SaleDNN: Understanding and Corina Pasareanu (NASA
oty Ames, KBR, CMU)
Verilying Neural Networks

Artificial Neural Networks

+ Computing systems inspired by the
biological NNs in animal brains

+ Consist of neurons (computational units)
organized in multiple layers

» Neurons can be active or not; last layer
contains decisions

» Perform feature extraction and input
transformation

* Learn (progressively improve
performance) to do tasks by considering
examples

+ Can represent complex non-linear
relationships

Layerl,

+1

Neuron

> hw b(x)

Example activation
function: RelLU
(Rectified Linear Unit)

f(x) = max(0,x)

hwp(x) = f(WTx) = f(Z{_, Wixi + b)

Applications

Image
Classification

Immense popularity ...
Pattern analysis

Image classification
Sentiment analysis

Speech/audio recognition

Medical diagnosis
Perception modules in self-driving cars : g

Sentiment —— 0

Analysis
@ —
Input Output
Speech {
Recognition ‘ Neural Network —»l “Hello”

Sound wave

Challenges

Safety and Security Concerns
Lack of robustness

Small (imperceptible) changes to an input lead to
misclassifications

Even for highly trained, highly accurate networks
Lack of explainability

It is not well understood why a network gives a particular
output

Lack of formal specifications
Networks learn from examples, without high-level specifications
Scalability

Networks are very large, highly interconnected structures; often
have huge input spaces; these characteristics prevent thorough
verification / testing

What about the data?
Enough data? Poisoned /unreliable data? Bias?

Data management?

Street sian Birdhouse

I+I=i

Iraffic Light 11 White Pixels Oven

Machine Learning System
Cat

eve0®
©6660680
CERY R

cecooe
T999°%Y

This is a cat:
* It has fur, whiskers, and claws.
* It has this feature:

Current Explanation XAl Explanation
from DARPA

This is a cat.

SafeDNN: Safety of Deep Neural Networks

https: / /ti.arc.nasa.gov /tech /rse/research /safednn /

+ RSE project

« Explores techniques and tools to ensure that
systems that use Deep Neural Networks
(DNN) are safe, robust and interpretable.

+ Project Members KPREEISA,
. *.,*® .
Corina Pasareanu AR KA
..".° : s V.. s .o.:
* Divya Gopinath S law She=ls
® . . v

+ Many students and collaborators

https://ti.arc.nasa.gov/tech/rse/research/safednn/

Recent Advances

Property Inference
Property Inference for Deep Neural Networks (ASE’19)
Explainability

A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors
(CVPR20)

Verification
Fast Geometric Projections for Local Robustness Certification (ICLR"21)
NEUROSPF: A tool for the Symbolic Analysis of Neural Networks (ICSE’21, FOMLAS21)

DeepCert: Verification of Contextually Relevant Robustness for Neural Network Image Classifiers
(SAFECOMP’21)

Probabilistic Analysis of Neural Networks (SEAMS’20, ISSRE "20)
Parallelization Techniques for Verifying Neural Networks (FMCAD’20)
DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks (ATVA’18)
Repair
NNRepair: Constraint-based Repair of Neural Network Classifiers (CAV’21)

Property Inference

Property Inference For Neural Networks

Divya Gopinath, Hayes Converse, Corina S. Pasareanu, Ankur Taly:

Property Inference for Deep Neural Networks. ASE 2019

+ Key Ideas

« Infer “likely” properties of a DNN as rules of the form Pre => Post
+ Decomposing a “black-box” model into a set of rules should aid in

interpreting and understanding model behavior

* Formalizing properties

A constraint in terms of the (on/off) activation patterns of

neurons of the network

* ReLU(x) is on if (x>0) and off if ReLU(x)=0; equiv. if (x>0) then x

else O;

« Piecewise linear nodes equivalent to conditional statements
traditional programs, hence the logic of the network can be
captured in the (on/off) activation patterns of neurons

« Properties can be proved to be valid on the network using a decision

of

procedure (ex. Reluplex), and /or associated with a statistical metric

of confidence such as number of satisfying instances

N2,0

N2,1

N2,2

Layer L, Layer L,

B

h'n"',h(x)

l

y1
Layer |,

T'ypes of Properties

+ Layer properties group inputs based on
common characteristics at an

intermediate layer
« Pre is conjunction of (on/off) constraints on
(some/all) neurons of an intermediate layer
« Intent is to capture properties based on the
semantic features the network has learnt
« Built with decision-tree learning over
activations

Input Property

‘ N3,0 y0
—

LON
—_—

1
1} Layer L,)

Layer |,

Layer L, Layer L,

(N2,0 >0/\N2,1=0/\N2,2 >0/\N3,0 >0/\ N3,1=0)
=> y0 > y1 (label 0)

* Input properties encode predicates on the
input space which imply a certain output

pro

perty

Pre is conjunction of constraints on all neurons
from the first hidden layer until a certain layer

« Convex regions of consistent labeling in the

input space

+ Built with concolic execution and iterative

relaxation
Layer Property
yo
—
()
—

Layer L, Layer L,

(N3,0=0/\N3,1>0)=> y0 <yt (label 1)

Applications

(Robustness and explanations)

Provide robustness guarantees Formal explanations for perception networks

Generate adversarial ex amples Visualization of multiple images that satisty the same property and

Relupl f identification of commonality
(cex to Re IR TRAHOIE,) Highlight portions of the image that impact the neurons in the property,
akin to attribution techniques

Contrast to existing techniques (LIME, Shap) which work on single image

safe under-approximating box Tilt to the right
. . @Center line
extending beyond [

mis-classified input and the top of digit
under-approximating box @

Applications
(Distillation)

* Build simpler models (distillation)

Distillation of an eight layer MNIST network using
properties inferred at the first max pooling layer.

0.994 -
HR0Y -

0.990 - ‘/////,/f

Overall Accuracy

Threshold (tau)

8.0

Fig

o
wn

Inference Latency (sec)
~J
|

[=)]
o

0.90 0.92 0.94 0.96 0.98 100
Threshold (tau)

Applications

(Property inference, Proof Decomposition)

ACAS-Xu (Airborne Collision Avoidance System-Xu)

. Clear of Conflict (COC)
¥
Vown e % Strong Lef
’\/% g . g‘::' g‘i{g:ug ;'g trong Left
- -7 o gl oo lg o Weak Left
-~ Intruder O 5 OB T8 D
! -5 P DA LY S T
' o M Strong Right
N » Ownship . / R pucontoter Weak Right
" ~=-"
Properties extracted by the approach act as Decomposed proofs of properties of
specifications of functionality the form A => B, using “layer
o 31900 < range < 37976, 1.684 < 6 < 2.5133, { = -2.83, patterns” O,
414.3 < vown < 506.86, vint = 300, has turning 4
advisory COC by checking A => o and o0 => B
o range =499,-0.314<6<-3.14,-3.14 < <0, 100 < separ ately w/ RelupleX,‘
vown < 571, 0 < vint < 150, has turning advisory

Strong Left significant speedup obt.amed;
o range = 48608, 0 = -3.14, \ = -2.83, vown(full checked property that timed out
range), vint (full range) has turning advisory COC with monolithic verification

Explainability

Extracting Semantic Explanations of a Detection Module

Edward Kim, Divya Gopinath, Corina S. Pasareanu, Sanjit A. Seshia:
A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors. CVPR 2020

Test Image
Generation

Failure Image
Generation

Failure Scenario

» tise = (4040, 140
oM 300N A

Failure Inducing
Rule Extraction

TEE

X_coordinate<= -200.76

User’s Scenario | . car model = PRANGER o .

time = (%80, 1
S LN LI]

Success Image

Success Inducing _Success Scenario

Rule Extraction = - et =

Xx_coordinate >= -198.1 o ssins batugie seteates o opn.toating

Key idea: leverage high-level semantic features encoded in a SCENIC program to derive rules (sufficient conditions) that
explain the module; rules generated with decision tree learning, anchors and activation patterns
Benefits: better explain and debug the module.

Results

Rules for correct detection

Scenario #
(Baseline—Rule Precision)

Rules

Rules for incorrect detection

Scenario #
(Baseline—Rule Precision)

Rules

Scenario 1
(65.3% — 89.4%)

x coordinate > -198.1

Scenario 2
(72.3% — 82.3%)

hour > 7.5 A

weather = all except neutral A
car(distance from ego > 11.3m A
car() model = { Asea, Bison, Blista,

Buffalo, Dominator, Jackal, Ninef,
Oracle}

Scenariol
(34.7% — 87.2%)

x coordinate < -200.76 A
distance < 8.84 A
car model = PRANGER

Scenario 2
(27.7% — 44.9%)

hour > 7.5 A
weather = all except Neutral A
car(distance from ego < 11.3

Scenario 3
(61.7% — 79.4%)

car(red color > 74.5 A
car(heading > 220.3 deg

Scenario 4
(89.6% — 96.2%)

car() model = { Asea, Baller, Blista,
Buffal, Dominator, Jackal, Ninef,
Oracle}

Scenario 3
(38.3% — 83.4%)

weather = neutral A

agent() heading = < 218.08 deg A
hour < 8.00 A

car2 red color < 95.00

Scenario 4
(10.4% — 57.3%)

car() model = PATRIOT A

carl model = NINEF A

car2 model = BALLER A

92.25 < car0 green color < 158 A
car(blue color < 84.25 A

178.00 < car2 red color < 224

Veritication

Traffic Light 11 White Pixels Oven

Fast Geometric Projections for Local Robustness Certification

Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, Corina S. Pasareanu:
Fast Geometric Projections for Local Robustness Certification. ICLR 2021

 Amodel F satisfies local robustness with robustness radius & on a point x if

vx'.|[x —x'l[, <e = F(x) =F(')

« Valid for any norm, but we focus on the £, norm, which is less well-studied

Delenses

@ Heuristic @ Certification

T

Probabilistic

* Adversarial training * Kolter-Wong ranig procedire » Randomized Smoothing
* TRADES e Maxim Margin Regularization
 (eoCert model-ggnostic
verification

* MIP

Certification of Loocal Robustness

Vx'.lx —x'|l, < = F(x) =F(X’")

g dea: use a more refined understanding of the geometry of a class of networks

RelLU Networks as Polyhedral Complex

* Piecewise linear networks partition input domain into a polyhedral complex
» Input regions correspond to activation patterns
* Boundaries of regions can be computed with gradients

» Glven a region, can compute distance to boundary using constraint solving
(e.g., GeoCert, MIP): expensive

<+ Our contribution:
+ Use geometric projections (no constraint solving)
+ Acceleration with GPUs

* Sound but not complete

Fast Geometric Projections (FGP) Method

Projections offer a fast, sound way to see which boundaries are within our €-radius

VL
*s
., 5
0) 2

this boundary is within
this boundary ¢ from the point
farther than ¢ "/ '/
from the point L) 5 ’

%
7 TN T
‘!f%gy

begin by exploring the starting region: explore each of the neighboring if a decision boundary is found, project
for each boundary of starting region, regions whose boundaries were in onto it to verify an adversarial example
check if the boundary is in the e-ball the ¢-ball was found

Results

On adversarially-trained dense networks, FGP outperforms GeoCert by 3
orders of magnitude and MIP by 4 orders of magnitude

UNKNOWN results account for only 3-5% of cases, while GeoCert and MIP
time out on 10-100% of cases

Probabilistic Analysis of Neural Networks

Hayes Converse, Antonio Filieri, Divya Gopinath, Corina S. Pasareanu:
Probabilistic Symbolic Analysis of Neural Networks. ISSRE 2020

* Properties of Neural Networks

“ Proved with formal verification tools (Reluplex/Marabou from Stanford)

“ Properties often do not hold; point-wise robustness checks output binary answers but lack
detail; verification tools do not scale

* Probabilistic properties

* More natural, e.g. accuracy

* Checked with statistical methods: scale but provide no guarantees, tend to ignore “rare” events

* Qur proposition

* Probabilistic analysis through symbolic execution and volume computations
* Benefits: increase impact of sampling and provide precise confidence

Collect mathematical constraints along neuron activations and apply volume
computations to compute probabilities

Techmque

& Rejection Tree
» Symbolically / concolically execute concrete inputs J

* Observe activation patterns; organize them in a tree

* Reject inputs that add no information (i.e., Layer ,\ L

L //,\\

. . - A MR T / N o 5 h
previously seen activation patterns) Layer2 o0 | 10 | [-o] [{Jor] [oo| for o] [[oo for | [uo | s oo |[or [{10 [1]

L —

* Add decision conditions to constraints based on network output (logits) layer

* Compute volume of constraints

« Stop at user defined criterion (coverage, number of paths, rejection percentage, ...)

+ Similar to previous work on probabilistic symbolic execution, but adapted to neural networks

Input Distributions and Probabilities

+ Uniform distribution:
« Pr(D)=Vol(constraints for D)/Vol(full domain)

Non-uniform distribution: partition input domain, create histogram
distribution: (s, p;)

PHD) = ZPi | Z Vol(AC A sj)

Si AC~>D VOI(DX)

* AC are activation conditions (together with decision conditions) leading to
event D

+ Confidence:

* % of input domain covered by the analysis

Applications

Implemented techniques in SpaceScanner -7, Intruder

/"
\

!

Robustness / sensitivity analysis for ACAS-Xu ", Owaship.

@ ~=--"

DNN controllers in next-generation Airborne Collision Avoidance Systems for
unmanned aircraft

Fairness analysis for decision making networks

Results for ACAS-Xu

“ Found the network to be highly robust in assigning Clear-of-Conflict (COC) decisions

“ Found the network to be more vulnerable to adversarial perturbations for the
advisories weak-left, strong-left and strong-right

“ Statistical analysis produces comparable results but misses cases when probability of
misclassification is non-zero

QT

Rep

NNRepair: Constraint-based Repair of Neural Network Classifiers

Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, Corina S. Pasareanu:
NNrepair: Constraint-based Repair of Neural Network Classifiers, CAV'21

Problem: The network is faulty
Low accuracy, lack of robustness, poisoned training data
Retraining could be used to alter the neural network parameters and repair for faults.
Difficult and expensive subject to uncertainties.
Result in a network that is quite different from the original one.
May not be possible (in the absence of additional data)
NNrepair: constraint solving for repairing neural networks
Similar to traditional program repair.

Fault localization identifies the network parameters that are the likely source of
defects.

Repair uses constraint solving to apply small modifications to the network
parameters to remedy the defects.

Types of Repair

+ Last-layer repair
+ Attempts to modify the decision constraints at the last layer.

* For last-layer repair, the oracle of the repair is the desired label.

+ Intermediate-layer repair:

« Attempts to fix failures by modifying the behavior of neurons at an inner
layer of the network.

* For intermediate-layer repair, the oracle for the repair is the “activation
pattern”; keeps the repair local

+ Potentially more scalable

Framework

Fault
Localization

combined experts

important .
weights .
r‘
< ‘
. . Concolic Constraint Y AN,
examples , o
(SPF) | (Z3) -

Repair constraints encode network decision for positive examples
and modify (i.e., correct) network decision for negative examples

Example: Intermediate-layer Repair

R/
L X4

Consider input X, = [1.5; 2.0]

It is misclassified to “1” (ideal is
IIOII)

For all the inputs correctly

1% repair: -1.9

2" repair: 1.6

Fig. 1. Example

Table 1. Data for Example

classified to “0”, the neuron pair o[x1 [No[N1[Na[Na yo [1 [class[ideal

. 2 o TJ1]L1[1]O[1] 8] 6] 01 0

(NZI N3) 1mn Second layer haS X011 {1} 1]1 O..‘25 925 1 |

X2| T]O|O |1]O0|1] 3 |225] 0 | 0O

- : X[T[T T[T 1]0-787|1312] T | 1

activation pattern (Off’ On) xJTB[2T T[T [11 [12.68]12.68] 1 0

aitorrepaie:| 15| 2 1 | 110 | 1 [133[105] 0 | 0

g ' ' Xs0O[1] 111 11501]562] 0 | 1

For the falhng IHPUt' this pattern atter repaie:|0.6] 1| 1 | 11 1|1 [591(505] 1 | 1
is not satisfied; the activation for i—— —_—

(N,, N,) is (on, on)

Example: Intermediate-layer Repair

+ Modify the neuron activations of the second
layer on the failing input to satisfy pattern

(off,on)

» Identify the weights to be modified using
an attribution-based approach

» Use constraint solving to compute the
values of the new weights

» Changing the weight of the edge connecting
N, and N, from -1.5 to -1.9 changes the

activation pattern for (N,; N3) to (off, on) on
the failing input

+ Preserves the behavior of the neurons (their
activation pattern) and the output of the
model on passing inputs

1% repair: -1.9 2" repair: 1.6

Fig. 1. Example

Table 1. Data for Example

Xo X1 No N1 N2 N3 Yo Y1 class ideal

Xof 111 (1101 8 6 0 0

X1 11|11 (1[025]925| 1 1

X2 110101101 3 1225 0 0

Xq/-111]1|1|1]0(-7.87|13.12] 1 1

Xe(lop211 1111 [12.68(12.68] 1 0
aftervepair:[1.O[2 [1 [1 | O | 1 |13.3]10.5] 0 0

xs 0611111][591[562] 0
after repair: (0.6 1 | 1 [1 | 1 [1 15.91]595] 1 1
T ——— e

Results

+ Demonstrated our technique in the context of three different scenarios:
* Improving the overall accuracy of a model

* Fixing security vulnerabilities caused by poisoning of training data

« Improving the robustness of the network against adversarial attacks

nn
— S—

* NNrepair can improve the performance of the network by 45.56% on
poisoned data and 10.40% on adversarial data.

Other Repair Techniques

+* MODE [Ma et al. ESEC/FSE’18]: differential analysis + retraining

* NNRepair has similar performance: better on MNIST-HQ but worse on
MNIST-LQ

« Apricot [Zhang et al. ASE’19] generates a set of reduced models and repairs
weights based on average weight of reduced models

+ Sotoudeh and Thakur [2019] uses SMT solving to repair ACASXu networks

+ Other ...

+ None of these techniques address all three scenarios that we consider

* Previous techniques focus only on last layer repair

Future Work

Ul

iy

A

=

i

Future Work

* Automated repair for poisoned NN

* Structural testing coverage for neural networks

“ Learning with formal guarantees

+ Re]
au

ating NN properties to system-level properties of an

‘onomous system

Thank you!

®
"'; % N ‘o‘
. "
-«
" .. .o. P
» LD
k.'. ¥ - @] " .. ®
-
vV,)" Qk‘ .‘.'.'0.
| W o @ ¥ o »
‘. g ® Y f..' @ e
¥ “
0 .." .’0.. 4 .
"‘ B » * .
¥ | /AN . L @ ® e
. o / -
..‘. 9 .
o&'... ® " .." v ot
e RS v .vi
WY o W% ISR, 7y
e, .
o b4

https: / /ti.arc.nasa.gov /tech /rse/research /safednn/

https://ti.arc.nasa.gov/tech/rse/research/safednn/

