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Onboard collision avoidance is needed to enable safe, autonomous flight operations for
NASA projects such as Advanced Air Mobility (AAM), as well as many commercial applications.
Real-time aerial object classification will improve onboard collision avoidance algorithm decision
making and may reduce unnecessary activation of avoidance systems. This work trains an
aircraft trajectory classifier using trajectories from flight controller logs and tests the classifier
using RADAR collected trajectories during air to air experiments and ground to air experiments.
In contrast to RADAR data, these flight controller logs are relatively abundant, which makes
the possibility of substituting flight data for RADAR data an attractive, cost-e�ective option.
The SVM model developed in this work achieved a 79.7% classification accuracy on the first
second of radar trajectories of GA, multirotor sUAS, and fixed wing sUAS. Findings from this
work indicate that it is feasible to classify sensor collected trajectories using a classifier trained
on flight controller data.

I. Nomenclature

+G = Velocity X Estimated
+H = Velocity Y Estimated
+I = Velocity Z Estimated
+= = Velocity North Estimated
+4 = Velocity East Estimated
+3 = Velocity Down Estimated
sUAS = small Unmanned Aerial System
SVM = Support Vector Machine
GA = General Aviation

II. Introduction
The global market for small Unmanned Aerial Systems (sUAS) was estimated to be $2.84 billion US dollars in 2019

alone and is predicted to grow to an outstanding $11.31 billion by 2027 [1]. Pushing this valuation is the potential for
autonomous-sUAS to increase the e�ciency of many current operations in a variety of fields, as well as enable many
operations that were previously technologically possible but economically impractical. Examples of both include sUAS
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improving emergency response operations [2], and sUAS bringing crop monitoring into the budget of the typical farmer
[3]. In addition, sUAS can perform a host of operations that are simply not feasible with traditional crewed aircraft, such
as door-to-door package delivery in crowded environments [4].

In order to realize the potential gains possible with increasing sUAS use, steps need to be taken in order to ensure the
safety of such sUAS operation. sUAS need robust avoidance systems to autonomously deliver packages to a consumer’s
doorstep to prevent midair collision with other sUAS delivering to adjacent homes. The NASA software architecture
Independent Configurable Architecture for Reliable Operations of Unmanned Systems (ICAROUS), takes a step towards
the creation of such a system. ICAROUS provides a variety of autonomy functions, notably including an avoidance
system that seeks to enable real-time collision avoidance for non-cooperative sUAS [5].

This ICAROUS avoidance system has been tested using RADAR track data collected in real-time from encounters
with a General Aviation (GA) plane and a fixed-wing sUAS. However, due to the high frequency of Not-An-Aircraft
(NAA) tracks returned by the RADAR instrument, many false activations of ICAROUS occurred [6]. This eventually
led to the development of machine learning models designed to classify the intruder objects and parse out the NAA in
an e�ort to better inform ICAROUS in the future and cut down on false activations [7]. Initial analysis showed that it is
feasible to classify GA, NAA, and fixed-wing sUAS using radar trajectories using a dataset collected over 2 days by
achieving greater than 90% testing accuracy for leave-one-out.

This work improves aforementioned aircraft classification models by substituting aircraft trajectories sourced from
flight controller logs for the training data. The addition of these logs brings with it many possible advantages; first
and foremost, it is possible that the logs will increase the robustness of the classification. The much larger training set
captures a much wider range of aircraft trajectories than a preliminary data collection by sensors. In addition, these logs
should be more available than RADAR data in general, as most aircraft will be recording these logs during all of their
flights, regardless of use case, while collecting RADAR data on an aircraft takes deliberate design. Utilizing flight
controller logs for model training may reduce the amount of resources needed to collect field data while improving
robustness, provided that the flight controller data can su�ciently model new sensor data.

III. Prior Work
This section outlines the details of previous work, described in [7], in which aircraft classification was performed

using only RADAR data for both testing and training. As mentioned in the Introduction, this work was born out of
the fact that an aircraft crash avoidance system, ICAROUS, frequently falsely activated to NAA tracks captured by
the RADAR. The work outlined in this section aimed to reduce unnecessary activations of the ICAROUS collision
avoidance system through classification of intruder objects as GA, fixed-wing sUAS, and NAA.

This aim was pursued via taking the RADAR data captured during the ICAROUS flight testing and repurposing it
into a dataset for a machine learning model to be trained and tested on. This dataset contained 3 classes—NAA, Fixed
Wing sUAS, and GA planes. With the RADAR from these 3 classes, two di�erent datasets were made—Initial and
Time Interval, and both used t as a parameter. The parameter t, measured in seconds, determines how large of a slice of
data is to be used as a sample. For example, if t is 1, then the classifier will train and test on 1-second segments of
data; if t is 2, the classifier will train and test on 2-second segments of data. The idea behind the parameter t is that it
helps provide insight into how di�erent lengths of data a�ect model performance. For the Initial Dataset, only the first t
seconds of each track are included as samples in the dataset, while in the Time Interval Dataset, each track is sliced into
t second segments, and each segment is a sample in the dataset.

From each of these two datasets a feature vector was made, containing the 24 features outlined in Table 1. These
features were chosen for two reasons—first because they work well with the t parameter of the model. For example, if
the t value is 1, then these features would be calculated over each raw data source for each 1 second sample of data. This
1 second sample of data could be either from the Initial Dataset or the Time Interval Dataset, depending on which was
being used, but they would be treated just the same. Secondly, these features were selected because, when taken in
concert, they not only e�ectively capture the distribution of the raw data source, but they also help to highlight potential
di�erences between the classes—di�erences that can be hopefully be used by the model for classification.

After a feature vector was made, it was then used to train and test a machine learning model. The machine learning
model used for classification was a Support Vector Machine (SVM). However, in an attempt to boost performance, a
Multilayer Autoencoder was tested as a preprocessing step, reducing the number of features from 24 to 12.

The results of this work were encouraging, as they demonstrated the feasibility of classifying a RADAR trajectory
with only a few seconds of data—for instance, an 84.4% leave-one-out accuracy was attained with a t value of 1 with
the Initial Dataset. Overall, however, the Time Interval Dataset garnered better results than the Initial Dataset, with
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the Time Interval Dataset having a higher leave-one-out accuracy for every t value. The autoencoder only increased
classification accuracy when used with the Time Interval Dataset, however, which could be due to the fact that the Initial
Dataset only had 250 samples [7].

This work aims to fill the lack of training data by using a large dataset of flight controller collected data to explore if
flight controller data may be used to classify sensor collected trajectories.

IV. Experimental Methodology

A. Data Collection

1. RADAR Data
The testing of the ICAROUS avoidance system occurred across two consecutive days, with each day being dedicated

to testing its response against one of the two classes of aircraft—sUAS and GA, respectively. The two flight days were
August 1st and 2nd, 2019. The ICAROUS avoidance system was installed aboard an 8-propeller multirotor model BFD
1400-SE8, shown in Fig. 1, with an Echoflight Frequency Modulated Continuous Wave RADAR as the input device.
The two intruder objects were a USAUAS Tempest sUAS, as shown in Fig. 2, and a Cessna 172s GA plane, as shown in
Fig. 3. In addition, many NAA were recorded during the flights, and these NAA would cause ICAROUS to activate and
perform an avoidance maneuver when it was not supposed to [7]. On June 15th, 2021, flights were conducted with an
Alta X multirotor, as shown in Fig. 4, in which it flew above a grounded version of the same RADAR device used for
the flights described above, an Echoflight Frequency modulated Continues Wave RADAR.

The tracks recorded from this RADAR instrument during these flights is what is hereby referred to as the RADAR
dataset.

Fig. 1 BFD 1400-SE8 [7] Fig. 2 Tempest sUAS [8] Fig. 3 Cessna 172s [9] Fig. 4 Alta X [10]
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2. Flight Controller Data
Flight controller data came from a variety of sources internal at NASA Langley. The aircraft from which the flight

controller logs were taken are shown in Fig. 5, and fall into three classes: fixed wing sUAS, GA plane, and multirotor
sUAS. The fixed wing sUAS consisted of a SIG-EdgeTRA, FQM-117B, and a USAUAS Tempest. The only GA plane
was a Cessna 206H, while the multirotor sUAS aircraft included an Alta 8 Pro Rotocopter, a Tarot T960, and a modified
DJI S1000, ISAAC.

(a) SIG-EdgeTRA[11] (b) FQM-117B[10] (c) USAUAS Tempest[8] (d) Cessna 206H[12]

(e) Alta 8 Pro[10] (f) Tarot T960 [10] (g) ISAAC [13]

Fig. 5 Flight Controller Aircraft

B. Data Overview

1. RADAR Data
The RADAR received detections at a frequency of 9 Hz and used a Kalman filter in order to assign detections to

tracks. Additionally, in an e�ort to lower false positives, the RADAR would only return a track once it hit a certain
threshold of confidence that the track was indeed an object. It was in this track form that the data was returned [7].

A given track provides the following information about the corresponding object. This information was updated
approximately 9 times per second:

1) X, Y, and Z Estimated Position (in meters)
2) X, Y, and Z Estimated Velocity (in m/s)
3) Estimated Radar Cross-Section (RCS)

An overview of the RADAR dataset is shown in Table 2.

Table 2 RADAR Dataset Overview

Aircraft

Class

Aircraft

Name

Ownship

Altitude

(Meters)

Target

Altitude

(Meters)

Number

of Tracks

Hours

of Flight

Fixed Wing
USAUAS

Tempset

190
190

22 .13160

160 190

GA Plane Cessna 172s 190 366 21 .14

Multirotor Alta X
Ground to

Air Data

110
16 .21

80

2. Flight Controller Data
The flight controller logs had a variety of di�erent data sources that provided position and velocity measurements

that were specific to the aircraft. The data source chosen was an extended Kalman filter that not only takes the GPS
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as input, but also takes inputs from the other available sensors on the craft into account, potentially including inertial
measurement units, gyroscopes, accelerometers, and barometers. This extended Kalman filter feature was selected as the
data source for this project due to its increased number of sensors being utilized, leading to more robust measurements.
When this feature was not available, the raw GPS log was used instead. The information provided by the Kalman filter
or the raw GPS was as follows:

1) Latitude and Longitude (in degrees)
2) Velocity North, East, and Down (in m/s)
3) Altitude (in meters)

An overview of the flight controller dataset is shown in Table 3.

Table 3 Flight Controller Dataset Overview

Aircraft

Class

Aircraft

Name

Median

Altitude

(Meters)

Flight Controller

Sampling Rate

(Updates per Second)

Number

of Flights

Hours

of Flight

Total Number

of Flights

by Class

Total Hours

of Flight

by Class

Fixed Wing
SIG-EdgeTRA 166.55 25 154 22.46

229 178.17FQM-117B 217.62 25 19 3.59

Tempest 247.8 25 56 152.12

GA Plane Cessna 206H 1045 200 1 1.60 1 1.60

Multirotor
Alta 8 Pro 77.27 10 99 11.23

192 24.21Tarot 214.61 10 44 4.22

ISAAC 224.47 10 49 8.75

V. Methods
As mentioned previously, the aim of this paper is to improve upon the classification process outlined in Prior Work

and shown in Fig. 6, via the substitution of trajectories garnered from flight controller logs as training data. This new
approach is summarized in Fig. 7.

Fig. 6 Classification Pipeline outlined in Prior Work.
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Fig. 7 New Classification Pipeline.

A. Flight Controller Data Processing
All flight controller data was resampled to a frequency of 9 Hz, as to match the refresh rate of the RADAR data.

This was done via polyphase filtering, with upscaling and downscaling factors calculated for each particular log [14].

B. RADAR Data Processing
As the aim of this work is to measure the benefit of using flight controller data for classifying radar generated

trajectories, estimated RCS was removed from the dataset [7] because this was a feature not available from the flight
controller logs, as it is unique to RADAR. This left only X, Y, and Z Estimated Velocity (in m/s) as features, hereby
referred to as +G , +H , and +I . Finally, just as the RADAR data was previously used to generate two datasets—Initial and
Time Interval—as outlined in Prior Work, the RADAR data was again made into these same two datasets.

C. Feature Vector
Two di�erent feature vectors were constructed—one generated from the flight controller logs and one from the

RADAR data. The reasoning for this is that the model was trained on one of these feature vectors, the flight controller
one, and tested on the other, the RADAR one. Additionally, the format of the data sources was slightly di�erent for
RADAR and flight controller, so di�erent formulas were needed to generate the same features.

Despite this, the two resulting feature vectors have the same collection of 13 features shown in Table 4. These 13
features are a collection of first order statistical features of di�erent velocity measurements taken over a period of time
ranging from 1 to 5 seconds depending on the t value of the specific model.

Table 4 Features

Magnitude of Horizontal Velocity Vertical Velocity Magnitude of Total Velocity
Average Average Average

Maximum Maximum Maximum

Minimum Minimum Minimum

Variance Variance Variance

Number of sign changes
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1. Flight Controller Feature Vector
For the flight controller feature vector, the data was sourced from the entirety of each flight controller log, in the

same manner as the Time Interval Dataset described in Prior Work.
With this dataset, the following were calculated, which were then used to create the 13 features shown in Table 4:

Magnitude of Horizontal Velocity, +⌘:

+⌘ = 2
q
k+2

=
k + k+2

4
k (1)

Vertical Velocity, +E:
+E = �+3 (2)

Magnitude of Total Velocity, +C :

+C =
2
q
k+2

=
k + k+2

4
k + k+2

3
k (3)

2. RADAR Feature Vector
Unlike the flight controller feature vector, there were two di�erent types of RADAR feature vector tested as part

of this work—one for both the Initial Dataset and the Time Interval Dataset described in Prior Work. This is for two
main reasons. First, as mentioned earlier, the beginning of a RADAR track is of particular importance as it represents
when the intruder object first comes into the sensor’s range. The robustness of the classifier in these first few seconds is
paramount as it represents how quickly, and with what accuracy, the model will be able to classify an aircraft coming
into the airspace of the ownship. The second reason is that despite the importance of the Initial Dataset, it is still valuable
to test on the totality of the data available, especially considering the relatively small size of the RADAR dataset.

In order to mirror the flight controller feature vector, +⌘, +E , and +C were calculated as follows:

Magnitude of Horizontal Velocity, +⌘:

+⌘ = 2
q
k+2

G
k + k+2

I
k (4)

Vertical Velocity, +E:
+E = +H (5)

Magnitude of Total Velocity, +C :

+C =
2
q
k+2

G
k + k+2

H
k + k+2

I
k (6)

D. Machine Learning
Once feature creation was completed for a specified t value and either Time Interval or Initial Dataset was selected

for the RADAR data, the two feature vectors would be ready to be used for machine learning—the flight controller
feature vector for training, and the RADAR feature vector for testing. These feature vectors would then be used by the
classification model—a Support Vector Machine—for training and testing, respectively.

A Support Vector Machine, or SVM, is a type of machine learning model that learns the patterns of a dataset and
attempts to subdivide the feature space of the dataset into di�erent classes using a series of hyper-planes. The SVM
utilized in this project used a Radial Basis Function, with the regularizer, C, set to .02 and W defined as:

W =
1

(Number of features * Variance of feature vector)
(7)

C regulates the cost of misclassification of training samples with the margin size of the decision boundary, while W
controls the radius of influence of each training sample. The SVM, per [15] and [16], was implemented in Python 3.7
[17], using the scikit-learn [18] and libsvm libraries [19].

VI. Results
This section begins with an overview of the performance metrics, followed by the results from the Initial Dataset,

and finally concludes with the results from the Time Interval Dataset. The results of the models are reported according
to their t values, which is the parameter that describes length of time used for training and testing, in units of seconds.
For instance, if a model has a t value of 5 seconds, then that model was trained on 5 seconds of data and tested on 5
seconds of data. As described in the Methods section, all times series were resampled to match the 9 Hz of the radar.
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A. Performance Metrics
The classification models were evaluated using performance metrics defined in Table 5. The trajectory classification

metric captures overall performance of the model on the testing dataset, while training accuracy reveals how well the
model learned the training data. Finally, precision and recall for the individual classes reveal how well the model
performed on each separate class.

Table 5 Performance Metrics

Performance Metric Definition

Trajectory Classification

Accuracy

No. Correctly Classified RADAR Trajectories
No. Correctly Classified + No. Incorrectly Classified RADAR Trajectories

Training

Accuracy

No. Correctly Classified Flight Controller Trajectories
No. Correctly Classified + No. Incorrectly Classified Flight Controller Trajectories

Fixed Wing*

Precision

No. Correctly Predicted Fixed Wing RADAR Trajectories
No. of Fixed Wing Predictions

Fixed Wing*

Recall

No. Correctly Predicted Fixed Wing RADAR Trajectories
No. of Fixed Wing Aircraft Trajectories

*Fixed wing is substituted with the class of which metrics are desired.

B. Initial Dataset
Table 6 contains the results of the SVM classification on the Initial Dataset. Trajectory classification accuracy is

strong overall, with the majority of results being at or above 86%, and the highest being 88.9% for the t value of 4.
Training accuracy is consistently high, with all t values having an accuracy around 99%. As for the individual class
performances, the results are all similar for both precision and recall, except for GA Plane recall, which was 100%
across all 5 t values.

Table 6 SVM Initial Dataset

t

Value

Trajectory

Classification

Accuracy

Training

Accuracy

Fixed

Wing

Precision

Fixed

Wing

Recall

GA Plane

Precision

GA Plane

Recall

Multirotor

Precision

Multirotor

Recall

1 0.797 0.989 0.750 0.682 0.875 1.000 0.733 0.688

2 0.810 0.989 0.750 0.714 0.875 1.000 0.786 0.688

3 0.860 0.989 0.889 0.762 0.840 1.000 0.857 0.800

4 0.889 0.989 0.889 0.842 0.870 1.000 0.923 0.800

5 0.865 0.990 0.933 0.737 0.818 1.000 0.867 0.867

C. Time Interval Dataset
Table 7 contains the results of the SVM alone on the Time Interval Dataset. Trajectory classification accuracy was

consistently high, all around 88%, with a maximum of 88.7% with a t value of 3. Likewise, all training accuracies were
consistently high—around 99%. Precision and recall results were strong as well, except for Fixed Wing recall, which
hovered around 65%.
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Table 7 SVM Time Interval Dataset

t

Value

Trajectory

Classification

Accuracy

Training

Accuracy

Fixed

Wing

Precision

Fixed

Wing

Recall

GA Plane

Precision

GA Plane

Recall

Multirotor

Precision

Multirotor

Recall

1 0.877 0.989 0.882 0.659 0.972 0.925 0.825 0.981

2 0.881 0.989 0.888 0.667 0.970 0.933 0.832 0.978

3 0.887 0.989 0.925 0.667 0.962 0.943 0.832 0.983

4 0.886 0.989 0.911 0.673 0.946 0.938 0.844 0.978

5 0.886 0.990 0.930 0.646 0.955 0.944 0.834 0.986

VII. Discussion
Overall the results are promising and are comparable to the results of the prior work, in which a very similar model

was trained and tested on RADAR data alone. Every model trained as part of this work achieved a training accuracy
around 99%, indicating that the models were able to e�ectively learn the patterns of the flight controller dataset, but that
some of these patterns may not have been present in the RADAR dataset. For example, flight controller data is not
subject to radar sensor noise or signal attenuation.

Trajectory classification accuracy in the Initial Dataset was 79.7% for a t value of 1, as shown in Table 6. With
higher t values, performance improved. With a t value of 4, for instance, the SVM alone was able to achieve an accuracy
of 88.9%. This result was expected because as t increases, the model benefits from more time series data to classify and
thus more opportunities to discriminate between classes. Regardless of t value, however, GA plane recall remained at
100%, perhaps due to the fact that the GA plane tended to travel at higher velocities than the fixed wing or multirotor,
making it easier to distinguish. However, despite this, the GA plane precision was very similar to the precisions of the
other two classes. When designing an avoidance system, it always needs to activate to avoid GA aircraft. The GA initial
precision of 0.8 would cause unnecessary activations of the avoidance system, however, the extra activations may not
excessively degrade mission performance as precision is relatively strong.

When comparing the results of the SVM on the Initial Dataset between this work and the pipeline described in
Prior Work, this pipeline achieves a higher maximum trajectory classification accuracy—88.9% versus 84.4%—a
higher maximum fixed wing precision—93.3% versus 51.6%—and the same maximum fixed wing recall—84.2%.
Finally, this pipeline has a higher maximum GA plane precision—87% versus 85.7%—and a higher maximum GA
plane recall—100% versus 70% [7]. While both works have the classes fixed wing and GA plane, the prior work in [7]
included Not-An-Aircraft (NAA) instead of the multirotor sUAS as its third class."

VIII. Conclusion
The trajectory classification accuracies of this work in the high 80%’s are certainly comparable to the results garnered

from prior work with training on RADAR tracks, and they demonstrate that training an aerial object classification
model on flight controller logs and validating on RADAR data is possible. With the high availability and relatively low
resource cost of flight controller logs, these results are encouraging. Additionally, due to the fact that this pipeline is
classifying o� of trajectory data alone, future work will generalize the method to other sensors, such as vision extracted
trajectories. Finally, developing auto-correlation features as described in [20] should improve classification performance
by providing a fitness metric to di�erent aerial object performance envelopes.
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