninef, | | | Oracle} | | Scenario 3 | car0 red color $\geq 74.5 \land$ | | $(61.7\% \rightarrow 79.4\%)$ | car0 heading $\geq 220.3 \text{ deg}$ | | | car0 model = {Asea, Baller, Blista, | | Scenario 4 | Buffal, Dominator, Jackal, Ninef, | | $(89.6\% \rightarrow 96.2\%)$ | Oracle} | #### Rules for incorrect detection | Scenario # | Rules | | | | |-------------------------------|---|--|--|--| | (Baseline→Rule Precision) | | | | | | | x coordinate \leq -200.76 \wedge | | | | | Scenario1 | distance $\leq 8.84 \land$ | | | | | $(34.7\% \to 87.2\%)$ | car model = PRANGER | | | | | | hour ≥ 7.5 ∧ | | | | | Scenario 2 | weather = all except Neutral \land | | | | | $(27.7\% \rightarrow 44.9\%)$ | car0 distance from ego < 11.3 | | | | | | weather = neutral \wedge | | | | | Scenario 3 | agent0 heading = $\leq 218.08 \text{ deg } \wedge$ | | | | | $(38.3\% \to 83.4\%)$ | hour ≤ 8.00 ∧ | | | | | | $car2 \ red \ color \leq 95.00$ | | | | | | car0 model = PATRIOT ∧ | | | | | | $car1 model = NINEF \land$ | | | | | Scenario 4 | $car2 model = BALLER \land$ | | | | | $(10.4\% \to 57.3\%)$ | $92.25 < \mathbf{car0} \ \mathbf{green} \ \mathbf{color} \leqslant 158 \ \land$ | | | | | | car0 blue color $\leq 84.25 \land$ | | | | | | $178.00 < \mathbf{car2} \ \mathbf{red} \ \mathbf{color} \leqslant 224$ | | | | ## Verification ### Fast Geometric Projections for Local Robustness Certification Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, Corina S. Pasareanu: Fast Geometric Projections for Local Robustness Certification. ICLR 2021 ullet A model F satisfies *local robustness* with robustness radius $oldsymbol{arepsilon}$ on a point $oldsymbol{x}$ if $$\forall x'. ||x - x'||_p \le \varepsilon \implies F(x) = F(x')$$ • Valid for any norm, but we focus on the ℓ_2 norm, which is less well-studied ## Defenses ### Heuristic - Adversarial training - TRADES ### Certification training procedure model-agnostic verification - Kolter-Wong - Maxim Margin Regularization - GeoCert - MIP - ... ### Probabilistic Randomized Smoothing ## Certification of Local Robustness $$\forall x'. \|x - x'\|_p \le \varepsilon \implies F(x) = F(x')$$ Idea: use a more refined understanding of the *geometry* of a class of networks ## ReLU Networks as Polyhedral Complex - * Piecewise linear networks partition input domain into a polyhedral complex - * Input regions correspond to activation patterns - * Boundaries of regions can be computed with gradients - * Given a region, can compute distance to boundary using constraint solving (e.g., GeoCert, MIP): expensive - * Our contribution: - Use geometric projections (no constraint solving) - * Acceleration with GPUs - Sound but not complete ## Fast Geometric Projections (FGP) Method Projections offer a fast, sound way to see which boundaries are within our ε-radius this boundary is within this boundary ε from the point farther than ε from the point begin by *exploring* the starting region: explore each of the neighboring if a decision boundary is found, project for each boundary of starting region, regions whose boundaries were in onto it to verify an adversarial example check if the boundary is in the ε-ball the ε-ball was found ### Results On adversarially-trained dense networks, FGP outperforms GeoCert by 3 orders of magnitude and MIP by 4 orders of magnitude UNKNOWN results account for **only 3-5% of cases**, while GeoCert and MIP time out on 10-100% of cases ### Probabilistic Analysis of Neural Networks Hayes Converse, Antonio Filieri, Divya Gopinath, Corina S. Pasareanu: Probabilistic Symbolic Analysis of Neural Networks. ISSRE 2020 - * Properties of Neural Networks - * Proved with formal verification tools (Reluplex/Marabou from Stanford) - * Properties often do not hold; point-wise robustness checks output binary answers but lack detail; verification tools do not scale - * Probabilistic properties - * More natural, e.g. accuracy - * Checked with statistical methods: scale but provide no guarantees, tend to ignore "rare" events - * Our proposition - * Probabilistic analysis through *symbolic execution* and *volume computations* - * Benefits: increase impact of sampling and provide precise confidence - Collect mathematical constraints along neuron activations and apply volume computations to compute probabilities ## Technique - * Symbolically / concolically execute concrete inputs - Observe activation patterns; organize them in a tree - * Reject inputs that add no information (i.e., previously seen activation patterns) - * Add decision conditions to constraints based on network output (logits) layer - * Compute volume of constraints - * Stop at user defined criterion (coverage, number of paths, rejection percentage, ...) - * Similar to previous work on probabilistic symbolic execution, but adapted to neural networks ## Input Distributions and Probabilities - * Uniform distribution: - * Pr(D)=Vol(constraints for D)/Vol(full domain) - * Non-uniform distribution: partition input domain, create histogram distribution: (s_i, p_i) $$Pr(\mathcal{D}) = \sum_{s_i} p_i \cdot \sum_{AC \leadsto \mathcal{D}} \frac{Vol(AC \land s_i)}{Vol(\mathbb{D}_x)}$$ - $AC \Rightarrow D$ AC are activation conditions (together with decision conditions) leading to event D - * Confidence: - * % of input domain covered by the analysis ## Applications - * Implemented techniques in SpaceScanner - * Robustness/sensitivity analysis for ACAS-Xu - * DNN controllers in next-generation Airborne Collision Avoidance Systems for unmanned aircraft - * Fairness analysis for decision making networks - * Results for ACAS-Xu - * Found the network to be highly robust in assigning Clear-of-Conflict (COC) decisions - * Found the network to be more **vulnerable** to adversarial perturbations for the advisories weak-left, strong-left and strong-right - * Statistical analysis produces comparable results but **misses cases** when probability of misclassification is non-zero # Repair ### NNRepair: Constraint-based Repair of Neural Network Classifiers Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, Corina S. Pasareanu: NNrepair: Constraint-based Repair of Neural Network Classifiers, CAV'21 - Problem: The network is faulty - Low accuracy, lack of robustness, poisoned training data - Retraining could be used to alter the neural network parameters and repair for faults. - Difficult and expensive subject to uncertainties. - Result in a network that is quite different from the original one. - May not be possible (in the absence of additional data) - NNrepair: constraint solving for repairing neural networks - Similar to traditional program repair. - * **Fault localization** identifies the network parameters that are the likely source of defects. - * **Repair** uses constraint solving to apply small modifications to the network **parameters** to remedy the defects. ## Types of Repair ### Last-layer repair - Attempts to modify the decision constraints at the last layer. - * For last-layer repair, the oracle of the repair is the desired label. ### * Intermediate-layer repair: - * Attempts to fix failures by modifying the behavior of neurons at an inner layer of the network. - * For intermediate-layer repair, the oracle for the repair is the "activation pattern"; keeps the repair local - * Potentially more scalable ### Framework Repair constraints encode network decision for positive examples and modify (i.e., correct) network decision for negative examples # Example: Intermediate-layer Repair - * Consider input $X_4 = [1.5; 2.0]$ - * It is misclassified to "1" (ideal is "0") - For all the inputs correctly classified to "0", the neuron pair (N₂, N₃) in second layer has activation pattern (off, on) - * For the failing input, this pattern is not satisfied; the activation for (N_2, N_3) is (on, on) Fig. 1. Example Table 1. Data for Example | | $\mathbf{x_0}$ | $\mathbf{x_1}$ | N_0 | N_1 | N_2 | N_3 | yo | y 1 | class | ideal | |---------------|----------------|----------------|-------|-------|-------|-------|-------|------------|-------|-------| | X_0 | 1 | 1 | 1 | 1 | 0 | 1 | 8 | 6 | 0 | 0 | | X_1 | 0 | 1 | 1 | 1 | 1 | 1 | 0.25 | 9.25 | 1 | 1 | | X_2 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 2.25 | 0 | 0 | | X_3 | -1 | 1 | 1 | 1 | 1 | 0 | -7.87 | 13.12 | 1 | 1 | | X_4 | 1.5 | 2 | 1 | 1 | 1 | 1 | 12.68 | 12.68 | 1 | 0 | | after repair: | 1.5 | 2 | 1 | 1 | 0 | 1 | 13.3 | 10.5 | 0 | 0 | | X_5 | 0.6 | 1 | 1 | 1 | 1 | 1 | 5.91 | 5.62 | 0 | 1 | | after repair: | 0.6 | 1 | 1 | 1 | 1 | 1 | 5.91 | 5.95 | 1 | 1 | # Example: Intermediate-layer Repair - Modify the neuron activations of the second layer on the failing input to satisfy pattern (off,on) - Identify the weights to be modified using an attribution-based approach - Use constraint solving to compute the values of the new weights - * Changing the weight of the edge connecting N_1 and N_2 from -1.5 to -1.9 changes the activation pattern for $(N_2; N_3)$ to (off, on) on the failing input - Preserves the behavior of the neurons (their activation pattern) and the output of the model on passing inputs Fig. 1. Example Table 1. Data for Example | | $\mathbf{x_0}$ | x ₁ | N_0 | N_1 | N_2 | N_3 | yо | y 1 | class | ideal | |---------------|----------------|-----------------------|-------|-------|-------|-------|-------|------------|-------|-------| | X_0 | 1 | 1 | 1 | 1 | 0 | 1 | 8 | 6 | 0 | 0 | | X_1 | 0 | 1 | 1 | 1 | 1 | 1 | 0.25 | 9.25 | 1 | 1 | | X_2 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 2.25 | 0 | 0 | | X_3 | -1 | 1 | 1 | 1 | 1 | 0 | -7.87 | 13.12 | 1 | 1 | | X_4 | 1.5 | 2 | 1 | 1 | 1 | 1 | 12.68 | 12.68 | 1 | 0 | | after repair: | 1.5 | 2 | 1 | 1 | 0 | 1 | 13.3 | 10.5 | 0 | 0 | | X_5 | 0.6 | 1 | 1 | 1 | 1 | 1 | 5.91 | 5.62 | 0 | 1 | | after repair: | 0.6 | 1 | 1 | 1 | 1 | 1 | 5.91 | 5.95 | 1 | 1 | ### Results - Demonstrated our technique in the context of three different scenarios: - Improving the overall accuracy of a model - * Fixing security vulnerabilities caused by poisoning of training data Improving the robustness of the network against adversarial attacks * NNrepair can improve the performance of the network by 45.56% on poisoned data and 10.40% on adversarial data. ## Other Repair Techniques - * MODE [Ma et al. ESEC/FSE'18]: differential analysis + retraining - NNRepair has similar performance: better on MNIST-HQ but worse on MNIST-LQ - * Apricot [Zhang et al. ASE'19] generates a set of reduced models and repairs weights based on average weight of reduced models - Sotoudeh and Thakur [2019] uses SMT solving to repair ACASXu networks - * Other ... - * None of these techniques address all three scenarios that we consider - Previous techniques focus only on last layer repair ## Future Work ### Future Work - * Automated repair for poisoned NN - Structural testing coverage for neural networks - * Learning with formal guarantees - * Relating NN properties to system-level properties of an autonomous system ## Thank you! https://ti.arc.nasa.gov/tech/rse/research/safednn/