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Night-time dust detection at night is limited as the 
ground surface cools, making it difficult to distinguish 

dust from the surface

Airborne dust has broad 
adverse effects

This study applies machine learning to the problem of night-
time dust detection with a physically-based simple 

random forest model using 
NASA/NOAA Geostationary Operational Environmental 

Satellite-16 (GOES-16) Advanced Baseline Imager 
(ABI) infrared imagery as inputs to the model. 

Motivation

2

Since 2013 NASA SPoRT
refined and 

experimentally 
transitioned 
multispectral 

composites to NOAA 
NWS partners

NASA AQUA MODIS Dust RGB NASA/NOAA GOES-16 ABI 
Dust RGB

Dust
Dust?Dust

NASA/NOAA GOES-16 ABI 
Dust RGB 7 March 2017 (a) 0002 UTC (b) 0102 UTC

Dust?

More information at Berndt et al. 2021

NASA ESDS Article "Dust in the Machine"

https://doi.org/10.1029/2021EA001788
https://earthdata.nasa.gov/learn/articles/dust-ml


Methodology

Initial Development of a Day-time Dust 
Machine Learning Model

• Collect training dataset
• Train/test classification models 

(e.g., Random Forest, Logistic 
Regression, Naïve Bayes)
• Evaluate model output 

(Berndt et al. 2019)

Focus on refining the training 
for Night-time dust detection

• Collect night-time training 
dataset

• Classify false surface and 
smoke detections

Evaluate Training, Model 
Inputs, and Performance

• Loss functions/Jaccard score
• Confusion matrix

• Individual conditional 
exception plots

• Partial dependance plots
• Dendrogram / Spearman 

rank correlation
• Permutation Importance

• ROC/AUC
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Forecaster Evaluation

• Compile case study
• Develop a feedback 

survey
• Summarize feedback
• Is the model output 

useful?

Revisit Day-time Dust Model 
development and validation

• Collect training and other regions
• Consider additional satellite datasets 

that would add value

https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/553929


Training Dataset

• GOES-16 ABI imagery for 
events in the southwest U.S. 
from Jan 2018-Jun 2020

• 28 cases, 83 distinct images a 
total of 790,921 dust pixels 
and 37,698,467 null pixels

• Cases randomly split into 
training (60%), testing (20%), 
and validation (20%)
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Training Variable Physical Importance

7.3 µm dust typically associated with a dry low-level environment

10.35 µm and 11.2 
µm

provide estimates of temperature for the pixel

12.3 µm used within the split window technique to identify optically 
thick clouds or dust

13.3 µm despite CO2 and water vapor absorption, can give an idea 
of the mean tropospheric temperature. 

12.3-10.35 µm 
Difference 

dust absorbs more of the 10.35 µm radiation, yielding a 
positive temperature difference

11.2-8.4 µm 
Difference 

in thick dust, the particles absorb the radiation in both 
wavelengths equally, resulting in small differences

RGB Image Red 
Color Intensity

cloud optical depth/thickness to distinguish thick cloud or 
dust

RGB Image Green 
Color Intensity 

cloud particle phase to distinguish water particles/thin 
cirrus from dust 

RGB Image Blue 
Color Intensity

identification of warm surface or cloud top temperatures



Random Forest Model

• Hyperparameters chosen based on 
loss functions and Jaccard Score to 
prevent over- or under-fitting

• Null cases important for diversifying 
training and reducing the log-loss

• Confusion matrices used to assess 
model performance on the training 
dataset
• For images with dust present, the 

model correctly labels 85% of dust 
pixels and 99.96% of no-dust 
pixels. 

• Type 2 error (labeling dust as no 
dust) is reduced by 30.5% by 
expanding the training dataset to 
include a wider range of cases and 
null events. 
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Assessing Model Inputs
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• Partial dependence plots 
assist in identifying which 
model inputs are utilized 
the most by the model in 
the classification process

• Individual conditional 
exception plots are a 
mechanism to determine 
the influence on the model 
input on the RF 
classification process

• Initial evaluation indicates 
the inputs align with 
physically based satellite 
interpretation and remote 
sensing principles.

Dramatic changes in slope are seen in inputs have the greatest sensitivity to 
detecting dust and separating dust from the surface and clouds. The changes in 
slope are occurring coincident with brightness temperatures representative of 

lofted dust in satellite imagery.

8.4 μm band 

12.3–10.3 μm 11.2–8.4 μm12.3–11.2 μm

Red component Green component

The 7.3 μm band and 13.3 μm band are important for identifying atmospheric 
moisture and temperature conditions. The changes in slope may indicate the 
importance of model inputs that represent ambient atmospheric conditions 

such as dry, unstable conditions associated with the passage of a gust front or 
dry cold front.

7.3 μm band 

13.3 μm band 

10.3 μm band 

11.2 μm band 12.3 μm band 

The longwave infrared window bands all depict some influence on the model 
with a focus on identifying the temperature of a pixel. The 10.3 μm band least 
influenced by water vapor absorption is best suited for identification of near 

surface features. The 11.2 and 12.3 μm bands are more sensitive to water 
vapor absorption. The increasing amplitude of the slopes may indicate this 

relationship to sensitivity in moisture.

The blue component of the RGB is constructed from the 10.3 μm band but 
stretched over a brightness temperature range ideal for the identification of 
dust. The greater changes in slope of the blue RGB component compared to 
the 10.3 μm band physically relates to the deliberate processing of the RGB 

component to identify dust.

Blue component



Permutation Importance
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• Spearman correlation and a dendrogram 
were used to assess groupings of satellite 
bands and their importance.  

• The groupings of correlated inputs were 
used to assess permutation importance 
based on the validation data.

• Permutation importance suggests which 
groups have the greatest impact on the RF 
model classification.

• The 8.4/12.3/13.3 μm bands ranked as the 
most important followed by the 11.2–8.4 
μm difference and Green component of 
the Dust RGB.

• These results reflect some of the bands 
used in the Dust RGB recipe and are the 
same bands and differences known to be 
most sensitive to dust



Results – Dust Events
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• Model performed well on 
dust cases in the validation 
data set
• Mean Area Under the Curve 

0.97 with a standard 
deviation of 0.4

• All but 1 case falls within 1 
standard deviation

• 13 April 2018 case clear-cut 
for the model to identify 
dust and output confirms 
features in the Dust RGB 
imagery

(a) NASA/NOAA GOES-16 ABI Dust RGB 13 April 2019 and (b) random forest model 
dust probabilities



Results – Weak Dust Event
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• 14 April 2018 weak dust case
• Dust or false signature?
• If dust what is the spatial 

extent?

• Dust model probabilities 
• Increase confidence dust is 

present
• Clear delineation of the dust 

boundary

• Dust random forest model 
provides value in the 
transition from day to night 
when dust is difficult to 
visually identify in imagery

14 April 14 2018 0102 UTC (a) Dust Red-Green-Blue (RGB) and (b) Random Forest model 
output probabilities. (c) 2102 UTC April 13, 2018 True Color RGB and (d) 0842 UTC April 14, 
2018 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation aerosol 
classification cross-section (area corresponding to a–c is outlined in black) and overpass 
(section corresponding to the cross-section is colored in magenta and circled in black).



Stakeholder Feedback
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• 83% of the forecasters indicated the 
ML dust probabilities had a High/Very 
High impact on their confidence to 
identify the dust plume compared to 
satellite imagery alone

• All respondents indicated an 
improvement in the ability to track 
the dust longer into the night and 
66% of respondents agreed 
identification of dust features 
improved

• Minor false alarm signatures in the 
ML dust probabilities were not an 
issue but an improvement beyond the 
typical false alarms in the Dust RGB at 
night

Dust on 23 March 2021 0000-0930 UTC evaluated by NWS forecasters to obtain operations 
to research feedback on the operational utility of ML-derived dust probabilities (Left) Dust 

RGB imagery and (Right) random forest model output probabilities. 

Impact: NWS forecaster feedback indicated ML dust 
probabilities would be valuable for (1) complementing analysis 
with satellite imagery, (2) improving confidence in the location 
and extent of dust, with plume boundaries clearly 
distinguished, and (3) increasing the ability to track dust longer 
into the night



Summary

• Remote sensing principles were applied to develop a physically based machine 
learning approach for objective identification of dust to improve nighttime dust 
detection in NASA/NOAA GOES-16 satellite imagery.

• Validation of the model using statistical methods confirms the random forest 
classification is strongly based on the GOES-16 satellite inputs used in conventional 
dust detection and known to be most sensitive to airborne dust.

• For images with dust present, the model correctly labels 85% of dust pixels and 
99.96% of no-dust pixels. 

• Application of the machine learning model to a dust event on 13-14 April 2018 
enhances identification of the dust plume during the nighttime hours, providing 
better discernment of the plume boundaries with minimal false detection.

• Preliminary NWS forecast feedback indicated machine learning dust probabilities 
would be valuable for (1) complementing analysis with satellite imagery, (2) 
improving confidence in the location and extent of dust, with plume boundaries 
clearly distinguished, and (3) increasing the ability to track dust longer into the night

This presentation represents work funded by Dr. Tsengdar Lee by the NASA Research and Analysis Program as part of the Short-Term Prediction 
Research and Transition Center (SPoRT) project at the Marshall Space Flight Center  and                                                                           

supplemental funding is provided by Dr. Daniel Lindsey of the NOAA GOES-R Proving Ground and Risk Reduction Program  
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