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ws Motivation

Since 2013 NASA SPoRT
refined and
experimentally
transitioned
multispectral
composites to NOAA
NWS partners

Night-time dust detection at night is limited as the
ground surface cools, making it difficult to distinguish
dust from the surface

Airborne dust has broad
adverse effects

This study applies machine learning to the problem of night-
time dust detection with a physically-based simple
random forest model using
NASA/NOAA Geostationary Operational Environmental
Satellite-16 (GOES-16) Advanced Baseline Imager
(ABI) infrared imagery as inputs to the model.

More information at Berndt et al. 2021

NASA ESDS Article "Dust in the Machine"



https://doi.org/10.1029/2021EA001788
https://earthdata.nasa.gov/learn/articles/dust-ml
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ﬂ\itial Development of a Day-time Dush / Revisit Day-time Dust Model \

Machine Learning Model development and validation
e Collect training dataset e Collect training and other regions
* Train/test classification models * Consider additional satellite datasets
(e.g., Random Forest, Logistic that would add value
Regression, Naive Bayes)
* Evaluate model output

\ (Berndt et al. 2019)
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/ Evaluate Training, Model \ /
Inputs, and Performance

Focus on refining the training Forecaster Evaluation
for Night-time dust detection _
* Loss functions/Jaccard score * Compile case study
«  Collect night-time training . C_orwfusion ma_ut_rix * Develop a feedback
dataset . Ind|V|duaI.cond|t|onaI Sl.Jrvey
« Classify false surface and _exceptlon plots “ e Summarize feedback
smoke detections e Partial dependance plots * |s the model output
* Dendrogram / Spearman useful?
\ rank correlation \ /

* Permutation Importance
\  ROC/AUC /
3



https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/553929

 GOES-16 ABI imagery for
events in the southwest U.S.
from Jan 2018-Jun 2020

e 28 cases, 83 distinct images a
total of 790,921 dust pixels
and 37,698,467 null pixels

e Cases randomly split into
training (60%), testing (20%),
and validation (20%)
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Training Variable Physical Importance

dust typically associated with a dry low-level environment

provide estimates of temperature for the pixel

used within the split window technique to identify optically
thick clouds or dust

despite CO, and water vapor absorption, can give an idea
of the mean tropospheric temperature.

dust absorbs more of the 10.35 pum radiation, yielding a
positive temperature difference

in thick dust, the particles absorb the radiation in both
wavelengths equally, resulting in small differences

cloud optical depth/thickness to distinguish thick cloud or
dust

cloud particle phase to distinguish water particles/thin
cirrus from dust

identification of warm surface or cloud top temperatures
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GOES-16 ABI Dust 2019-10-28 03:01
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* Hyperparameters chosen based on
loss functions and Jaccard Score to
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* Confusion matrices used to assess
model performance on the training [
dataset 120°W 11°W 10°W

* For images with dust present, the 10 = 10
model correctly labels 85% of dust d b ~———
pixels and 99.96% of no-dust 05 061
pixels.

* Type 2 error (labeling dust as no 061 — Jccard score | 06 — Jaccard score
dust) is reduced by 30.5% by T o ocetoss I
expanding the training dataset to 041 — zeroonetoss | o, ] |\ — Zero-one Loss
include a wider range of cases and
null events. 02 ﬂl@ 02 \\_\/_ -
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* Initial evaluation indicates
the inputs align with The blue component of the RGB is constructed from the 10.3 um band but

physically based satellite stretched over a brightness temperature range ideal for the identification of

interpretation and remote dust. The greater changes in slope of the blue RGB component compared to

sensing principles. the 10.3 pm band physically relates to the deliberate processing of the RGB
component to identify dust.
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Spearman correlation and a dendrogram
were used to assess groupings of satellite
bands and their importance.

The groupings of correlated inputs were
used to assess permutation importance
based on the validation data.

Permutation importance suggests which
groups have the greatest impact on the RF
model classification.

The 8.4/12.3/13.3 um bands ranked as the
most important followed by the 11.2-8.4

um difference and Green component of
the Dust RGB.

These results reflect some of the bands
used in the Dust RGB recipe and are the
same bands and differences known to be
most sensitive to dust
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Single Pass Permutation Importance
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ROC curves for Night-time Dust Cases

M ROC =+ 1 std. dev. C
* Model performed well on 10 A — e ER ™ |
—_— 20180307T000200 09772
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data set 2 06 e
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e All but 1 case falls within 1 0.,0 02 04 06 08 1.0

. . False positive rate
standard deviation _
(a) NASA/NOAA GOES-16 ABI Dust RGB 13 April 2019 and (b) random forest model

dust probabilities
b
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* 13 April 2018 case clear-cut
for the model to identify
dust and output confirms
features in the Dust RGB
Imagery

Dust Probability
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i 14 April 14 2018 0102 UTC (a) Dust Red-Green-Blue (RGB) and (b) Random Forest model
e 14 Ap rl | 2018 wea k d ust case output probabilities. (c) 2102 UTC April 13, 2018 True Color RGB and (d) 0842 UTC April 14,

2018 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation aerosol

* Dust or false Signatu re? classification cross-section (area corresponding to a—c is outlined in black) and overpass
e |f dust What S the spatial (section corresponding to the cross-section is colored in magenta and circled in black).
eXte nt? 105QV\C;OES~16 ABI Dust 2018404—?0001:)\;, 105“WRandom Forest 2018404—141(:)1(:)03W
b '— 4 100
35°N  35°N ‘ - 23 & 35°N 80
* Dust model probabilities Pe~ A )
* Increase confidence dust is e
| | <
present O asall
* Clear delineation of the dust Oh N\ e
") 1 X
boundary 3 , s fg‘ |

* Dust random forest model
provides value in the
transition from day to night
when dust is difficult to
visually identify in imagery




* 83% of the forecasters indicated the
ML dust probabilities had a High/Very
High impact on their confidence to
identify the dust plume compared to
satellite imagery alone

* All respondents indicated an
improvement in the ability to track
the dust longer into the night and
66% of respondents agreed
identification of dust features
improved

* Minor false alarm signatures in the
ML dust probabilities were not an
issue but an improvement beyond the
typical false alarms in the Dust RGB at
night
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Dust on 23 March 2021 0000-0930 UTC evaluated by NWS forecasters to obtain operations
to research feedback on the operational utility of ML-derived dust probabilities (Left) Dust
RGB imagery and (Right) random forest model output probabilities.

GOES-16 ABI Dust 2021-03-23 00:01 Random Forest 2021-03-23 00:01
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Impact: NWS forecaster feedback indicated ML dust
probabilities would be valuable for (1) complementing analysis
with satellite imagery, (2) improving confidence in the location
and extent of dust, with plume boundaries clearly
distinguished, and (3) increasing the ability to track dust longer
into the night
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* Remote sensing principles were applied to develop a physically based machine
learning approach for objective identification of dust to improve nighttime dust
detection in NASA/NOAA GOES-16 satellite imagery.

* Validation of the model using statistical methods confirms the random forest
classification is strongly based on the GOES-16 satellite inputs used in conventional
dust detection and known to be most sensitive to airborne dust.

* For images with dust present, the model correctly labels 85% of dust pixels and
99.96% of no-dust pixels.

e Application of the machine learning model to a dust event on 13-14 April 2018
enhances identification of the dust plume during the nighttime hours, providing
better discernment of the plume boundaries with minimal false detection.

* Preliminary NWS forecast feedback indicated machine learning dust probabilities
would be valuable for (1) complementing analysis with satellite imagery, (2)
improving confidence in the location and extent of dust, with plume boundaries
clearly distinguished, and (3) increasing the ability to track dust longer into the night

This presentation represents work funded by Dr. Tsengdar Lee by the NASA Research and Analysis Program as part of the Short-Term Prediction
Research and Transition Center (SPoRT) project at the Marshall Space Flight Center and
supplemental funding is provided by Dr. Daniel Lindsey of the NOAA GOES-R Proving Ground and Risk Reduction Program



