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The application of hypersonic flow simulation tools to realistic flight scenarios will require the
coupling of multiple physical effects to the baseline fluid dynamics. Such multiphysics effects
can include the aerooelastic response of the airframe or engine components, dynamic transport of
atmospheric particles, the deformation of solid-fluid interfaces that can ablate, pyrolyze, or erode,
as well as a host of other processes, all of which are governed by unique sets of physical equations
and models. Coupling multiple (and potentially disparate) physics solvers to a robust compressible
flow solver poses additional challenges related to the stability, performance and scalability of
the combined solver. The choices made during the software design process can therefore lead
to a variation in simulation efficiency across different computer architectures. In this paper,
we will consider two representative multiphysics hypersonic flow scenarios: the interaction of
solid particulates with the flow field created by a hypersonic lifting body and the aerooelastic
deformation of a model airframe under high-Mach-number flow conditions. For these simulations
we explore the behavior of several hypersonic simulation tools, including Kestrel, FUN3D, US3D,
and JENRE R© multiphysics framework, on several high performance computing systems containing
various CPU and GPU architectures.
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I. Introduction

The modeling and simulation of hypersonic flight systems is an inherently multidisciplinary endeavor. The
extreme speed associated with this flight regime can impart unique thermal and mechanical loadings on vehicles
that must be considered during the design process. Fundamentally, this requires the simulation of a set of physical
phenomena governed by their own conservation laws or transport equations that must be fully coupled to the under-
lying equations governing the unsteady fluid dynamics. There are a number of ways in which this coupling can be
accomplished that can be broadly classified into two categories: monolithic solution methods and loosely-coupled
approaches. Monolithic solution methods cast multiple physical phenomena into a common set of conservation
laws that can be solved using the same numerical integration method. An example of this approach is the unified
continuum framework utilized for fluid-structure interaction problems.1 Loosely-coupled approaches solve poten-
tially different sets of governing equations for each physical process using independent simulation methods. Data
is transferred between solvers in the form of source terms, boundary, or initial conditions. While the monolithic
approach has a number of inherent advantages, including simplified code design and parallelization strategies, the
loosely-coupled approach tends to be preferred in practice. This is due, in part, to the increased flexibility associated
with these methods. Solution methods that have been optimized for one set of physical equations can be used in
conjunction with those optimized for another.

The trade-off that comes along with loosely-coupled solution approaches is the need to communicate information
between solvers, which represents both a modeling and a simulation design challenge. From a modeling perspective
this requires describing when and where the physics interact, which is an inherently problem-dependent task. In the
context of hypersonic vehicle simulations, volumetric source terms can be used to model the body forces imposed
on a fluid element by the motion of small-scale particulates in the flow. Likewise, the local fluid state can be used as
input to the various models that govern the motion of the particles. For time-dependent simulations, this requires an
exchange of body forces and fluid states between the solvers at each physical time step. The mechanics controlling
this data transfer constitute one challenge associated with the design of the simulation method. Equally important
is the choice of parallelization scheme. Static domain decomposition schemes that attempt to balance work among
the multiple computing devices by dividing up the computational domain into sets of nearly equal numbers of
cells may be insufficient for these applications since the amount of work does not necessarily correlate with the
number of fluid elements. Depending on the particular application, the computational load on each processor can
vary drastically throughout the course of a simulation as well, highlighting the importance of dynamic domain
decomposition methods that can adjust the computational load on-the-fly.

Resolving the large range of length and time scales and incorporating complex coupled physical processes active
in these systems requires the use of large-scale high performance computing (HPC) systems. As the landscape of
available computational architectures evolves in the quest for achieving exascale performance, it is important to
understand how common multidisciplinary hypersonic simulation tools perform on these next-generation platforms.
Recent work by the present authors2 has shown some variability in the scalability of reacting flow simulations relevant
to hypersonic flight systems on various classes of computing architectures. The additional challenges associated
with performing multidisciplinary simulations have the potential to further expose differences in performance among
these systems. In this paper, we extend these past efforts and focus on two specific multiphysics phenomena: the
transport of atmospheric particulates in supersonic and hypersonic flow fields and the aerooelastic response of
a model airframe in a hypersonic flow environment. For the simulation packages considered herein, the fluid
dynamics solvers are loosely coupled to the solvers used to simulate the additional physics describing particle
transport or structural mechanics, The influence of the choice of coupling strategy on simulation performance and
scalability will be explored based on the implementations used by four hypersonic simulations tools: the JENRE R©

multiphysics framework,3 FUN3D,,4,5 US3D,35 and Kestrel.6–8 The test cases will be run on several different
computer architectures, including the Intel R© Xeon R© processors, AMD EPYCTM processors, and NVIDIA R© Tesla
V100 GPGPUs.

II. Simulation Methods

II.A. Physical Model

The first model system we consider is the external flow over the body of a conceptual hypersonic waverider
glide vehicle. This type of vehicle maximizes compression lift by tailoring its outer mold line to match the shape
of the shock wave generated by the forebody at the design Mach number. The particular design used in this study
utilizes the entire airframe as a lifting surface and is derived using a conical shock analysis.9 A diagram of the
model waverider is shown in fig. 1a. We will consider a single point along a hypothetical flight profile at a speed of
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(a) (b)

Figure 1. Diagrams of the two model problems considered in this study: (a) model waverider geometry and (b) initial particle
conditions for the coupled fluid-particle simulations.

Mach 8 and an altitude of 30 km (static pressure and temperature of 1313.4 Pa and 231.66 K, respectively) with
the vehicle oriented at zero degree angle of attack. The mechanical loads experienced by the airframe will lead to
some deflection across the wingspan, which will, in turn, alter the aerodynamics loading on the airframe. This gives
rise to a dynamical system in which the shape and stress on the airframe fluctuate over time.

The second model system that will be considered in this work is the interaction of a cloud of solid particulates
with the flow field generated by a simple wedge-shaped lifting body traveling at high-supersonic speeds. This setup
is a simplified model of the multiphase flow experienced by a typical hypersonic body interacting with atmospheric
particles (either dust particles or liquid droplets associated with cloud formations or precipitation events) during
flight through the lower atmosphere. The wedge angle is chosen to be 14 degrees to match the geometry used in
other recent studies of solid particulates interacting with supersonic wedge flows.10,11 In this work, the particulates
will be treated as “point” particles with finite masses that can interact with the background fluid in a two-way
coupled fashion. We assume a Mach 4 flow at zero degree angle of attack with static temperature and pressure of
the ambient air equal to 216 K and 5530 Pa, respectively. Particulates are introduced after the flow has reached
a quasi-steady state with the oblique shock attached to the leading edge of the wedge as shown in fig. 1b. The
particles convect downstream, interacting with the shock wave and boundary layer prior to potentially colliding
with the body surface.

II.A.1. Fluid Dynamics

In both model problems, the flow field is governed by the reacting Navier-Stokes equations for a multi-component
gas mixture of Ns species,

∂Ci
∂t

+∇ ·
(
Ci
(
u + Vi + Vi

))
= SCi + Ωi, (1)

∂ρu

∂t
+∇ · (ρuu + P ) = ∇ · (τ + τ) + Smom, (2)

∂ρE

∂t
+∇ · ((ρE + P )u) = ∇ ·

(
τu + q + q + DT −

Ns∑
i=1

WiCihiVi

)
+ Senergy, (3)

where the total gas phase density ρ =
∑
WiCi is the sum of the partial densities of the constituent gas species.

The corresponding mass fraction of each species is denoted by Yi. The total energy of the gas phase is the sum
of the internal energies of the species ρei and the kinetic energy of the gas according to ρE =

∑
ρeiYi + 1/2ρ|u|2,

where u is the gas-phase velocity. We assume each species in the gas mixture is an ideal and thermally-perfect
gas with an equation of state that is a function of temperature only, ei = f(T ). We use the standard Newtonian
viscous stress tensor τ = µ

(
∇u + (∇u)T − 2/3∇ · u

)
and Fourier heat-flux vector q = −κ∇T , where µ and κ are

the mixture-averaged viscosity and thermal conductivity. The species diffusion velocity is computed using a Fickian
diffusion law, such that Vi = ρDi∇Yi and Di is a mixture-averaged diffusion coefficient, for each species. The
production and destruction of each gas species, Ωi, is governed by a set of finite-rate chemical reactions, where

Ωi =

Nr∑
j

νijωj

Ns,j∏
k

Cbkk , (4)
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and νij are the stoichiometric coefficients for each of the Nr reactions present in the model and the bk are the
reaction order constants for each species active in a particular reaction. The details of the individual reaction rates,
ωj , are mechanism-dependent but generally take the form of an Arrhenius rate law, ωj = AjT

nj exp (−TA,j/T ). For
the first model problem, we assume that the molecules that comprise the shock-heated air (oxygen and nitrogen)
can dissociate and undergo further chemical reactions. The choice of air chemistry model is described separately
for each code implementation. For the second model problem, we neglect any chemical reactions and all Ωi are set
to zero. The source terms SCi , Smom, and Senergy represent the exchange of mass, mixture-averaged momentum,
and mixture-averaged energy between the gas-phase (composed of three species, oxygen, nitrogen, and water vapor)
and the particulates. These source terms will be defined in the following section.

Here, Equations 1–3 have been written generally to represent both the full multi-species reacting Navier-Stokes
equations and the Favre-averaged variation of these equations. In the former case, the turbulence quantities, Vi, τ ,
q, and DT are assumed to be zero. In the latter case these terms must be modeled in order to close the equations.
As in our previous paper,2 the formulations and models chosen by each simulation group for each test problem will
vary and are described in a subsequent section.

II.A.2. Particle Dynamics

Particulates are modeled as point particles governed by the Newtonian laws of motion,

dXi

dt
= Vi (5)

mi
dVi

dt
= Fi (6)

dTi
dt

=
Nui
3Pr

θ

τi
(T − Ti) , (7)

where Xi, Vi, and mi are the position, velocity, and mass of droplets i. For the flow conditions of interest, we
assume that aerodynamic drag is the predominant force acting on the droplets, such that Fi = FDi , where

FDi =
1

2
CDi

πd2
i

4
ρ (u−Vi) |u−Vi|. (8)

The droplets are assumed to be rigid spheres with drag coefficient given by the correlation

CD = 0.36 + 5.48Re−0.573 +
24

Re
. (9)

We note that a variety of drag correlations exist that can more accurately represent particle behavior in high-Mach-
number flows. While these models can improve the predictive capability of a simulation of interest, they do not
greatly alter the computational cost of the simulations, which justifies the use of the simpler model described above
in this effort. The value θ = Cp/Cp,l is the ratio of specific heats of the background gas to the particle material,
and τi = ρld

2
i /(18µ) is the Stokes time constant for the particle. The particle Nusselt Nui number follows the

correlation: Nui = 2 + 0.552Re
1/2
i Pr1/3 based on the particle Reynolds number and the gas-phase Prandtl number.

II.A.3. Structural Dynamics

The structural dynamics of a linear elastic solid can be written in the general form

Kw + Cẇ + Mẅ = Fa (10)

where w = {dx dy dz θx θy θz} is the vector of displacements and rotations of each node in the structural
model. The matrices K, C, and M represent the material stiffness, damping, and mass matrices, respectively.
Solutions for w can either be obtained exactly through a direct discretization of Equation (10) or approximately

by expanding w as a series of modes, such that w(x, t) =
∑N

w̃i(t)φi(x). Equation (10) can then be rewritten as

K̃w̃ + C̃ ˙̃w + M̃ ¨̃w = F̃a (11)

where K̃ = φTKφ, C̃ = φTCφ, M̃ = φTMφ, and F̃a = φTFaφ. The mode shapes φi and associated matrices can be
computed a priori and stored, giving rise to a set of uncoupled differential equations for the expansion coefficients
that must be solved at each time step subject to the aerodynamic forces F̃a.
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II.B. Implementation Details

II.B.1. FUN3D

FUN3D is a suite of tools developed at NASA Langley Research Center for solving unstructured-grid computa-
tional fluid dynamics problems across the speed range from incompressible to hypersonic flows.4,5, 12,13 The solution
approach relies on an implicit, upwind finite-volume scheme. Element types may include arbitrary combinations of
tetrahedra, prisms, pyramids, and hexahedra, as well as overset mesh paradigms. Control volumes are located at
each node and constructed using the median-dual of the grid. Inviscid fluxes are computed at each dual face, or edge
midpoint. In this work, the inviscid flux is computed using the HLLE++ scheme,14,15 with second order accuracy
obtained using an unstructured MUSCL reconstruction with unweighted least-square gradients. Viscous fluxes are
computed using Green-Gauss element-based gradients, equivalent to a Galerkin-type approximation for tetrahedral
elements. For other element types, the gradients are augmented with edge-based data to improve h-ellipticity. To
accommodate dynamic and/or deforming mesh scenarios, an Arbitrary Langrangian-Eulerian (ALE) formulation
of the governing equations is adopted, where face speeds are included as appropriate and a geometric conservation
law is imposed.4

For the high-speed flows considered in this work, thermochemical nonequilibrium modeling is used. In this
approach, additional governing equations are solved for each constituent species which involve convection, diffusion,
and source terms accommodating chemical reactions. A wide range of turbulence closures are available and are
discretized in a manner similar to that described above. The governing equations are integrated in time using
a fully-coupled implicit dual time-stepping approach. To support the use of distributed-memory architectures, a
conventional domain decomposition technique is used with a message-passing approach. Further computational
details are described in a subsequent section.

For the aeroelastic analysis demonstrated in the current work, the fluid solver is coupled with a modal structural
solver using a staggered method.4 At each time step, the modal solver computes the deformation of aerodynamic
surfaces due to the aerodynamic forces evaluated at the previous time step(s). The volume mesh is deformed to
the new surface and the fluid solver is advanced. To conform to the deformed aerodynamic surfaces, the baseline
approach used in FUN3D calculates the interior mesh displacements based on a linear elasticity analogy.4 The
computational cost of the modal structural analysis is minimal relative to the fluid solver, but the cost of the
linear elasticity procedure can be similar to that of the fluid solver when relatively few temporal subiterations are
used. However, because both the modal structural solver and elasticity formulation are linear, the volume mesh
displacements at any time step can be computed at a much lower cost using the superposition principle. In this
approach, the volume mesh displacements are computed as the sum over the modes of the product of the modal or
generalized displacement and the volume mesh displacements due to a unit perturbation of the mode. This is the
approach taken in the current work.

FUN3D has been extended to leverage GPU hardware to accelerate the time to solution for both perfect-gas
and real-gas applications. The implementation for NVIDIA hardware is based on a CUDA approach, where all
kernels required for determining a solution have been ported to execute on the GPU.2,16–20 In this manner, data
transfers between the host and device are minimized and the CPU is used solely for control flow during the solution
process. When multiple GPUs are used, a single MPI rank is generally used to shepherd the operations for a
single grid partition residing on an individual GPU. MPI communication can be performed using conventional
host-based buffers or device addresses as supported by CUDA-aware MPI implementations. Extensive overlapping
of communication and computation is used to hide communication latencies. The implementation has been shown
to scale well to tens of thousands of GPUs for simulations using meshes containing billions of elements.21,22

When solution output is required, asynchronous memory transfers from the device to the host are used to
place data directly into asynchronous Input/Output (I/O) buffers on the CPU. In this manner, the overhead
associated with writing large amounts of data to disk is completely hidden and does not affect overall computational
performance. This approach has been successfully used to produce output data sets consisting of hundreds of
terabytes for individual runs.21,22

For aeroelastic analysis using the modal structural solver, the volume mesh displacements due to unit pertur-
bations of each mode are precomputed on the CPU once at the beginning of the simulation and stored in GPU
memory. This cost is quickly amortized over the course of a typical simulation. At the conclusion of each time step
of the fluid solver, the modal structural solver is used to compute the generalized displacements on the CPU, as
the cost of this computation is trivial. These values are then copied to the GPU, where the superposition principle
is used to determine the new coordinates of the volume mesh.
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II.B.2. Kestrel

Kestrel is a simulation tool that integrates physics components together within a flexible, event-based execution
paradigm.7,23 This architecture allows for the intuitive set-up and execution of multi-disciplinary simulations of
variable complexity, while allowing for relatively simple modifications to absorb future advances in numerical algo-
rithms and modeling fidelity. Multiple compressible Navier-Stokes flow solvers are currently available for production
use with Kestrel; however, solutions for the current work are based on the foundational second-order near-body
unstructured solver KCFD. Here, we consider the use of Kestrel for solving dynamic coupled aeroelastic flows,24

which requires coupling between the underlying fluid solver and a solver that computes the deformation of the body.
Two different structural mechanics solvers are available for this purpose: the Sierra/SD solver and modal structural
solver.

Kestrels Sierra/SD component interfaces Kestrel with the Sierra/SD Structural Dynamics Solver from Sandia
National Laboratories to provide a finite-element-based high-fidelity structural solver. Formerly known as Salinas,
Sierra/SD has been shown to scale to problems of 100 million degrees-of-freedom solved on thousands of cores.25,26

Sierra/SD supports a wide range of elements, including one-dimensional beams and rods, two-dimensional plates and
shells, and three-dimensional hexagons and tetrahedrons of various orders. It is capable of computing solutions for
a wide range of structural dynamics problems, including vibration and buckling analysis, static analysis, transient
analysis (including linear, non-linear, and modal), and various frequency-domain analyses. Kestrel currently only
couples with Sierra/SDs linear transient solver, but future work is planned to extend the coupling to include
Sierra/SDs non-linear transient solver.

Kestrel’s modal structural solver component is responsible for updating the location of the nodes of the modal
structural model either by responding dynamically to the surface pressure and viscous forces from the flow solver,
or by prescribing certain mode shapes to user-specified values as a function of time. The modal structural dynamics
model is a medium- to high-fidelity structural dynamics model that is much less expensive than a full finite-element
structural dynamics model solved by Sierra/SD.

When coupling a flow solver with a structural solver, there are two major aspects to the coupling. The first major
aspect of the coupling deals with data transfer - specifically, how to impose the forces from the fluid domain onto
the structural domain, and how to reflect changes of surface shape from the structural domain into the fluid domain.
There are four methods available for the information transfer in Kestrel: a rigid-body attachment, a beam spline,
an infinite plate spline, and a thin plate spline. The user tells Kestrel which structural nodes should be mapped
to which fluid surface patches, and Kestrel then determines the topology of those structural nodes and chooses
the most appropriate of the spline methods. Interpolation matrices are created to transfer viscous and pressure
forces from the fluid surface face centroids onto the structural nodes, as well as to transfer the displacements from
the structural nodes onto the fluid surface face nodes. The splines constructed are global in the sense that every
point in the fluid side of the mapping is influenced to some degree by every point in the structural side of the
mapping, resulting in a dense matrix of size (m× n× d), where m is the number of points in the fluid side of the
mapping, n is the number of points in the structural side of the mapping, and d is the dimensionality of the vector
being interpolated (equal to three for displacements and six for forces). In cases where the underlying structural
discretization is dense, Kestrel will select a subset of nodes in the structural mapping to include in the interpolation
splines. The second major aspect of coupling deals with scheduling, or determining how often the domains are to
exchange data. Since both domains are iteratively solved without considering the other domain, a nave interaction
can potentially damage the temporal accuracy of the global solution. A predictor-corrector scheme similar to that
developed by Farhat27 that allows for the recovery of second-order accuracy.

After the FSI component has updated the fluid surface mesh node coordinates, the fluid volume mesh is updated
to be consistent with the deformed fluid surface mesh. Kestrel performs the volume mesh deformation in two
stages.28 The first stage takes the cells immediately surrounding the surface, called the rigid layer, and deforms
them in a rigid fashion in order to maintain cell aspect ratios and other important mesh quality metrics in the
viscous region of the mesh. After this, the outer layer is deformed to smoothly absorb the motion of the outer
boundary of the rigid layer. Deformation in the outer layer is controlled using a surface influence scheme that
describes how much of the mesh deformation is absorbed by translational influence versus rotational influence and
decay rates of the mesh motion through the domain.

II.B.3. JENRE R© Multiphysics Framework

The JENRE R© software suite is a set of multi-physics simulation tools that can provide high-order solutions to
flows in complex domains. It encompasses a variety of different finite element solvers, including continuous Galerkin
and discontinuous Galerkin formulations in addition to the r-adaptive spacetime MDG-ICE method.29,30 A variety
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of conservation laws are supported, including those governing multi-species, chemically-reacting flows, high-speed
perfect-gas flows, low-speed incompressible flows, and multi-material (fluid and solid) systems. Additional physics
models for coupled discrete particle transport, external electric fields, and surface pyrolysis are also available.

Multiphase flows are simulated utilizing an Eulerian-Lagrangian approach to solve the two-phase flow problem in
which the primary and dispersed phases dynamics are computed via a transient time-split phase coupling procedure
in which the governing equations are solved by alternately advancing the primary and secondary phase equations
over some finite time interval ∆t. Data is transferred between the solvers via body forces in the Navier-Stokes
equations and interpolation of the fluid state to the location of each of the dispersed particles.

The continuous gas-phase governing equations (Equations (1–3)) are discretized in space using a discontinuous
Galerkin (DG) finite element method similar to that described by Hartmann.31 In this formulation, an approximate
Riemann solver (e.g., HLLC, Roe, Lax-Wendroff, etc.) is used to compute the numerical flux across adjacent element
faces. The symmetric interior penalty method is used discretize the viscous fluxes, and time integration is done
explicitly using a strong stability-preserving Runge-Kutta method. This formulation allows the use of high-order
polynomial basis functions, which can increase the formal order of accuracy of the method above second order. We
utilize an implicit large-eddy simulation (LES) approach for which the corresponding closure terms in (1–3) are
taken to be zero.

The dispersed phase ordinary differential equations are integrated using an explicit three-stage Runge-Kutta
method. The size of the primary time step, ∆t, is chosen to ensure numerical stability of the gas-phase governing
equations with a CFL number equal to 0.05. For the smallest droplets in the system, the time step for the dispersed
phase equations can be subcycled so as to provide enhanced numerical stability. Coupling with Equations (1–3) is
achieved using a simple cell-based averaging technique in which a filter is used to obtain smooth volume-averaged
drag, thermal energy transfer, and vapor mass transfer data at each degree-of-freedom in the Eulerian finite-element
mesh,

SQ =
1

δt

∫ t+δt

t

(−QK(x−Xi)) dt (12)

for Q = {ṁ,Fd, dTi/dt} where K is a kernel function, taken to be unity in this work. We note that more complex
smoothing functions can be used to improve the spatial distribution of the source, and future versions of the solver
will incorporate these kernels.

The JENRE R© simulation architecture supports both pure distributed memory and hybrid shared–distributed
memory parallelism and has been configured to run efficiently on a variety of architectures. On standard CPU
systems, shared memory parallelism is achieved using either OpenMP or the Intel R© Thread Building Blocks (TBB)
library. On GPU systems, support exists for NVIDIA R© devices using CUDA and for AMD devices using the
Heterogeneous-Compute Interface for Portability (HIP). The JENRE R© Mulltiphysics Framework is written in mod-
ern C++ and makes heavy use of polymorphism via function and class templates, enabling it to function either as
a massively-parallel production code or a cutting-edge research tool. The JENRE R© flow solver is used to compute
a variety of hypersonic aerodynamic and propulsion systems and is routinely used on both large-scale CPU and
GPU systems.

II.B.4. US3D

US3D is an unstructured grid, finite-volume compressible flow solver designed for hypersonic flow applications.35

Key features of the US3D software include finite-rate chemistry models to accurately simulate thermochemical
nonequilibrium and implicit time integration methods to solve the resulting stiff system of equations in a compu-
tationally efficient manner. Users have the ability to interface with the US3D software through plugins enabling
access to core functionality and allowing

Coupling of the particle and fluid phases is accomplished in two steps. First, the force on each particle (Equation
8) and the heat transfer to each particles is computing using the fluid and particle state at the current time level.
The force is computed according to Equation 8 with the Henderson model for the drag coefficient.32 The heat
transfer is computed as to Q = πdiκ(T − Ti)Nu where the Fox model is used to compute the Nusselt number.33

The particle locations and temperatures are then updated by solving Equations (5)-(7) using first-order Euler time
integration. The source terms for the fluid equations are then computed from the particle forces and heat transfer
rates. Note that individual particles exchange momentum and energy only with the cell they are contained at the
beginning of the time step.

Second, the fluid equations are integrated using first-order Euler implicit time integration with data-parallel line
relaxation to solve the linear system.34 The fluid-particle coupling source terms are included in the fluid equations
according to Equations (1)-(3). A constant time step of 50 ns is used to advance the solution. For the current
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simulation, the particle time step is set to be equal to the fluid time step, however, it is also possible to integrate
the particles at a smaller time step than the fluid. Furthermore, higher-order time integration is available in US3D
but is not necessary for the present case.

II.C. Computational Architectures

II.C.1. Intel R© Xeon R© Platinum

The Intel R© Skylake Xeon R© microarchitecture implements the 512-bit advanced vector extensions (AVX-512)
instruction set and has six memory channels per socket. For this study, a representative DoD HPCMP system was
used for testing, for which each node is comprised of two Xeon R© Platinum 8168 processors with 24 cores per socket
and 192GB of memory (96GB per socket). Each core has two AVX-512 512-bit wide single-instruction, multiple-data
(SIMD) units. Each node has one Intel R© Omni-Path 100Gbps interconnect for inter-node communication.

II.C.2. AMD EPYCTM

The AMD “Zen” architecture is of interest for HPC workloads due to its new design and performance char-
acteristics. AMDs “Zen2” architecture, codenamed Rome, has made numerous changes compared to the initial
“Zen” design. There is a dedicated I/O chiplet for memory (eight memory channels per socket) and GMI/xGMI
communication with eight chiplets providing up to eight cores per chiplet, for a maximum of 64 cores per socket.
There is 32 MB of last level cache per chiplet for a total of 256MB. This is very large compared to earlier AMD and
Intel R© designs. In addition, the compute capabilities have doubled with two AVX2 256-bit SIMD units per core.
A large production system composed of 2,176 dual-socket AMD EPYCTM 7H12 nodes (64 processors per socket).

II.C.3. NVIDIA R© Tesla V100

The NVIDIA R© Tesla V100 utilizes the Volta microarchitecture, which delivers excellent single and double-
precision performance. MPI communication is achieved with the aid of a controlling host IBM Power9 CPU using
CUDA-aware MPI. Direct GPU-to-GPU communication across nodes which bypasses host memory is possible
through NVIDIA R©’s GPUDirectTM remote direct memory access (RDMA) technology using NVLinkTM connec-
tions. In all cases there is at least one Mellanox 100 Gbps InfiniBand card per two V100 GPUs. Each GPU has
32GB of memory. A cluster composed of 132 V100 devices arranged in a configuration with 6 devices per compute
node was used.

III. Results

Figure 2. Initial (gray) and final (red) waverider geometries for the static deflection simulation.

The various code groups participating in this study each chose one of the test problems to consider. The FUN3D
and Kestrel teams focused on the first test problem (aeroelastic deformation of a hypersonic waverider), and the
JENRE R© Multiphysics Framework and US3D teams focused on the second test problem (two-phase particle-laden
supersonic flow). While the primary focus of this study is to demonstrate how the use of loose coupling strategies
for multiphysics simulations affects the parallel performance of the composite solver, it is instructive to provide a
basic description of the simulation results and basic physics that drive the solutions that were generated.
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Figure 3. Unsteady aeroelastic waverider results. (a) Lift over drag, (L/D), versus time, normalized by nominal value, (L/D)0,
with fixed grid. (b) Generalized displacement for mode one, ∆1, normalized by static displacement for mode one, ∆0

1. (c)

Generalized displacement for mode four, ∆4, normalized by static displacement for mode one, ∆0
1.

For the first test problem, the coupling between the fluid flow and the elastic deformation of the airframe results
in noticeable change in the shape of its outer mold line. Two types of analyses are possible. A static analysis provides
an equilibrium deformation state for which the displacement of the material points within the solid gives rise to
stresses that balance the aerodynamic forces. A dynamic analysis retains the unsteady terms in (10) and provides
a time history of the aerodynamic response. Static aeroelastic deflection results for the waverider configuration
computed using the FUN3D solver are shown in Fig. 2. The trailing edge tip deflection is approximately 5 cm
with the current modeling approach. Dynamic aeroelastic results are shown in Fig. 3. The vertical location of the
trailing edge tip oscillates approximately 2 cm around the corresponding location of the static aeroelastic solution.
The lift-to-drag ratio is reduced by 4% on average over the nominal fixed-grid value. Generalized displacements for
modes one and four are also shown.

For the second test problem, the flow can reach a qausi-steady state in which the shock wave and boundary
layers lie in stable, well-defined locations. Density contours through a cross-section of the flow are shown in
fig. 4a. Unsteadiness appears in the calculations as the natural response to perturbations to the flow. In this case,
such perturbations are generated due to finite resolution effects at the oblique shock as well as perturbations to
the flow occur due to the interaction of the secondary-phase particles with the flowfield. The perturbations are
transported downstream where they interact with the laminar boundary layer that forms along the surface of the
wedge. Ultimately, we are concerned with the rate and angle of particle impact in order to quantify the erosion
potential of the particle cloud. An example calculation of several well-defined particle trajectories are shown in
fig. 4b. Whether or not a particle impacts the body depends on its in relative proximity to the leading edge, which
dictates the amount of time available for the particle to be deflected by the flow behind the oblique shock.

(a) (b)

Figure 4. Contours of (a) density and (b) vorticity computed using the JENRER© Multiphysics Framework for the coupled
fluid-particle simulation of flow over a sharp wedge.

In the remainder of this section, the seedups presented for each test case and architecture are computed relative
to the wall-clock times recorded on one Intel R© Xeon R© node. We emphasize that each simulation group has utilized
their own reference Intel R© Xeon R© simulation data, and accordingly quantitative comparisons of raw speedup data
across simulation tools are not meaningful.
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III.A. FUN3D

For the waverider configuration, air is modeled using a 5-species mechanism36 and the standard one-temperature
model. Turbulence is closed using the one-equation Spalart-Allmaras model37 with Catris-Aupoix compressibility
corrections.38 The vehicle surface is modeled as isothermal and noncatalytic. The flow equations are integrated in
time using BDF2 with 5 subiterations per time step. The time step is set to 30 µs, which leads to O(100) time steps
per period for the highest mode frequency. The mesh is composed of 14,545,219 points, 13,222,118 prisms, and
46,515,588 tetrahedra. The surface mesh spacing is 1 cm, with finer 0.1 cm spacing near the planform edges. The
location of the first grid point adjacent to the no-slip wall is set to ensure a y+ ≈ 0.1 on the vehicle surface. The
structural model created for this configuration is a flat plate with uniform thickness and the same planform as the
aerodynamic model. The properties of the model are selected such that the deflections of the trailing edge tip are
a reasonable value, approximately 5 cm, under the static loads. For the modal solution in the aeroelastic analysis,
the first four modes of the model are used. The simulation requires approximately 170 gigabytes of memory at run
time.

The aeroelastic simulation is run in three phases. First, a steady state simulation is obtained on the baseline
grid. A static aeroelastic simulation is then performed using the baseline solution as an initial condition. Here,
a large time step is used to accelerate the convergence to static equilibrium and critical damping is applied to
the structural model to ensure it is stable in this phase. Finally, a dynamic aeroelastic simulation is initiated
from the static equilibrium solution with a small perturbation applied. The critical damping is removed and the
time step is reduced in order to resolve the unsteady physics. The simulation is carried out for three periods of
the lowest frequency mode, which corresponds to approximately sixteen periods of the highest frequency mode.
Figure 5 depicts strong scaling results on the target architectures for the aeroelastic test problem. Similar results
for fluids-only simulations of the same waverider configuration have been previously discussed.2 Here, an additional
expense associated with computation of the grid deformation and accompanying metrics at each time step accounts
for a small increase in cost versus the prior results. As such, scaling results are similar to those presented in a
previous publication.2 FUN3D is primarily a memory-bound application; however, it should be noted that the
relative performance exceeds the memory bandwidth ratio between the NVIDIA V100 and the CPUs used here.
This is because the generic gas CPU implementation is not as highly optimized as its perfect gas counterpart. For
perfect gas simulations, GPU speedup is generally commensurate with the ratio of memory bandwidths.

CPU Performance. For FUN3D, a performance advantage of 2.3× is observed for EPYC 7762 relative to
Xeon 8168. EPYC 7762 has approximately 1.5× greater aggregate memory bandwidth than Xeon 8168. The
speedup beyond the memory bandwidth ratio may be explained by EPYC’s higher compute throughput and larger
caches. The AVX-512 capability of the Xeon 8168 is not a relevant factor, as FUN3D was compiled to use AVX2
instructions. This approach provided the same or better performance than AVX-512 for the benchmark cases.
This is consistent with the general observation that FUN3D has not been thoroughly optimized for generic gas
simulations on CPU platforms.

GPU Performance. The absolute speedup of a 6×V100 node over one node of Xeon 8168 is 39.3× for the
aeroelastic waverider simulation. The normalized V100 performance relative to Xeon 8168 is 6.6×; that is, a single
V100 GPU delivers approximately 6.6× the performance of a dual-socket Xeon 8168 CPU. For the EPYC 7762 node,
the 6×V100 node is 17.2× faster, with a normalized V100 performance of roughly 2.9×. An MPI profiling analysis
indicates that a slowdown of approximately 1.1× is incurred for the initial 6×V100. Since single-GPU performance
is substantially faster than that of the CPU performance, communication overhead has a greater relative impact
on GPU performance due to the communication overhead being a fixed cost.
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Figure 5. Strong scaling analysis showing speedup relative to the average throughput on a single node of Intel Skylake processors
(48 cores) for the aeroelastic waverider test case using the FUN3D flow solver on Intel Skylake (blue), AMD EPYC (red), and
NVIDIA Tesla V100 (green) architectures. Dashed lines indicate ideal scaling.

III.B. Kestrel

(a) (b)

Figure 6. Strong scaling analysis showing speedup relative to the average throughput on a single node of Intel Skylake processors
(48 cores) for the aeroelastic waverider test case using the Kestrel flow solver on Intel Skylake (blue) and AMD EPYC (red)
architectures coupled with (a) the ModalSD solver and (b) the Sierra/SD solver for the structural dynamics. Dashed lines
indicate ideal scaling.

Benchmarks for CREATE-AV Kestrel’s coupled aeroelastic solvers were run on two representative systems
containing either Intel Xeon Platinum 8168 nodes (48 cores/node) or AMD Epyc 7H12 nodes (128 cores/node).
Two versions of Kestrel were tested, the production build of Kestrel v12.1 and an optimized build of Kestrel with a
new approach for distributing fluid surface data to the structural dynamics solvers. The converged flow field around
the static waverider mesh was computed first using the baseline uncoupled KCFD solver. The Menter two-equation
turbulence closure model was used, which includes the shear-stress transport (SST) correction for fine-scale effects,
the quadratic constitutive relation (QCR) for the Reynolds stress, and the Menter one-equation transition model.
This case includes improved delayed detached-eddy simulation (IDDES) terms, resulting in a hybrid RANS/LES
model of the flow system. For the context of this analysis, the fluid was taken to be a single-species perfect gas,
and accordingly no air chemistry model was employed.
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Coupled aeroelastic simulations were started using the steady state gas phase as the initial condition, and the
dynamic response of the structure was simulated using the time-accurate predictor-corrector algorithm. Both the
native modal (ModalSD) and finite-element (Sierra/SD) structural dynamics solvers were tested. Final wall times
used in the analysis were computed as the average solution time per iteration multiplied by the number of completed
time steps, which was limited to 50 for these cases. This approach for timing removes overhead from sources such
as initialization and output that have no bearing on solver performance. No initial structural deformation was
specified for either structural dynamics (SD) package. Runs with both SD packages make use of Kestrel’s mesh
deformation feature to modify the fluid mesh in response to changes in the structure based on a single rigid layer
of elements attached to the waverider body and an outer layer computed using the mesh farfield boundary.

Strong scaling results obtained using both structural dynamics solvers are shown in fig. 6. The parallel efficiency
between the two solvers is nearly identical, suggesting that the primary cost for this particular problem resides in
the fluid solve and corresponding mesh deformation algorithm. After an initial decrease in speed when moving from
one to two nodes on the Intel R© Xeon R© system, the calculations scaled nearly perfectly out to 32 nodes (1536 cores).
On the AMD EPYCTM system, near-ideal scaling was observed out to 8 nodes (1024 cores). Scaling efficiency
dropped for the 16 node (2048 core) and 32 node (4096 core) runs. The scaling rolloff observed on Narwhal is
unique to this machine. It has been observed with a test code using an MPI communication pattern similar to
Kestrel/KCFD and is currently under investigation. The issue is also amplified for this case given the problem size.

III.C. JENRE R© Multiphysics Framework

(a) (b)

Figure 7. Strong scaling analysis showing speedup relative to the average throughput on a single dual-socket node of IntelR©

XeonR© processors (48 cores) for the particle-laden supersonic wedge-flow model problem for (a) low particle loading (4.8
million particles) and (b) high particle loading (48 million particles) computed using the coupled fluid-particle solver in the

JENRER© multiphysics framework on IntelR© XeonR© (blue), AMD EPYCTM (red), and NVIDIAR© V100 (green) architectures
for two different domain partitioning strategies. Dashed lines indicate ideal scaling. Dash-dotted lines represent scaling for
single-phase (fluid-only) simulations.

For the second test problem, supersonic flow enters the domain through a planar face upstream of the body
(from left to right as shown in fig. 1) with fixed values of Mach number (4.0), pressure (5530 Pa), species mass
fractions (oxygen and nitrogen equal to 0.21 and 0.79, respectively), and temperature (216.7 K). The flow exits the
domain through a plane parallel to the inflow plane at a finite distance along the wedge via a characteristic outflow
condition. No-slip, adiabatic wall conditions are applied on the surface of the wedge. The computational domain is
discretized with an all-tetrahedral mesh that transitions from a body-fitted, anisotropic tetrahedral boundary layer
mesh to isotropic elements in the main volume of the flow. Additional mesh resolution is added along the plane
of the oblique shock wave anchored to the leading edge of the wedge, giving rise to a mesh containing 13.5 million
linear tetrahedral elements.

A single-phase calculation was performed first to obtain a converged flow field to be used in the subsequent
multiphase calculations. Timings were gathered for each of the three target architectures, and the associated
speedups for these calculations are represented by the dash-dotted lines in Figures 7a and b. For both CPU
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architectures, we utilized a hybrid distributed-shared memory parallelization strategy with a single MPI rank per
node. Shared memory threads were spawned on each node with two threads assigned to each underlying core. While
this strategy was found to be sub-optimal for the AMD EPYCTM system by the authors in a previous study2 for
single-phase fluid calculations, we use it here to reduce the overall communication burden that we will see becomes
a bottleneck for our multiphase calculations. We see near ideal scaling on the Intel R© Xeon R© system (blue) out to
32 nodes (1536 cores). Parallel efficiency drops on the AMD EPYCTM Rome (red) and NVIDIA R© V100 (green)
systems. While this is expected on GPU architectures, we note that past scaling results using this flow solver on
the AMD EPYCTM Rome system have indicated better parallel efficiency.2 using a chiplet-based parallelization
strategy.

For the multiphase calculations we consider a particularly challenging case where the particle loading is spa-
tially inhomogeneous. We note that for the companion case of nearly uniform particle loading, the parallel efficiency
closely follows that of the single-phase fluid calculations with the only difference arising from the relative commu-
nication cost between the two solvers. For the inhomogeneous case, the situation is much different. A domain
partitioning strategy based on the single-phase flow solver will result in highly disparate work loads with some
MPI ranks receiving the majority of the particles and some receiving few or none of the particles. Also, since MPI
communication of particle information is event-based, i.e. data is only transferred when a particle physically crosses
a processor boundary in the partitioned mesh, the data transfer load is highly uneven. These observations suggest
that a more careful partitioning strategy will be required to achieve good parallel efficiency.

In this section, we compare two different domain partitioning strategies. Both strategies use the Metis (or
corresponding ParMetis) libraries, which transform the physical mesh into a graph structure where each element
is a vertex of the graph connected to neighboring elements by edges. Graph vertices and edges can be weighted
by the relative amount of work and communication overhead associated with each. This first strategy is the naive
implementation of the optimized single-phase partition in which the total work (i.e., number of elements) is uniformly
distributed among the MPI ranks. Each element (graph vertex) is assumed to require the same amount of work and
thus equally weighted in the graph. Processor boundaries are determined by minimizing the overall communication
load, characterized by the total number of graph edges that straddle partitions. We refer to the first strategy as the
fluid partition. The second strategy attempts to more equally disperse the total computational load on each MPI
rank, accounting for both the fluid solve and the number of particles in each cell. This is accomplished by specifying
a weight associated with each element (graph vertex). To do this effectively, it is necessary to quantify the relative
amount of work required for the fluid solve relative to a single particle update. While this is difficult to estimate a
priori, it can be measured empirically in a straightforward manner by varying the relative fluid-to-particle cost and
measuring the corresponding wall-clock time for a given number of ranks. While the optimal factor will depend
both on the problem and the details of the numerical methods used for each solver, we found a relative fluid cost
equivalent to 20 particles to be a reasonable approximation. Hence, the total weight assigned to each element was
equal to 20 + Np where Np denotes the number of particles in the element. A new partition was then generated
based on these updated element weightings that contains an unequal number of elements per rank. We refer to this
particle-weighted partitioning strategy as the multiphysics partition.

Two different levels of particle loading were considered. A “low” loading corresponding to a particle volume
fraction of 0.004 and a “high” loading corresponding to a particle volume fraction of 0.04. Note that the particles
shown in the digram in fig. 1b only represent a very small portion of the total number of particles in the simulation.
For the low particle loading case we transport a total of 4.8 million particles, and that number increases to 48 million
for the high particle loading case. Figure 7a shows strong scaling results using the coupled two-phase flow solver for
the low particle loading condition. The dotted lines indicate speedups obtained using the baseline fluid partition,
while the solid lines indicate those obtained using the multiphysics partition. As expected, the speedups obtained
using the fluid partition show a notable drop in parallel efficiency compared to the fluid-only timings (dash-dotted
lines) since they were generated without any knowledge of the costs associated with the multiphase flow. For this
case, the multiphysics partition was able to recover some parallel efficiency; however the speedups were still far
below those obtained for the single-phase simulations. Trends were similar for both CPU and GPU architectures.

Figure 7b shows the strong scaling curves obtained for the high particle loading case. For this configuration, the
fluid partition behaved quite poorly for all three architectures considered. Again, this is to be expected given the
even greater disparity between the computational loads experienced by each partition. Here, a significant amount
of work is associated with the particle solver and MPI ranks containing few or no particles sit idle for an extended
period of time. The multiphysics partition significantly improves the situation by more equitably distributing
the work associated with the particle solver among the MPI ranks. This is particularly noticeable for the GPU
architecture for which throughput is increased by a factor of 3 for the 8-node (48-gpu) case. It should be noted
that the GPU results should be interpreted with some care. For the CPU-based systems, the number of MPI ranks
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is equal to the number of compute nodes used for the calculation. For the GPU system, we use 1 MPI rank per
device or 6 MPI ranks per node. Hence the starting position (1 node) for the high particle loading case shows a
large decrease in speedup compared to the single-phase simulations since it already includes costs associated with
parallelization of the particle solver. Regardless, the slope of the curve obtained using the multiphysics partition
is significantly higher than that obtained for the fluid partition and is similar to that obtained for the single-phase
simulations.

There are several inferences that can be drawn from this data. The first is that by the nature of the problem,
load imbalances can be mitigated but not avoided. Even with the most careful balancing of overall load, MPI
ranks will spend time waiting either during the fluid solve or the particle solve (with the exception of a spatially
homogeneous particle loading for which the overall load can be balanced for both the fluid solve and the particle
solve simultaneously). Second, the localized and inherently dynamic communication load between MPI ranks during
the particle solve can have interesting consequences on the scaling, particularly for a relatively small number of
total ranks where the additional costs associated with increased communication temporarily outweigh the benefits
associated with spreading out the computational load among more ranks. An example of this behavior can be found
in Figure 7b. After an initial improvement in scalability going from 1 to 4 CPU nodes, the scaling stagnates. An
increase in the number of nodes leads to only marginal speedups in spite of continued spreading of work during the
particle solve across more processors. Beyond a certain number of nodes (16 for the Intel R© Xeon R© system and 8
for the AMD EPYCTM), the scaling once again increases. Note that this behavior is not obvious for the NVIDIA R©

V100; however, it is possible that this process has already occurred during the partitioning on a single node, which
already requires 6 MPI ranks. This suggests that the shape of the partitions may play an equally important role
in maximizing scalability. As discussed above, the strategy for defining processor boundaries is to minimize the
total edge count along those boundaries. For this class of multiphase simulations, there is also an imbalance in
communication during the particle solve for which a careful weighting of the partition graph edges (in addition to
the partition graph vertices), could offer additional improvements in scalabitlity.

III.D. US3D

The second test problem described in Section II is simulated with a few differences from the JENRE R© test case.
A fully hexahedral mesh is containing 50 million cells is used. A no-slip, isothermal wall boundary condition with a
constant temperature of 300 K is used along the surface of the wedge while a supersonic outflow boundary condition
is used at the exit plane.

Silicon dioxide (SiO2) particles with a density of 2264 kg/m3 and a diameter of 1µm are added at the inflow
boundary at a rate such that the freestream mass fraction of particles is 0.0005 or 0.05% resulting in a total of
approximate 216 millions particles in the domain at steady-state. At approximate 4.3 particles per grid cell this
case is similar to the JENRE R© multiphysics high particle loading case with approximately 3.6 particles per cell.
Figure 8 flow field is visualized with density contours and the location of every 10,000th particle at an instant in
time.

Figure 8. Contours of fluid density and a snapshot of particles locations at steady-state. Note that every 10,000th particle is
shown.

Three sets of simulations were run on AMD EPYCTM nodes: pure gas, one-way coupled Lagrangian particle
tracking, and two-way coupled fluid and particle simulation. For the one-way particle-only simulations, the pure
gas steady-state solution read into memory and particles were injected at the inflow boundary at each time step.
The particle motion and temperate was integrated according to the forces and heat transfer rates as previously
described. However, the fluid equations were not solved and therefor the fluid state was not updated. For the
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two-way coupled fluid and particle simulations, the source terms are included in the fluid equations to account for
momentum and energy exchange between the particle and fluid. The particle and fluid states are updated at every
time step as described in Section II.B.4.

For the present case, the Lagrangian particle tracking portion account for approximate 2/3 of the computational
cost each time while the solution to the fluid equations accounted for the other 1/3. The speedup for each set of
simulation modes is shown in fig. 9. For the pure gas mode, the scaling is close to ideal up to 32 nodes which is
consistent with previous findings.2 Interestingly, the particle-only simulations exhibit superlinear speedup. The
source of superlinear speedup within the parallel particle tracking algorithm is currently unknown but is being
investigated and an explanation is forthcoming. The coupled fluid-particle also exhibits superlinear speedup which
is to be expected given the particle-only speedup. Overall, US3D shows good parallel efficiency in both the fluid
and particle portions of the code. Future work will include more fine-grained timing of the particle movement
and parallel exchange routines to explain the speedup observed and identify methods of further decreasing the
computation cost and improving parallel efficiency.

Figure 9. Speedup on AMD EPYCTM nodes.

IV. Conclusions

Two different test problems were considered as part of this effort that were solved using loosely-coupled multi-
physics simulation algorithms. In the first test problem, hypersonic flow over an elastic waverider, the two simulation
platforms tested (FUN3D and Kestrel) both demonstrated excellent scalability over a range of node counts on both
IntelR© XeonR© and AMD EPYCTM systems when coupling their fluid solvers to modally-reduced structural solvers.
Equally good scalability was observed by the FUN3D team on NVIDIAR© V100 GPU devices. Compared to the
single-discipline fluid analysis, the majority of the added cost is the deformation of the fluid mesh with this ap-
proach. Excellent scalability was also shown on both IntelR© XeonR© and AMD EPYCTM systems with Kestrel
coupled to a finite-element structure with Sierra/SD. In this configuration the computational load can be balanced
independently for both solvers. Coupling between the solvers takes place by exchanging forces and deformations
along the material interface between the fluid and airframe. This communication imparts a fixed communication
cost on the solvers that can have a small impact on overall parallel efficiency.

In the second model problem that was considered, two physics solvers (Lagrangian particle transport and
compressible fluid dynamics) are active in the same regions of the domain and communicate via volumetric source
terms and point forces using the JENRE R© Multiphysics Framework. A number of unique challenges for large-
scale parallel simulations were observed for the case of spatially inhomogeneous particle distributions. Partitioning
strategies based on the underlying fluid solver resulted in an unbalanced workload for the coupled multiphysics
solver. This caused a severe loss of parallel efficiency on all computational architectures considered. Increasing the
particle count from the low to the high loading conditions exacerbates the load imbalance, resulting in even worse
performance. A partitioning strategy that weighted each element based on both the computational cost of the fluid
solve and the resident number of particles provided some improvement in parallel efficiency, particularly on the
NVIDIA R© V100 GPU devices. Further improvements will require a more nuanced approach. Additional weights
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placed on partition graph connections that incorporate some additional knowledge of the physics could prove to be
useful. In convection-dominated flows such as the one considered here, more efficient partitions could be generated
that weight connections in the general direction of streamlines and hence minimize communication during the
particle solve at the expense of increased communication overhead during the fluid solve. Other methods that
utilize distinct MPI communicators for the two solvers could also be beneficial. This would allow for independent
load balancing of the solvers at the expense of a more complex memory layout and communication strategy.
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