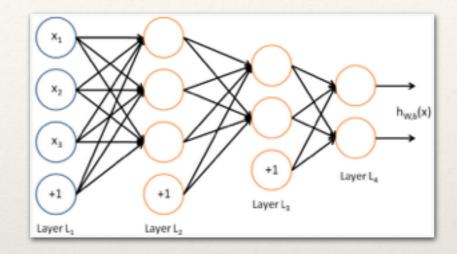


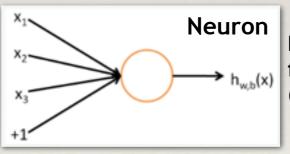
SafeDNN: Understanding and Verifying Neural Networks

Corina Pasareanu (NASA Ames, KBR, CMU)

Artificial Neural Networks

- * Computing systems inspired by the biological NNs in animal brains
- Consist of neurons (computational units)
 organized in multiple layers
- Neurons can be active or not; last layer contains decisions
- Perform feature extraction and input transformation
- Learn (progressively improve performance) to do tasks by considering examples
- Can represent complex non-linear relationships



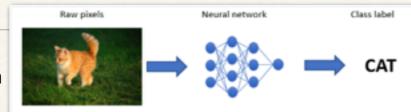


Example activation function: ReLU (Rectified Linear Unit) f(x) = max(0,x)

$$h_{W,b}(\mathsf{x}) = \mathsf{f}(W^T x) = f(\sum_{i=1}^3 W i x i + b)$$

Applications

Image Classification

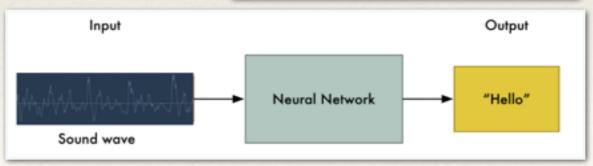


- Immense popularity ...
- Pattern analysis
- Image classification
- Sentiment analysis
- * Speech/audio recognition
- Medical diagnosis
- * Perception modules in self-driving cars

Autonomous Driving

Sentiment Analysis

Speech Recognition



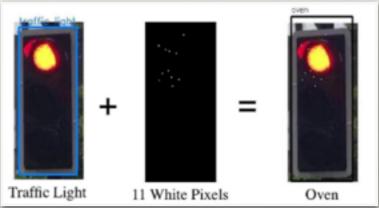
Challenges

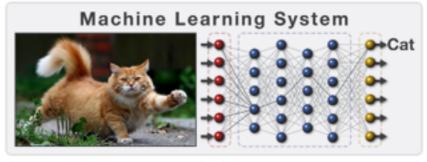
Safety and Security Concerns

- Lack of robustness
 - Small (imperceptible) changes to an input lead to misclassifications
 - Even for highly trained, highly accurate networks
- Lack of explainability
 - It is not well understood why a network gives a particular output
- Lack of formal specifications
 - Networks learn from examples, without high-level specifications
- Scalability
 - Networks are very large, highly interconnected structures; often have huge input spaces; these characteristics prevent thorough verification/testing

What about the data?

- Enough data? Poisoned/unreliable data? Bias?
- * Data management?





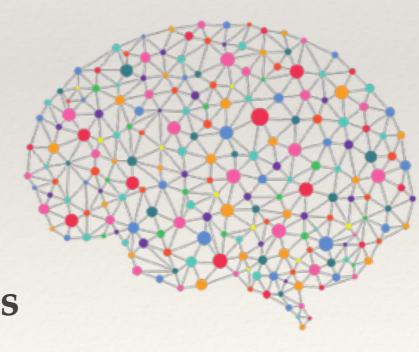
This is a cat.

Current Explanation

SafeDNN: Safety of Deep Neural Networks

https://ti.arc.nasa.gov/tech/rse/research/safednn/

- RSE project
 - * Explores techniques and tools to ensure that systems that use Deep Neural Networks (DNN) are safe, robust and interpretable.
- Project Members
 - * Corina Pasareanu
 - Divya Gopinath
- Many students and collaborators



Recent Advances

Property Inference

* Property Inference for Deep Neural Networks (ASE'19)

Explainability

* A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors (CVPR'20)

Verification

- * Fast Geometric Projections for Local Robustness Certification (ICLR'21)
- * NEUROSPF: A tool for the Symbolic Analysis of Neural Networks (ICSE'21, FoMLAS'21)
- * DeepCert: Verification of Contextually Relevant Robustness for Neural Network Image Classifiers (SAFECOMP'21)
- * Probabilistic Analysis of Neural Networks (SEAMS'20, ISSRE '20)
- * Parallelization Techniques for Verifying Neural Networks (FMCAD'20)
- * DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks (ATVA'18)

Repair

NNRepair: Constraint-based Repair of Neural Network Classifiers (CAV'21)

Property Inference

Property Inference For Neural Networks

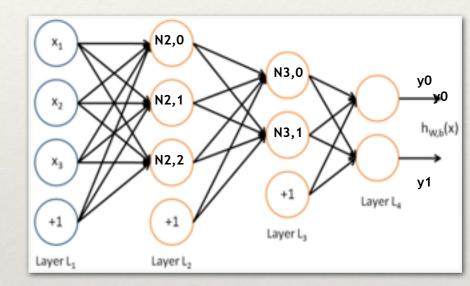
Divya Gopinath, Hayes Converse, Corina S. Pasareanu, Ankur Taly: Property Inference for Deep Neural Networks. ASE 2019

* Key Ideas

- * Infer "likely" properties of a DNN as rules of the form Pre => Post
- * Decomposing a "black-box" model into a set of rules should aid in interpreting and understanding model behavior

* Formalizing properties

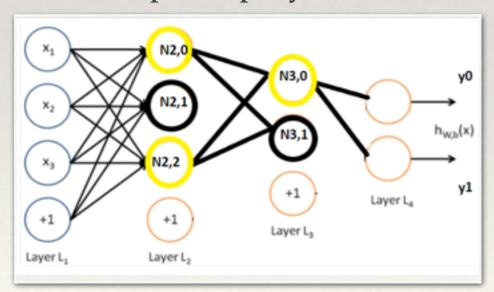
- * A constraint in terms of the (on/off) activation patterns of neurons of the network
 - * ReLU(x) is on if (x>0) and off if ReLU(x)=0; equiv. if (x>0) then x else 0;
 - Piecewise linear nodes equivalent to conditional statements of traditional programs, hence the logic of the network can be captured in the (on/off) activation patterns of neurons
- * Properties can be proved to be valid on the network using a decision procedure (ex. Reluplex), and/or associated with a statistical metric of confidence such as number of satisfying instances



Types of Properties

- * Layer properties group inputs based on common characteristics at an intermediate layer
 - Pre is conjunction of (on/off) constraints on (some/all) neurons of an intermediate layer
 - * Intent is to capture properties based on the semantic features the network has learnt
 - * Built with decision-tree learning over activations

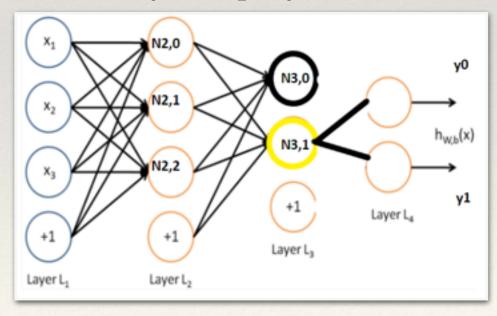
Input Property



(N2,0 > 0 / N2,1 = 0 / N2,2 > 0 / N3,0 > 0 / N3,1 = 0)=> y0 > y1 (label 0)

- * **Input properties** encode predicates on the input space which imply a certain output property
 - Pre is conjunction of constraints on all neurons from the first hidden layer until a certain layer
 - Convex regions of consistent labeling in the input space
 - Built with concolic execution and iterative relaxation

Layer Property

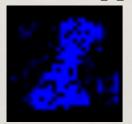


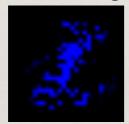
(N3,0 = 0 / N3,1 > 0) => y0 < y1 (label 1)

Applications (Robustness and explanations)

- * Provide robustness guarantees
- * Generate adversarial examples (cex to Reluplex proofs)
- * Formal explanations for perception networks
 - * Visualization of multiple images that satisfy the same property and identification of commonality
 - * Highlight portions of the image that impact the neurons in the property, akin to attribution techniques
 - * Contrast to existing techniques (LIME, Shap) which work on single image

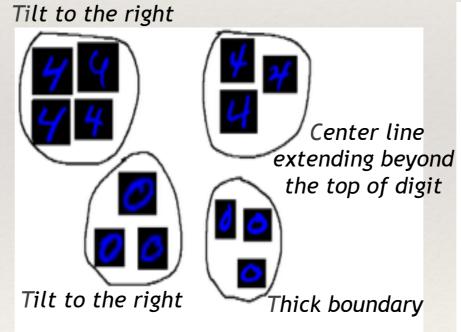
safe under-approximating box





mis-classified input and under-approximating box



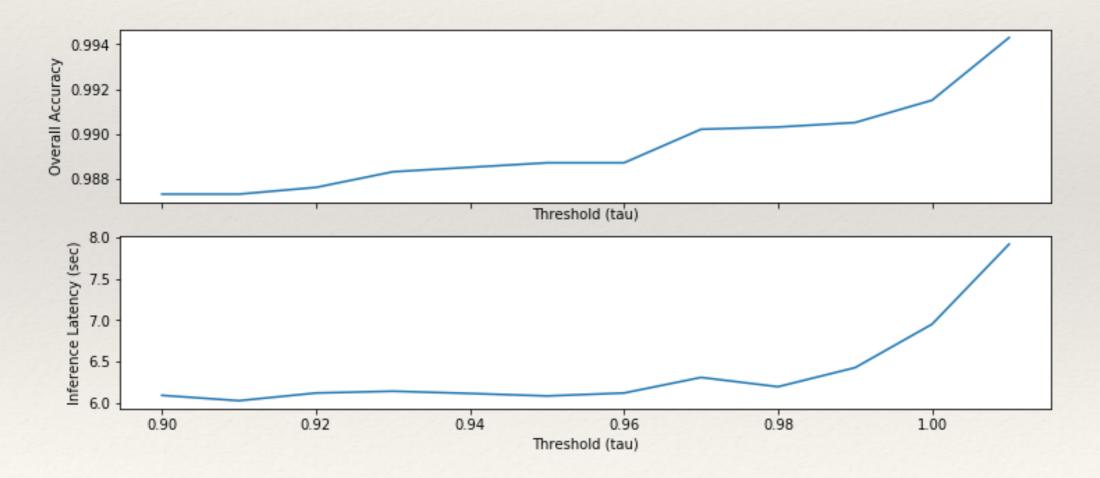




Applications (Distillation)

* Build simpler models (distillation)

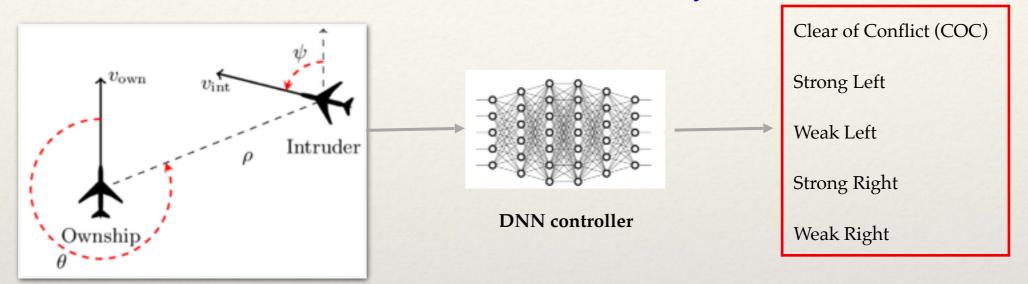
Distillation of an eight layer MNIST network using properties inferred at the first max pooling layer.



Applications

(Property inference, Proof Decomposition)

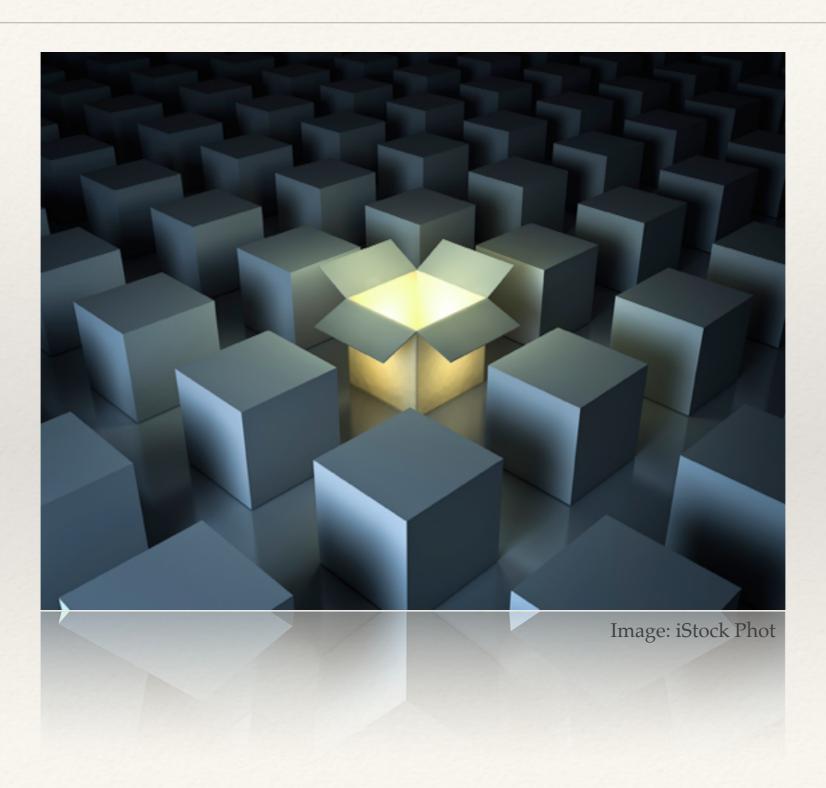
ACAS-Xu (Airborne Collision Avoidance System-Xu)



- * Properties extracted by the approach act as specifications of functionality
 - $31900 \le \text{range} \le 37976$, $1.684 \le \theta \le 2.5133$, $\psi = -2.83$, $414.3 \le \text{vown} \le 506.86$, vint = 300, has turning advisory **COC**
 - o range = 499, $-0.314 \le \theta \le -3.14$, $-3.14 \le \psi \le 0$, $100 \le vown \le 571$, $0 \le vint \le 150$, has turning advisory **Strong Left**
 - o range = 48608, θ = -3.14, ψ = -2.83, vown(full range), vint (full range) has turning advisory **COC**

- * Decomposed proofs of properties of the form A => B, using "layer patterns" σ ,
 - * by checking $A => \sigma$ and $\sigma => B$ separately w/ Reluplex;
 - * significant **speedup** obtained; checked property that timed out with monolithic verification

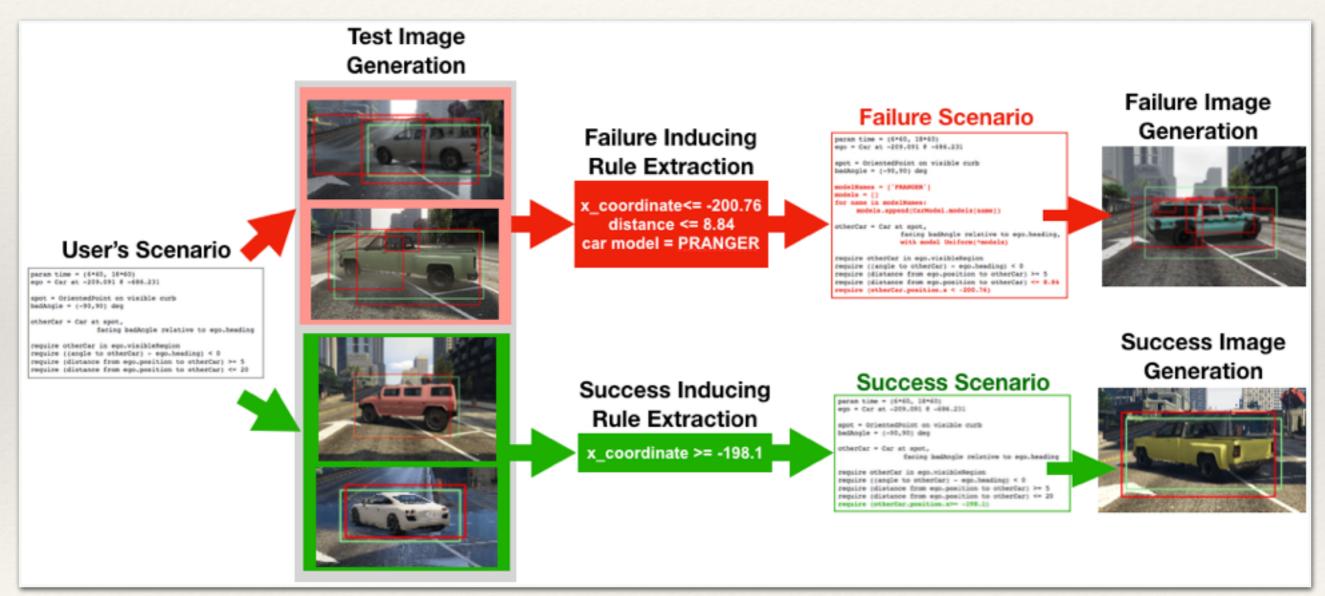
Explainability



Extracting Semantic Explanations of a Detection Module

Edward Kim, Divya Gopinath, Corina S. Pasareanu, Sanjit A. Seshia:

A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors. CVPR 2020



Key idea: leverage high-level semantic features encoded in a SCENIC program to derive rules (sufficient conditions) that explain the module; rules generated with decision tree learning, anchors and activation patterns **Benefits:** better explain and debug the module.

Results

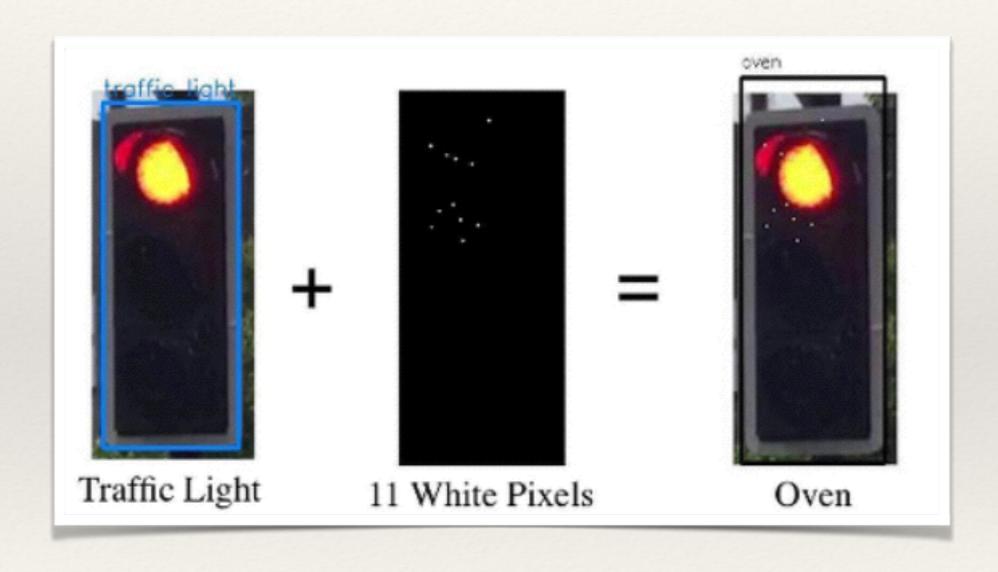
Rules for correct detection

C	D 1
Scenario #	Rules
(Baseline→Rule Precision)	
Scenario 1	x coordinate ≥ -198.1
$(65.3\% \rightarrow 89.4\%)$	
	hour ≥ 7.5 ∧
	weather = all except neutral \land
Scenario 2	car0 distance from ego ≥ 11.3 m \wedge
$(72.3\% \rightarrow 82.3\%)$	car0 model = {Asea, Bison, Blista,
	Buffalo, Dominator, Jackal, Ninef,
	Oracle}
Scenario 3	car0 red color $\geq 74.5 \land$
$(61.7\% \rightarrow 79.4\%)$	car0 heading $\geq 220.3 \text{ deg}$
	car0 model = {Asea, Baller, Blista,
Scenario 4	Buffal, Dominator, Jackal, Ninef,
$(89.6\% \rightarrow 96.2\%)$	Oracle}

Rules for incorrect detection

Scenario #	Rules			
(Baseline→Rule Precision)				
	x coordinate \leq -200.76 \wedge			
Scenario1	distance $\leq 8.84 \land$			
$(34.7\% \to 87.2\%)$	car model = PRANGER			
	hour ≥ 7.5 ∧			
Scenario 2	weather = all except Neutral \land			
$(27.7\% \rightarrow 44.9\%)$	car0 distance from ego < 11.3			
	weather = neutral \wedge			
Scenario 3	agent0 heading = $\leq 218.08 \text{ deg } \wedge$			
$(38.3\% \to 83.4\%)$	hour ≤ 8.00 ∧			
	$car2 \ red \ color \leq 95.00$			
	car0 model = PATRIOT ∧			
	$car1 model = NINEF \land$			
Scenario 4	$car2 model = BALLER \land$			
$(10.4\% \to 57.3\%)$	$92.25 < \mathbf{car0} \ \mathbf{green} \ \mathbf{color} \leqslant 158 \ \land$			
	car0 blue color $\leq 84.25 \land$			
	$178.00 < \mathbf{car2} \ \mathbf{red} \ \mathbf{color} \leqslant 224$			

Verification

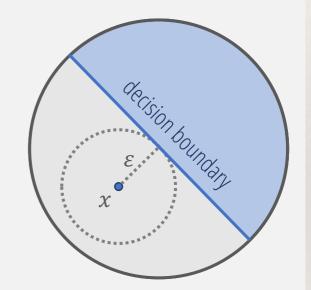


Fast Geometric Projections for Local Robustness Certification

Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, Corina S. Pasareanu: Fast Geometric Projections for Local Robustness Certification. ICLR 2021

ullet A model F satisfies *local robustness* with robustness radius $oldsymbol{arepsilon}$ on a point $oldsymbol{x}$ if

$$\forall x'. ||x - x'||_p \le \varepsilon \implies F(x) = F(x')$$



• Valid for any norm, but we focus on the ℓ_2 norm, which is less well-studied

Defenses

Heuristic

- Adversarial training
- TRADES

Certification

training procedure

model-agnostic

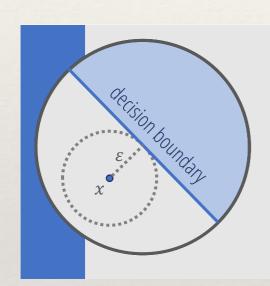
verification

- Kolter-Wong
- Maxim Margin Regularization
- GeoCert
- MIP
- ...

Probabilistic

Randomized Smoothing

Certification of Local Robustness



$$\forall x'. \|x - x'\|_p \le \varepsilon \implies F(x) = F(x')$$

Idea: use a more refined understanding of the *geometry* of a class of networks

ReLU Networks as Polyhedral Complex

- * Piecewise linear networks partition input domain into a polyhedral complex
 - * Input regions correspond to activation patterns
 - * Boundaries of regions can be computed with gradients
- * Given a region, can compute distance to boundary using constraint solving (e.g., GeoCert, MIP): expensive
- * Our contribution:
 - Use geometric projections (no constraint solving)
 - * Acceleration with GPUs
 - Sound but not complete

Fast Geometric Projections (FGP) Method

Projections offer a fast, sound way to see which boundaries are within our ε-radius this boundary is within this boundary ε from the point farther than ε from the point begin by *exploring* the starting region: explore each of the neighboring if a decision boundary is found, project for each boundary of starting region, regions whose boundaries were in onto it to verify an adversarial example check if the boundary is in the ε-ball the ε-ball was found

Results

On adversarially-trained dense networks, FGP outperforms GeoCert by 3 orders of magnitude and MIP by 4 orders of magnitude

UNKNOWN results account for **only 3-5% of cases**, while GeoCert and MIP time out on 10-100% of cases

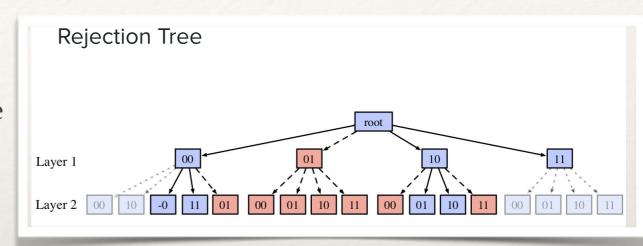
Probabilistic Analysis of Neural Networks

Hayes Converse, Antonio Filieri, Divya Gopinath, Corina S. Pasareanu: Probabilistic Symbolic Analysis of Neural Networks. ISSRE 2020

- * Properties of Neural Networks
 - * Proved with formal verification tools (Reluplex/Marabou from Stanford)
 - * Properties often do not hold; point-wise robustness checks output binary answers but lack detail; verification tools do not scale
- * Probabilistic properties
 - * More natural, e.g. accuracy
 - * Checked with statistical methods: scale but provide no guarantees, tend to ignore "rare" events
- * Our proposition
 - * Probabilistic analysis through *symbolic execution* and *volume computations*
 - * Benefits: increase impact of sampling and provide precise confidence
 - Collect mathematical constraints along neuron activations and apply volume computations to compute probabilities

Technique

- * Symbolically / concolically execute concrete inputs
- Observe activation patterns; organize them in a tree
- * Reject inputs that add no information (i.e., previously seen activation patterns)



- * Add decision conditions to constraints based on network output (logits) layer
- * Compute volume of constraints
- * Stop at user defined criterion (coverage, number of paths, rejection percentage, ...)
- * Similar to previous work on probabilistic symbolic execution, but adapted to neural networks

Input Distributions and Probabilities

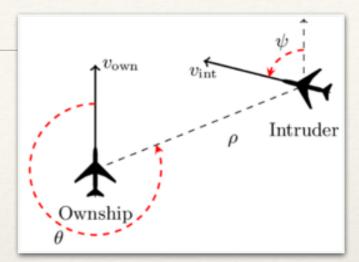
- * Uniform distribution:
 - * Pr(D)=Vol(constraints for D)/Vol(full domain)
- * Non-uniform distribution: partition input domain, create histogram distribution: (s_i, p_i)

$$Pr(\mathcal{D}) = \sum_{s_i} p_i \cdot \sum_{AC \leadsto \mathcal{D}} \frac{Vol(AC \land s_i)}{Vol(\mathbb{D}_x)}$$

- $AC \Rightarrow D$ AC are activation conditions (together with decision conditions) leading to event D
- * Confidence:
 - * % of input domain covered by the analysis

Applications

- * Implemented techniques in SpaceScanner
- * Robustness/sensitivity analysis for ACAS-Xu



- * DNN controllers in next-generation Airborne Collision Avoidance Systems for unmanned aircraft
- * Fairness analysis for decision making networks
- * Results for ACAS-Xu
 - * Found the network to be highly robust in assigning Clear-of-Conflict (COC) decisions
 - * Found the network to be more **vulnerable** to adversarial perturbations for the advisories weak-left, strong-left and strong-right
 - * Statistical analysis produces comparable results but **misses cases** when probability of misclassification is non-zero

Repair

NNRepair: Constraint-based Repair of Neural Network Classifiers

Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, Corina S. Pasareanu: NNrepair: Constraint-based Repair of Neural Network Classifiers, CAV'21

- Problem: The network is faulty
 - Low accuracy, lack of robustness, poisoned training data
- Retraining could be used to alter the neural network parameters and repair for faults.
 - Difficult and expensive subject to uncertainties.
 - Result in a network that is quite different from the original one.
 - May not be possible (in the absence of additional data)
- NNrepair: constraint solving for repairing neural networks
- Similar to traditional program repair.
 - * **Fault localization** identifies the network parameters that are the likely source of defects.
 - * **Repair** uses constraint solving to apply small modifications to the network **parameters** to remedy the defects.

Types of Repair

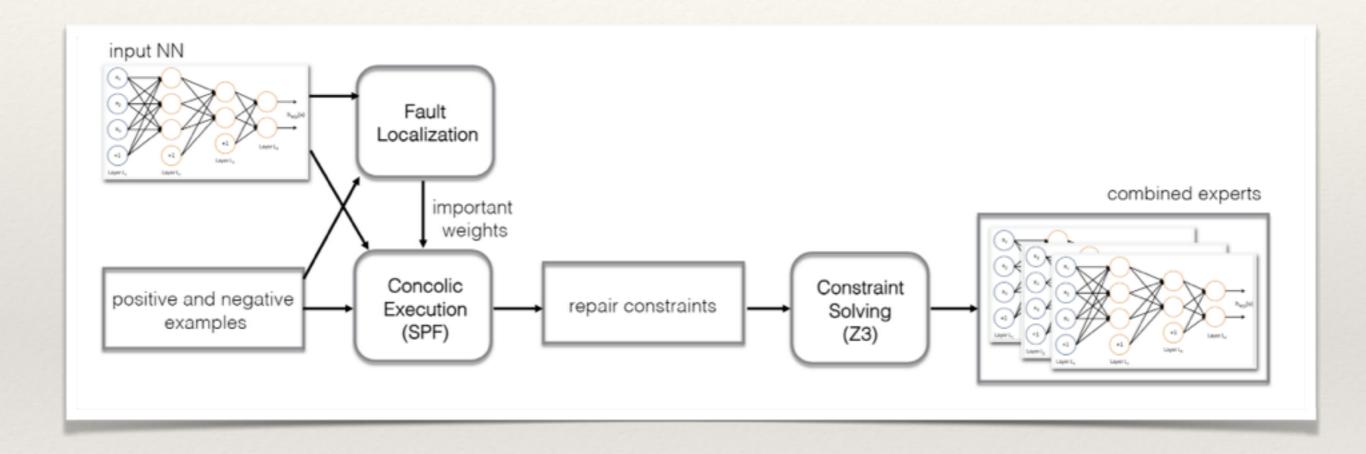
Last-layer repair

- Attempts to modify the decision constraints at the last layer.
- * For last-layer repair, the oracle of the repair is the desired label.

* Intermediate-layer repair:

- * Attempts to fix failures by modifying the behavior of neurons at an inner layer of the network.
- * For intermediate-layer repair, the oracle for the repair is the "activation pattern"; keeps the repair local
- * Potentially more scalable

Framework



Repair constraints encode network decision for positive examples and modify (i.e., correct) network decision for negative examples

Example: Intermediate-layer Repair

- * Consider input $X_4 = [1.5; 2.0]$
- * It is misclassified to "1" (ideal is "0")
- For all the inputs correctly classified to "0", the neuron pair (N₂, N₃) in second layer has activation pattern (off, on)
- * For the failing input, this pattern is not satisfied; the activation for (N_2, N_3) is (on, on)

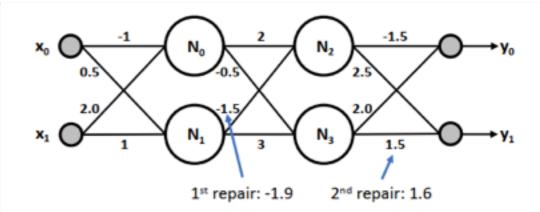


Fig. 1. Example

Table 1. Data for Example

	$\mathbf{x_0}$	$\mathbf{x_1}$	N_0	N_1	N_2	N_3	yo	y 1	class	ideal
X_0	1	1	1	1	0	1	8	6	0	0
X_1	0	1	1	1	1	1	0.25	9.25	1	1
X_2	1	0	0	1	0	1	3	2.25	0	0
X_3	-1	1	1	1	1	0	-7.87	13.12	1	1
X_4	1.5	2	1	1	1	1	12.68	12.68	1	0
after repair:	1.5	2	1	1	0	1	13.3	10.5	0	0
X_5	0.6	1	1	1	1	1	5.91	5.62	0	1
after repair:	0.6	1	1	1	1	1	5.91	5.95	1	1

Example: Intermediate-layer Repair

- Modify the neuron activations of the second layer on the failing input to satisfy pattern (off,on)
 - Identify the weights to be modified using an attribution-based approach
 - Use constraint solving to compute the values of the new weights
- * Changing the weight of the edge connecting N_1 and N_2 from -1.5 to -1.9 changes the activation pattern for $(N_2; N_3)$ to (off, on) on the failing input
- Preserves the behavior of the neurons (their activation pattern) and the output of the model on passing inputs

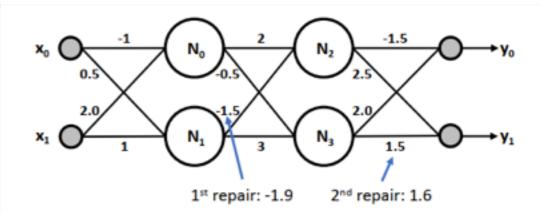


Fig. 1. Example

Table 1. Data for Example

	$\mathbf{x_0}$	x ₁	N_0	N_1	N_2	N_3	yо	y 1	class	ideal
X_0	1	1	1	1	0	1	8	6	0	0
X_1	0	1	1	1	1	1	0.25	9.25	1	1
X_2	1	0	0	1	0	1	3	2.25	0	0
X_3	-1	1	1	1	1	0	-7.87	13.12	1	1
X_4	1.5	2	1	1	1	1	12.68	12.68	1	0
after repair:	1.5	2	1	1	0	1	13.3	10.5	0	0
X_5	0.6	1	1	1	1	1	5.91	5.62	0	1
after repair:	0.6	1	1	1	1	1	5.91	5.95	1	1

Results

- Demonstrated our technique in the context of three different scenarios:
 - Improving the overall accuracy of a model
 - * Fixing security vulnerabilities caused by poisoning of training data

Improving the robustness of the network against adversarial attacks

* NNrepair can improve the performance of the network by 45.56% on poisoned data and 10.40% on adversarial data.

Other Repair Techniques

- * MODE [Ma et al. ESEC/FSE'18]: differential analysis + retraining
 - NNRepair has similar performance: better on MNIST-HQ but worse on MNIST-LQ
- * Apricot [Zhang et al. ASE'19] generates a set of reduced models and repairs weights based on average weight of reduced models
- Sotoudeh and Thakur [2019] uses SMT solving to repair ACASXu networks
- * Other ...

- * None of these techniques address all three scenarios that we consider
- Previous techniques focus only on last layer repair

Future Work

Future Work

- * Automated repair for poisoned NN
- Structural testing coverage for neural networks
- * Learning with formal guarantees
- * Relating NN properties to system-level properties of an autonomous system

Thank you!

https://ti.arc.nasa.gov/tech/rse/research/safednn/