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ABSTRACT. We present a multi-channel, multi-offset, ground-penetrating13

radar method that makes continuous estimates of snow and firn density,14

layer depth, and accumulation. Our method uses the electromagnetic15

velocity, estimated from waveform travel-times measured at common-16

midpoints between sources and receivers. Previously, common-midpoint radar17

experiments on ice sheets have been limited to point observations. We18

completed radar velocity analysis in the upper ∼ 2 m to estimate the surface19

and average snow density of the Greenland Ice Sheet. We paramterized the20

Herron and Langway (1980) firn density and age model using the radar-21

derived snow density, radar-derived SMB (2015− 2017), and reanalysis-derived22

temperature data. We applied structure-oriented filtering to the radar image23

along constant age horizons and increased the depth at which horizons could24
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be reliably interpreted. We reconstructed the historical instantaneous surface25

mass balance, which we averaged into annual and multidecadal products along26

a 78 km traverse for the period 1984− 2017. We found good agreement between27

our physically constrained parameterization and a firn core collected from the28

dry snow accumulation zone, and gained insights into the spatial correlation29

of surface snow density.30

1. INTRODUCTION31

The Greenland Ice Sheet (GrIS) expresses high variability in ice loss, and hence sea level rise, due to the32

regional scale variability in the processes governing mass balance (Lenaerts and others, 2019). Surface33

mass balance (SMB) continues to be the dominant contributor of GrIS mass loss, but ice sheet wide SMB34

simulated from regional climate models maintains ∼ 25% uncertainty (Shepherd and others, 2020). Efforts35

to improve SMB simulation (e.g. Fettweis and others, 2017) are limited by the scarcity of observations,36

which are required to evaluate the model performance (e.g Noël and others, 2016). Traditionally, SMB37

measurements are made at the point scale during infrequent field efforts, through the laborious process38

of excavating snow pits or drilling firn cores. The sparseness of snow pit observations on the GrIS limits39

the testable correlation lengths and tends to debilitate spatial correlation analysis. Consequentially, surface40

density measurements have shown no spatial correlation over length scales of tens to hundreds of kilometers41

(Fausto and others, 2018). Due to the unknown variability of density and SMB, point measurements used42

to parameterize a firn model (e.g. Zwally and Li, 2002) must be extrapolated to regional scales cautiously.43

In space borne altimetry retrievals of GrIS mass balance, the uncertainty in modeled corrections for snow44

densification required to convert a measured change in ice sheet volume to a change in mass causes ∼ 16%45

uncertainty (Shepherd and others, 2020).46

Ground-penetrating radar (GPR) surveys are capable of imaging layers of accumulated snow (e.g.47

Vaughan and others, 1999). However, conventional, single-offset GPR analysis requires an independent48

measurement of firn density to estimate the accumulation (Navarro and Eisen, 2009). Point SMB49

measurements often provide the required density information to extrapolate the density profile along the50

track of the radar sounding (e.g. Hawley and others, 2014; Overly and others, 2016). Yet, relying on sparse51

firn cores to extrapolate density over tens to hundreds of kilometers may bias the derived accumulation52

estimates. For example, ice lenses sampled in a firn core increase the average density and can be incorrectly53
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extrapolated over tens of kilometers, as these features are uncorrelated over tens of meters (Brown and54

others, 2011). For the period 1971−2016, greater than 10% bias to the SMB is possible, when firn cores are55

not available for extrapolation (Lewis and others, 2019). Inaccuracies are greater in southern Greenland,56

which is experiencing greater near surface firn densification as a result of atmospheric warming (Graeter57

and others, 2018), than in central Greenland. Parameterization of snow and firn densification continues to58

improve (e.g. Meyer and others, 2020); yet, evolving the firn using full energy balance modeling remains59

operationally challenging and is limited spatially by the unknown heterogeneities of surface snow density,60

accumulation, and melt (Vandecrux and others, 2018). Surface snow density parameterizations formulated61

around temperature and wind speed (e.g van Kampenhout and others, 2017), are arguably less preferable62

than density measurements because of uncertainties in estimating wind speed and modeling the unknown63

length scale variability that exists in the GrIS snow (Fausto and others, 2018).64

Radar retrievals of snow density are an appealing alternative to in situ observations of snow and firn65

because the methods are nondestructive and rapidly acquire vast amounts of data. However, few methods66

for continuously mapping snow and firn density exist (e.g. Grima and others, 2014) due to the complexities67

of data inversion. In this work we present the analysis of multi-channel, multi-offset, radar (MxRadar)68

imagery along a 78 km traverse in the GrIS dry snow accumulation zone to demonstrate the capability69

of this method, which has the advantage of ascertaining snow and firn density, and depth, and thereby70

SMB, independently. Borrowing from exploration geophysics, we developed the MxRadar workflow on the71

analysis of the radar surface wave, which exhibits linear moveout (LMO), and the fall 2014 isochronous72

reflection horizon (IRH) to estimate the surface snow density, column average density, horizon depth, and73

2015 − 2017 SMB. Additionally, we show how well these radar-derived observations can be directly used74

as input to the Herron and Langway (1980) firn density and age model. We use the firn model to further75

enhance the MxRadar imagery and extend the historical period of the SMB reconstruction to 1984− 201776

with instantaneous (∼ 14 days) temporal intervals. We compare the resulting SMB against a firn core77

and quantify the length of spatial correlation that exists in surface snow density. We quantify the bias78

reduction in SMB derived using the measured-modeled, MxRadar–Herron and Langway (1980) method.79

Then we provide a discussion of the results, limitations and advantages of the method, and future directions.80

2. GREENLAND TRAVERSE FOR ACCUMULATION AND CLIMATE STUDIES81

The Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) is a multi-disciplinary study82

of recent SMB changes in the West Central percolation and dry snow accumulation zones of the GrIS.83
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During the Spring of 2016 and 2017 we traveled a total of 4436 km by snowmobile from Raven/DYE-2 to84

Summit Station along the elevation contour straddling the percolation zone, and along West-East “spurs”85

perpendicular to the elevation contours. Throughout the expedition we collected 16 shallow (22−32 m) firn86

cores and dug 42 snow pits; 16 pits were coincident with the cores and the 26 others were dug at the ends of87

the spurs (Fig. 1 and Fig. 2). Our GreenTrACS field seasons occurred prior to the on-set of melt to reduce88

the complexity of radar data inversion. The cores and the coincident snow pits were sampled for density,89

isotopic chemistry, dust, and trace elements to define annual layer depths for measuring SMB (e.g. Graeter90

and others, 2018; Lewis and others, 2019). As firn cores are strategically located point measurements,91

GPR imagery is often leveraged to spatially extend the record of firn stratigraphy between core sites for92

accumulation studies (Spikes and others, 2004; Hawley and others, 2014; Lewis and others, 2019). We93

operated a suite of radar instruments spanning the frequency range 0.4 − 18 GHz; the focus of this study94

is the MxRadar.95

Fig. 1: GreenTrACS firn cores (GTCs) are numbered 1 − 16. Ground-penetrating radar surveys were conducted along spur
traverses and the main route that links the GTCs. We developed our radar processing and analyses at GTC15 Spur West
(lower left inset). The 2000 m asl contour envelopes the western spurs. Surface elevation was acquired from Morlighem (2017)
and Porter and others (2018).

2.1. Study Area96

GreenTrACS Core 15 (GTC15) is the second most northern core site of the GreenTrACS campaign97

(47.197◦W , 73.593◦N) and is ∼ 2600 m above sea level. GTC15 had an average annual temperature of98

−25.7 ± 1.0 ◦C (Modern-Era Retrospective analysis for Research and Applications (MERRA), 1979-2012),99
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and an average annual SMB of 0.306±0.021 m w.e. a−1 (1969-2016). The site experiences little to no melt,100

measured as the average melt feature percentage determined by normalizing each year’s ice layer water101

equivalent by the annual water equivalent and then averaging (0.47%, 1969-2016).102

GTC15 Spur West is a triangular, clockwise circuit that departs from and returns to GTC15 (Fig. 1 inset).103

The first of three transects is 15 km in length with the bearing 157◦ which begins at GTC15, the second104

transect is 30 km in length at 246.5◦ which ends at Pit 15 W, and the final transect is 33 km in length105

from Pit 15 W to GTC15 with the bearing 40.5◦. The GrIS surface of GTC15 Spur West was wind affected106

snow with sastrugi / 25 cm in height. The cyclicity in the topographic profile (Fig. 2) results from our107

return to GTC15 along a path oblique to the path approaching Pit 15 W. The SMB changes significantly108

across the / 5 km wide trough between distances 40 − 50 km. We selected this particular spur to develop109

our processing and analyses because of the apparent interplay between the surface elevation, SMB, and110

heterogeneous layering observed in the radar imagery.111

Fig. 2: Topographic profile of GreenTrACS Core 15 Spur West. The topographic undulation near Pit 15 W is responsible for
increases and decreases in accumulation.

2.2. Field Methods112

The MxRadar is a Sensors & Software 500 MHz GPR deployed with a multi-channel adapter in a multi-113

offset configuration using three transmitting and three receiving antennas (Fig. 3). During data acquisition,114

the transmitting and receiving channels were multiplexed to form nine radargrams which have independent115

antenna separations (offsets). The antennas were co-polarized, perpendicular to the direction of travel, and116

all are specified at 500 MHz with greater than two octave bandwidth. However, dependent on the antenna117

pairing, the actual central frequency and bandwidth varied on the order of tens of MHz. Of the previous118

studies applying GPR velocity analysis, none have performed continuous estimates throughout tens of119

kilometers distance. Our methods and analysis are tailored to produce meaningful data for the evaluation120

and improvement of snow cover and firn models and regional climate and reanalysis modeling of SMB.121
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Fig. 3: The MxRadar streamer array has three transmitting (Tx) and three receiving (Rx) antennas, which

form nine independent offsets that were linearly spaced from 1.33−12 m apart. We simultaneously acquired

nine continuous radargrams (one for each constant offset) and then binned the source-receiver pairs into

common-midpoint (CMP) gathers.

3. ANALYSIS METHODS122

We review multi-offset GPR methods for SMB calculations to clarify the advantages of the multi-offset123

technique that are also important for interpreting the results in Section 3.1. Much of the methodological124

detail can be found in the Supplementary Material S.1. Here, we touch on the methodology to simplify125

our strategy for reconstructing the historical SMB for the period 1984 − 2017 along GTC15 Spur West.126

We consider SMB rather than the accumulation rate because of unaccounted mass lost to sublimation and127

ablation. SMB is conventionally measured using GPR by interpreting a select few IRHs using a constant128

age interval and applying the average normalized firn density over this interval (e.g. Lewis and others,129

2019). Instead, we rely on the models of density and age, which are discretized in depth at a comparable130

resolution to the GPR data, to generate a SMB model with instantaneous (∼ 14 day) temporal intervals131

(Section S.1.3). We average annual SMB from many realizations of the instantaneous SMB model in a132

Monte Carlo simulation to assess uncertainty (Section S.1.4). We estimate the multidecadal average SMB,133

invoking the central limit theorem, by repeatedly drawing from 10 of the 33 annual SMB distributions at134

random and averaging.135

To parameterize the firn model, we first complete conventional signal processing on the nine radargrams,136

which consists of a two octave bandpass filter around 500 MHz, amplitude gain corrections for wavefront137

spreading, coherent noise removal (background subtraction), and random noise removal (smoothing). Then138

we interpret the air wave, surface wave, and a shallow reflection (Fig. 4) on each of the nine images using139

a semi-automatic picking algorithm (Section S.1.1). We invert the travel-times of the surface wave and the140

shallow reflection (see section 3.1.1) to estimate the average electromagnetic (EM) propagation velocity and141

depth of the dry snow and firn in a least-squares approach (Section S.1.2), which uses random resampling142
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of the data to estimate uncertainties (Section S.1.4). We then apply a petrophysical model (Wharton and143

others, 1980) which relates the EM velocity of dry snow and firn to its density (Section S.1.3).144

Our measured-model approach relies on the Herron and Langway (1980) empirical firn density and145

age model, hereafter HL, which requires three input parameters: average snow density, average annual146

accumulation, and 10 m firn temperature. We parameterized the HL model with the MxRadar snow147

density, MxRadar SMB (2015 − 2017), and MERRA 2 m air temperature as a proxy for firn temperature148

(Loewe, 1970), to model the stratigraphic age and density of the firn. We assessed the firn model accuracy149

and sensitivity to parameterization to illustrate the accuracy of the MxRadar-HL (MxHL) firn density150

(Section S.1.5). We justify tuning the age model to improve our estimates of SMB in a process that jointly151

updates the age-depth and SMB models according to the radiostratigraphy.152

The age model allows us to convert the time domain radar image into the stratigraphic age domain,153

known as the Wheeler (1958) domain. In principle, the firn structure can be estimated by the age model154

because the statrigraphy is deposited in isochronous layers. The imaged firn structure can be flattened155

by converting the time domain GPR image into the Wheeler domain because the rows of the Wheeler156

image maintain a constant age. We ensure the relative structure of the age model by picking five horizons157

of the Wheeler transformed radiostragraphy with an average epoch of 5.3 ± 2.7 years (the latest being158

the 1991 horizon) and perturbing the age model with the interpolated residuals to re-flatten the Wheeler159

image. We developed a structure-oriented noise-suppression filter which operates along the radar reflection160

horizons in the Wheeler domain to eliminate remnant noise after conventional GPR signal processing161

(Section S.1.6). This innovative signal processing technique allows SMB estimates to depths at which162

previously the stratigraphy was uninterpretable due to the low signal-to-noise ratio. We then convert the163

filtered radargram from the Wheeler domain into the depth domain and interpret 16 IRHs with an average164

epoch of 2.1 ± 1.7 years dating back to 1984. We calculate the error between the GTC15 geochemically165

determined age-depth scale and the 16 picked IRHs and interpolate a second grid of perturbations which166

we applied as a final update to the age model. We calculate the instantaneous SMB by taking a numerical167

derivative of the age-depth model

(
dz

da

)
and multiplying it by the MxHL density model (Eq. (S.12)).168

3.1. Review of Multi-offset Radar169

Common-midpoint (CMP) radar surveys are practiced in glaciology to estimate the EM wave speed of the170

ice, air, and/or water mixture (e.g. Eisen and others, 2002). The wave speed is related to firn density and171

liquid water content using a dielectric mixture formula for a two or three phase relationship (e.g. Looyenga,172
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1965; Wharton and others, 1980). In most studies, the CMP survey is treated as a point measurement of the173

firn vertical density profile, which is less laborious than extracting a core, but offers less vertical resolution174

and accuracy. Prior to GreenTrACS, CMP experiments on ice sheets were limited to point observations.175

We synthesized continuous CMP data by towing a streamer of nine antenna pairs that were linearly spaced176

from 1.33 − 12 m apart (Fig. 3). While the antenna pairs in this deployment do not have a common177

midpoint, we rebinned the constant offset radargrams for each pair independently, such that the analysis178

can be performed on offset gathers with common midpoints.179

3.1.1. Interpreting the Near-surface Waves180

Numerous geophysical methods exist for velocity analyses of CMP data gathers. Analyses of reflection181

data can be divided into two fundamental categories by the question, “Does the analysis assume normal182

moveout?” Normal moveout (NMO) is the reflection travel-time dependence on offset that arises from183

a homogenously-layered and planar subsurface structure (within the distance of the maximum antenna184

offset) that exhibits small vertical velocity heterogeneity (Al-Chalabi, 1974). Previous studies avoided185

classical NMO analysis, instead using less automated, more computationally expensive methods that186

favored accuracy (Bradford and others, 2009; Brown and others, 2012, 2017). Many caveats of NMO187

velocity analysis and sources of error in the radar common-midpoint analysis are discussed in Barrett and188

others (2007). We demonstrate that NMO analysis of the snow and shallow firn yields a satisfactory result189

for data with low noise (see supplement S.1.5), as ice sheet stratigraphy in the high elevation accumulation190

zone is close to homogeneous and planar at the length scale of the radar streamer array.191

Linear moveout (LMO) is the one-way travel-time dependence on offset of radar waves traveling directly192

from the transmitter through the air and ice sheet surface to the receiver antenna. We assume that the air193

wave expresses the linear moveout velocity c ≈ 0.2998 m/ns to calibrate the timing of the multi-channel194

system (Section S.1.2). To analyze the surface wave, we assume that the shallow, surficial snow is also195

planar and homogeneous at the scale of the maximum offset. We identify the air wave, surface wave, and196

a near surface reflection and their respective moveout behavior in Fig. 4. The travel-times of these waves197

were interpreted using a horizon tracking algorithm (see supplement S.1.1). The linear methods for LMO198

and NMO velocity analysis are described in Section S.1.2 and the methods for estimating the surficical199

and average snow density and depth of the fall 2014 IRH are discussed in Section S.1.3. We quantify the200

uncertainty of the density, depth, age, and SMB used to parameterize the HL model in Section S.1.4.201
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Fig. 4: This offset gather is represented by radargrams at offsets 4, 8, and 12 m from the initial 45 km of GTC15 Spur
West, and is annotated to convey the waveforms used in our analysis and the concepts of normal moveout (NMO) and linear
moveout (LMO). Consider the traces at zero distance for each offset as a CMP gather. The air wave and surface wave arrivals
are modeled by a linear expression of travel-time as a function of offset (Eq. (S.1)). The air wave is the first to arrive and
expresses a more shallow slope (faster velocity) than the surface wave which is impeded while traveling through the snow. The
annotated reflection expresses nonlinear moveout which is approximated by NMO (Eq. (S.2)). The surface-wave (LMO) and
reflection (NMO) annotated in this diagram are used to estimate the surface snow density, average snow density, and depth
of the fall 2014 isochronous reflection horizon (IRH). The age of the horizon was determined at GTC15 and allowed us to
estimate the 2015 − 2017 SMB (see supplement S.1.3), and in turn, is used to parameterize the HL model (see supplement
S.1.5).

3.2. Spatial Correlation of Surface Snow Density202

The LMO and NMO estimated snow densities are independent measurements of the of the snow density203

above the interpreted radar horizon. The GPR surface wave maintains a fairly consistent depth level204

(∼ 0.5 m, Eq. (S.9)), but the NMO reflection horizon does not. To mitigate the effects of depth on the205

correlation we extracted the rows of the MxHL density model corresponding to the average depth of the206

LMO (0.5 m) and NMO (1.92 m) horizons interpreted for velocity analysis (Fig. 4). We used Pearson207

(1907) correlation to determine the relationship between the density at 0.5 m depth and the density at208

1.92 m depth. Additionally, we conducted variogram analysis (Matheron, 1963) on the LMO estimated209

snow density for each of the three transects of GTC15 Spur West. We determined the length scale over210

which there is consistent spatial correlation of the surface snow density across all three transects as the211

distance where the three experimental variograms diverge.212
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4. RESULTS213

The multi-offset radar travel-time inversion determined the GrIS surface snow density and average snow214

density without manual observations (Fig. 5). We estimated the 2015 − 2017 SMB from the MxRadar-215

derived snow depth and density using the GTC15 age of the near-surface IRH (Fig. 5). The LMO and216

NMO densities were independently estimated and strongly correlate (R2 = 0.67, p = 0). Spatial patterns217

in the LMO derived snow density are consistent for three azimuths up to 2 km lag distance (Fig. 6).218

Fig. 5: The MxRadar inversion parameter distributions along GTC15 Spur West. The LMO and NMO densities were
independently estimated and strongly correlate (R2 = 0.67, p = 0). The MxHL model is parameterized by the average of
the LMO and NMO densities, the 2015 − 2017 average SMB, and MERRA (1979 − 2012) average 2 m temperature.

Fig. 6: We calculated experimental variograms of the LMO estimated snow density along the three azimuths of GTC 15 Spur
West using lag separations up to 15 km. Plotted in log-log space, the linearity of each variogram slope indicates that spatial
correlation exists up to ∼ 2 km distance. Correlation beyond this distance is difficult to assess given the limited azimuths and
lag separations possible for GTC 15 Spur West.
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By combining the radar-derived density and SMB with MERRA 2 m temperature we accurately219

parameterized the HL firn density and age model. For depths up to ∼ 22.5 m the mean absolute error220

between GTC15 densities and MxHL densities is 9.6 kg/m3, with a bias of / 1 kg/m3, and rms error221

of 12.2 kg/m3. We find that extrapolating the GTC15 densities along GTC15 Spur West introduces an222

insignificant (on the order of 1%) bias to the SMB of −0.004 m w.e. a−1 and rms error of 0.005 m w.e. a−1.223

The MxHL firn model permitted radar imaging in the depth and stratigraphic age domains. In Fig. 7 and224

Fig. 8, we illustrate our structure-oriented filter along GTC15 Spur West between 35 − 55 km distance,225

where the largest heterogeneity in firn stratigraphy occurs. After applying structure-oriented filtering, we226

were able to interpret significantly more IRHs and refine the age-depth model to an accuracy of ±31 days227

(see supplement S.1.4).228

We reconstructed the temporal SMB history from Jan. 1984 to Jan. 2017 and compare our result to229

the GTC15 firn core derived SMB in Fig. 9. The MxHL SMB history has a mean absolute error of230

0.038 m w.e. a−1, a bias of 0.004 m w.e. a−1, and an rms error of 0.047 m w.e. a−1. Uncertainty in231

the SMB measured from GTC15 was calculated following Graeter and others (2018). Average uncertainty232

in annual SMB is 0.036 m w.e. a−1 and 0.044 m w.e. a−1 for MxHL and GTC15, respectively. The mean233

thickness of an annual layer for the period 1984−2017 is 57.9 cm as measured at GTC15. The mean absolute234

error in the thickness of an annual layer estimated by MxHL is 7.8 cm, which contributes 0.039 m w.e. a−1235

(13%) error in the SMB reconstruction on average. Density inaccuracies in the SMB reconstruction result236

in a 0.004 m w.e. a−1 (1.3%) error on average. The MxHL 1984 − 2017 multidecadal average SMB is237

0.297 ± 0.016 m w.e. a−1 and is a good estimator of the GTC15 1984 − 2017 multidecadal average SMB238

(0.301 ± 0.025 m w.e. a−1). At GTC15 the 2015 − 2017 average SMB is within the uncertainty bounds of239

the multidecadal averages spanning 1969 − 2017, the oldest period spanned by the core, and 1984 − 2017240

the period spanned by the MxRadar imagery.241
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Fig. 7: Conventional GPR processing was applied to each of the nine constant offset radargrams. We then performed NMO
correction to project each constant offset image to zero offset. We stacked the NMO corrected radargrams together to synthesize
one conventional GPR travel-time image. The travel-time image remains quite noisy, and it is difficult to interpret due to the
discontinuities along the reflection horizons.

Fig. 8: The travel-time image (Fig. 7) is first transformed into the stratigraphic age domain, known as the Wheeler (1958)
domain. Then we applied structure-oriented filtering to the Wheeler domain image and converted into the depth domain.
The depth section, taken from GTC15 Spur West, has remarkable continuity along the reflection horizons, which allows us to
interpret IRHs to ∼ 22.5 m depth. The undulation in the firn stratigraphy is caused by spatial variablilty in snow accumulation.
It is necessary to interpret along steeply varying undulations like these to evaluate high resolution (< 5 km) regional climate
model simulations of SMB. However, without the structure-oriented filter we would be unable to track the reflection horizons
along the undulations.
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Fig. 9: The GTC15 and MxHL historical SMB for Jan. 1984 – Jan. 2017. Uncertainty in GTC15 SMB (±σ) was estimated
following Graeter and others (2018). Uncertainties in the MxHL 1984 − 2017 SMB (±σ) were propagated by Monte Carlo
simulations of firn models generated from the parameter distributions of snow density, 2015 − 2017 SMB, and MERRA
temperature. We applied ±31 days uncertainty to the measured ages of isochrones within the simulations.
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5. DISCUSSION242

We developed our analysis within the interior region of Greenland where there was significant spatial243

variation in accumulation, but little melt, to develop confidence in this type of radar retrieval for density244

and SMB. The MxHL SMB has four sources of uncertainty (depth, density, temperature, and age) which245

were independently assessed and then propagated through the MxHL model by Monte Carlo simulation to246

estimate the SMB mean and standard deviation for each year of 1984 − 2017. On average, the difference247

between GTC15 and MxHL SMB is small enough to accept the MxHL measured-modeled densities in248

place of extrapolating the measured firn core density along GTC15 Spur West. Extrapolated densities are249

likely to be much less accurate farther from core sites and in the percolation zone, due to increased near-250

surface pore space reduction caused by melt water infiltration (Harper and others, 2012). We also expect251

the accuracy of the HL density model to break down at elevations within the percolation zone (Brown252

and others, 2012). Annual fluctuations in density, and density excursions due to warming events, are not253

captured in the HL model. Using the MxRadar, we have the ability to measure the density profile in the254

percolation zone with additional layer picking for near-surface velocity analysis, but the NMO approach is255

sensitive only to the average density of intervals in between the layer picks (Dix, 1955) and is susceptible256

to errors due to subsurface velocity heterogeneities and data noise (Al-Chalabi, 1974).257

In the upper ∼ 2 m of the firn column we replaced modeled densities with a linear fit between the two258

radar measurements of snow and firn density using the surface wave and the reflection from the fall 2014259

IRH. This reduced the near-surface bias present in the HL density profile and we found strong correlation260

between the densities of these independent radar measurements. The richness of the MxRadar data stream261

permits geostatistical analysis at the sub-kilometer scale. Our findings indicate that local (on the order262

of 1 km neighborhood) processes control the GrIS dry snow density. The similarity in spatial patterns of263

radar estimated surface snow density, up to ∼ 2 km lag distance, contrasts the findings that no correlation264

exists between surface snow density, latitude, longitude, or elevation (Fausto and others, 2018), which is265

likely due to the limited observations of snow density at the < 1 km and < 10 km scales within the Surface266

Mass Balance and Snow Depth on Sea Ice Working Group dataset (Montgomery and others, 2018). Our267

variogram analysis was tested to 15 km lag separations along three azimuths; this indicates directionality268

in the spatial pattern of density, likely due to wind. Future application of this method to the 4000 + km269

traverse will allow exploration of variations at much larger scales.270
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The 2014 − 2017 SMB appears to be overestimated by MxHL, though the near-surface radar velocity271

analysis was focused on this range. We support the radar findings here with the understanding that firn272

samples recovered from these depths are susceptible to in situ losses due to their unconsolidated nature.273

The radar retrieval has a sample footprint of approximately ∼ 25 m (twice the length of the antenna array)274

and is nondestructive, while the borehole diameter is ∼ 8cm and samples only one point in space. It is also275

likely that the age model is less accurate nearest the ice sheet surface due to core sample loss; however,276

we sacrifice greater accuracy in the radar domain because of the limitations in our ability to interpret277

depth image. The fall 2014 horizon was the latest IRH measured in our analysis. Picking annual reflection278

horizons later than 2014, near the model boundary, created steep gradients in the numerical derivative279

required to estimate the SMB which yielded erroneous values.280

We see evidence of the 2012 melt event (Nghiem and others, 2012) in the filtered depth image (Fig. 8). At281

three meters depth, the top of the reflection sequence represents January 2013, and at four meters depth,282

the bottom of the sequence is January 2011. This IRH sequence expresses fading and discontinuity that,283

we hypothesize, is the result of 2012 melt water infiltration. Measured at GTC15, the 2011 annual layer284

has a melt feature percentage of 7.9%. However, melt water induced firn densification does not explain the285

inaccuracy in 2010 MxHL SMB, as 2010 recorded 0% melt feature percentage at GTC15. The MxHL density286

model is accurate within the 2010 annual layer, rather our estimate of the 2010 annual layer thickness is287

22 cm thinner than measured at GTC15. This is the second largest error in annual layer thickness, only288

behind the 2015 layer which was estimated to be 24 cm thicker than measured at GTC15 because of the289

aforementioned issues in estimating SMB near the model boundary. The degraded image quality of the290

2011−2013 IRH sequence inhibited our ability to interpret the age sequence accurately enough to define the291

annual layer thicknesses for 2011 and 2012. Instead, we relied on interpolation to approximate the thickness292

of these horizons. The leading source of error in the historical SMB reconstruction are inaccuracies in the293

age model that result from our ability to interpret the radar image.294

The multidecadal average SMB for the period 1984 − 2017 at GTC15 has remained nearly constant.295

Yet, sinusoidal variability in SMB on the decadal time scale is apparent in the MxHL historical SMB296

reconstruction and is confirmed by GTC15 SMB. Decadal variability in the MxHL reconstruction would297

not be observable without the application of structure-oriented filtering and interpretation that permitted298

an accurate instantaneous SMB model. For GPR imagery expressing small or gradual SMB variability299

it may be sufficient to apply the structure-oriented filter in the Wheeler domain without the steps of300
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interpretation, age model corrections, and image re-flattening (Section S.1.6). The snow density estimation301

component is unique to the multi-offset radar and integral in our ability to parameterize the HL model.302

However, the structure-oriented filtering can be applied to any GPR imagery of isochronous firn, provided303

a stratigraphic age model in the radar travel-time domain that is used as a proxy for the firn structure.304

Along GTC15 Spur West, we expect the largest errors due to firn advection to occur across the studied305

undulations (Fig. 7 and Fig. 8), where the SMB gradient is largest and oscillating. The two undulations306

here represent the same feature observed on outbound and inbound traverses, and serve as a demonstration307

of the repeatability of the methods. In regions where the spatial gradient in SMB is dynamic or ice sheet308

surface velocities are large, the advection of firn mass decreases the accuracy of radar estimated SMB. On309

Pine Island Glacier, with ice surface velocities on the order of 10 − 103 m a−1, strain corrections applied310

to the accumulation model amounted to a 1% correction to the 1986 − 2014 average SMB (Konrad and311

others, 2019). Ice surface velocities along GTC15 Spur West are on the order of 10 m a−1 (Joughin and312

others, 2018), and therefore we accept a contribution of error that is an order of magnitude less than the313

uncertainty, by not applying corrections for the SMB due to advection.314

It would be advantageous to model the firn age-structure using the kinematic wave equation (Ng and315

King, 2011) to capture the advection process imprinted on the radiostratigraphy without having to interpret316

the Wheeler domain radargram. We picked horizons in the Wheeler domain as a necessary step in applying317

the structure-oriented filter to the GTC15 Spur West radargram. This interpretive process could be avoided318

by generating the relative age using the kinematic wave equation. Yet, this model requires an independent319

estimate of firn density and accumulation to satify the initial and boundary conditions. Deep learning320

techniques have been recently applied to seismic imaging that automate structure-oriented filtering and321

horizon interpretation problems. By generating synthetic seismograms from numerical structural models as322

training data (Wu and others, 2020), relative stratigraphic age models have been recovered from real seismic323

data and used for automated isochrone horizon interpretation (Geng and others, 2020). The kinematic wave324

model could serve as a basis for generating synthetic radargrams to be used in a deep learning application.325

6. CONCLUSIONS326

GreenTrACS conducted the first multi-offset GPR traverse on the Greenland Ice Sheet, covering a total327

distance of 4436 km. We examined a 78 km section of the GreenTrACS 2017 traverse (GTC15 Spur328

West) to develop the methodology for multi-offset GPR wave velocity, imaging, and uncertainty analyses329

to accurately quantify the surface snow density, average snow density, firn density, instantaneous SMB,330
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annual SMB, and multidecadal average SMB for the period 1984 − 2017. Using travel-time inversion of331

the radar waveforms, we continuously mapped Greenland snow density without manual observations of the332

snow. We found consistent spatial correlation of near-surface density for separations up to 2 km distance and333

significant correlation (R2 = 0.67, p = 0) between near-surface snow density and average snow density of334

the upper 2 m. We demonstrated the use of the Herron and Langway (1980) model that was parameterized335

by the radar-derived snow density, radar-derived SMB (2015 − 2017), and MERRA 2 m air temperature,336

to estimate firn density and age. Our measured-modeled firn density in the dry snow accumulation zone337

accurately represents the firn core but can be performed continuously along a traverse in the field without338

destructive measurements.339

GreenTrACS Core 15 Spur West presented an interesting challenge because of spatial SMB variability340

that is enhanced by the surface topography. In the dry snow zone, topographic lows tend to accumulate341

greater amounts of snow. This effect induces undulations in the firn stratigraphy which steepen with depth,342

due to the persistence of increased accumulation. Folds in the firn stratigraphy are difficult to image clearly343

with conventional GPR processing methods. Borrowing from seismic interpretation methods, we facilitated344

structure-oriented filtering by utilizing the firn age model to determine the firn structure. In doing so,345

we furthered the application of the IRH theory, which is integral in SMB analyses conducted with radar346

imagery. This innovation enabled our interpretation of deeper (from 16.60 ± 0.04 m to 20.15 ± 0.04 m at347

GTC15) and older (from 1991±31 days to 1984±31 days) layers and permitted tuning the age model to a348

degree of accuracy which allowed us to derive instantaneous estimates of SMB which we averaged annually349

and multidecadally. Future work will include application of this methodology to the entire 4000 + km350

GreenTrACS traverse, with independent evaluation at the 16 core sites.351
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S.1. SUPPLEMENTARY MATERIAL14

We introduced the methodological concepts of our radar measured and modeled approach for reconstructing15

historical SMB in Section 3. Within supplement S.1, we provide the core computations used and give more16

insight into the methods of velocity analysis, parameter estimation, imaging, and interpretation. The flow17

diagram (Fig. S.1) works through the MxHL process to show not only the radar processing steps, but also18

the interconnectivity between the radar measured information and the HL firn model.19

We introduce our methods for interpreting the radar imagery (Section S.1.1) and conducting horizon20

velocity analysis (Section S.1.2). We use the radar wave velocity information for snow parameter estimation21

(see sections S.1.3 and S.1.4), and use these results to parameterize the MxHL model in Section S.1.5. We22

then extend the capabilities of the firn age and density models to enable our structure-oriented filter (see23

section S.1.6) and refine our estimate of SMB using relative age model updates in the stratigraphic age24

domain (Wheeler, 1958) and absolute age model updates in the depth domain (see section S.1.7).25
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Fig. S.1: The workflow for our measured-modeled historical SMB reconstruction. Colors correspond to the section reference
where the concept is detailed. For example, the gradient colors of Snow Parameter Estimation indicate that concept spans
sections S.1.3 and S.1.4.

S.1.1. Travel-time Horizon Interpretation26

We developed a phase and amplitude tracking, semi-automatic picking algorithm to measure the travel-27

times of radar wavefield events. The picker is semi-automatic in that an initial pick on the horizon seeds the28

automatic tracking. Similar to picking algorithms described by Dorn (1998), our seeded picker transforms a29

window of the radargram surrounding the horizon of interest into radial distance and dip angle coordinates30

(r, θ) and stacks the windowed image along the θ direction. The algorithm determines the optimal direction31

by maximizing stacked amplitude. The subsequent automatic pick is predicted 5 traces ahead, which is32

approximately the length of the radar array, along the linear path of maximum stack. Then the windowed33

polar transformation and prediction is repeated automatically. Travel-time picks between predictions are34

interpolated using a distance-weighted scheme. The program has the capability to toggle manual selection35

or re-seed the pick if the algorithm goes awry. We picked the direct air wave, the direct surface wave, and36
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the reflected wave from the fall 2014 layer on each of the nine radargrams for velocity analysis. These37

early-time events exhibit low noise with a travel-time standard deviation of 0.2 ns (1 sample). Using this38

layer picker, we also picked five age-horizons (see section S.1.6) and 16 depth-horizons (see section S.1.7)39

to update the age model for SMB calculation.40

S.1.2. Horizon Velocity Analysis41

Direct (air-coupled and surface-coupled) waves obey the linear travel-time equation known as linear42

moveout (LMO)43

t = t0 +
x

VLMO
, (S.1)

where t is the measured one-way travel time and x is the antenna offset, with intercept time (t0) and44

velocity (VLMO) representing unknown parameters. Reflected radar waves exhibit non-linear travel-times45

as a function of offset that are approximated by NMO. The x2 − t2 method (Green, 1938) linearizes the46

NMO equation47

t2 = t20 +
x2

V 2
NMO

. (S.2)

where t is now the measured two-way travel time and VNMO is the NMO velocity or stacking velocity.48

Prior to velocity analysis of the surface wave and reflection, we calibrated the timing of each radar49

channel. Channel consistent travel-time overheads are caused within the Sensors & Software multi-channel50

adapter by variations in the path lengths of the circuitry and cables. During the instrument calibration51

process we apply corrections (on the order of nanoseconds) to the time sampling of each channel by picking52

the air-wave arrival times (Fig. 4) and solving Eq. (S.1) for the set of perturbations that let t0 = 0 and53

VLMO = 0.2998 m/ns, the velocity of EM waves in free-space.54

We applied linear regression for near-surface velocity analyses using the picked, one-way travel-times of55

direct wave arrivals traveling laterally through the shallow snow and the two-way travel-times of reflected56

arrivals from the fall 2014 horizon. To cast each system of equations into a matrix-vector product, the57

velocity parameter is linearized by its reciprocal, called slowness, as S = 1
V . The linear system of equations58

has the form Gm = d for the vector d containing the recorded travel-times for the respective moveout59

events. Equations (S.3) and (S.4) are the monomial basis functions used for linear regression of LMO and60

NMO events. Equations (S.5) and (S.6) are the model parameters and equations (S.7) and (S.8) are the61
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respective data. The least squares solution for m = G−1d is optionally solved in either L2 or L1 norm. We62

used the L2 solution which was estimated by QR factorization (Businger and Golub, 1965). Advantages63

and convergence criteria of the L1 solution are discussed in Aster and others (2019).64

GLMO =


1 x1
...

...

1 xm

 (S.3)

GNMO =


1 x21
...

...

1 x2m

 (S.4)

mLMO =


t0

SLMO

 (S.5)

mNMO =


t20

S2
NMO

 (S.6)

dLMO =


t1
...

tm

 (S.7)

dNMO =


t21
...

t2m

 (S.8)

S.1.3. Parameter Estimation: Depth, Density, and SMB65

The wave propagating along the ice sheet surface is estimated to respond to snow depths no greater than66

the wavelength67

zLMO =
VLMO

f
, (S.9)

calculated from the nominal radar frequency (f ≈ 500 MHz) and snow velocity (VLMO). Eq. (S.9) was68

developed on Occam’s razor. This simple approximation for the penetration of the surface coupled wave69

was found to be consistent with the depth and average density measured at GTC15 and Pit 15 W. The70

depth of the reflection horizon for a subsurface propagating wave71

zNMO =
VNMO · t0

2
, (S.10)

is estimated assuming that the NMO approximation is valid, meaning that VNMO is approximately equal72

to the average velocity above the horizon.73

The complex refractive index method (CRIM) equation relates a mixture of known dielectric properties74

to an estimated effective bulk property (Wharton and others, 1980). We estimated the average snow density75

from the EM velocity by the CRIM equation76
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ρs = ρi

(
1− Va(Vi − Vs)

Vs(Vi − Va)

)
, (S.11)

letting the snow and firn pore space be unoccupied free space with the velocity Va = 0.2998 m/ns and77

the matrix to be composed of only ice with EM velocity Vi = 0.1689 m/ns, and density ρi = 917 kg/m378

(Ulaby and others, 1986). The quantities are given the subscript a for air, i for ice, or s for snow and firn.79

Liquid water within the firn layer was neither present within snow pits nor firn cores sampled during this80

field study, and is therefore not considered in Eq. (S.11).81

Surface mass balance is conventionally measured using GPR by interpreting a select few IRHs using a82

constant age interval and applying the average normalized snow and firn density over this interval (e.g.83

Lewis and others, 2019). Instead, we rely on the models of density and age, which are discretized in depth84

at a comparable resolution to the GPR data. We measured instantaneous SMB (ḃ), in meters of water85

equivalent per an infinitesimal time86

ḃ =
ρs
ρw

dz

da
, (S.12)

as the product of the snow and firn density, normalized by the density of water (ρw), and the submergence87

rate of stratigraphic isochrones

(
dz

da

)
in a Lagrangian reference frame. The submergence rate is the88

continuous equivalent of interpreting a few horizons with large age intervals. In practice, we approximated89

this derivative using second-order accurate finite difference weights calculated from the Fornberg (1988)90

algorithm, because the age-depth model is not discretized in regular intervals. The median discrete interval91

of the age-depth model is 14 days with a minimum interval of seven days and a maximum interval of 20 days.92

We found that the local truncation error of the second-order accurate derivative was 5× 10−5 m w.e. a−1,93

which has a leading error term an order of magnitude less than what we consider to be significant.94

S.1.4. Parameter Uncertainty: Monte Carlo Bootstrapping and Error Propagation95

To ascertain the uncertainty in the radar inversion, we implemented a bootstrapping algorithm by randomly96

sub-sampling the CMP travel-times from the LMO and NMO horizons and re-solving the linear regression.97

In a roll-along fashion, travel-time observations of five neighboring CMP gathers were binned and re-98

sampled by removing two offsets at random and then randomly sampling one travel-time observation99

for each remaining offset in the bin. This algorithm creates many realizations of the intercept time and100

snow velocity by the jackknife technique (Efron and Stein, 1981). Realizations of depth and density101
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were generated from the current realization of m following Equations (S.9) – (S.11). The bootstrapped102

distribution M̂ was generated from 1000 jackknifed realizations to establish uncertainty regions (Efron103

and Tibshirani, 1986). A distribution was gathered for each parameter: intercept travel-time, velocity,104

depth, and density. The mean of M̂ yields the expected value of the parameter (m̂) with a standard105

deviation (σ̂). We developed uncertainty regions for each bootstrapped distribution assuming the standard106

normal distribution107

m̂± ẑ σ̂ , (S.13)

and assessed the z-score at ẑ = 1, which has the central interval of 1σ̂ (Efron and Tibshirani, 1986). The108

jackknifed estimates of variance for snow density and depth provide the means to estimate uncertainty in109

the 2015− 2017 SMB. We estimated the variance of SMB by the linear error propagation equation110

σ̂2
ḃ

= σ̂2zρ
2 + σ̂2ρz

2 + 2σ̂ρzρz , (S.14)

where the covariance σ̂ρz was calculated from the parameter distributions. The resulting uncertainty111

measure is the standard interval developed from Eq. (S.13). The snow parameters and uncertainties112

presented in Fig. 5 were smoothed using a Gaussian kernal with a standard deviation of 250 m.113

As we presented in Fig. 9, we propagated uncertainties in SMB by Monte Carlo simulation, which114

incorporated the uncertainty in the age of dated isochrones (σa = ±31 days) and the uncertainties in the115

snow parameters used to generate the firn model (Section S.1.5). We estimated the ±31 day uncertainty116

by summing in quadrature the uncertainties in the firn core age (±18 days; Rupper and others (2015)) and117

the radar estimated depth that was mapped to the GTC15 age-depth scale (±25 days) developed by Lewis118

and others (2019). We delimited the annual SMB calculation between January 1, 1984 and January 1, 2017,119

which are the complete years between the date of the earliest layer picked and the date of data acquisition.120

We filtered the outlying 1% of the instantaneous SMB model and interpolated between neighboring values.121

We quantified annual average SMB and its uncertainty using Monte Carlo simulation, by generating 1000122

randomly initialized density-depth models (Section S.1.5) from the snow parameter distributions. Rather123

than randomly generating an age model in this process, because we updated the age-depth model by124

interpreting IRHs (Section S.1.6), we interpolated the age model to the depth axis that was defined by125

the Monte Carlo realization of the density model. We calculated the numerical derivative to estimate the126
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instantaneous SMB (Eq. (S.12)), extracted the intervals that composed each annual layer, and averaged the127

samples of instantaneous SMB into one realization of annual SMB. After 1000 realizations were generated128

for each of 33 years in the period 1984 − 2017, we calculated the multidecadal mean SMB and variance129

using Monte Carlo resampling. Repeating for 1000 simulations, we randomly sampled an annual SMB130

realization from 10 annual intervals and averaged. In the following section, to clarify the capabilities of the131

radar analysis we ignore the uncertainties in the firn core ages and demonstrate the radar inversion as the132

only source of uncertainty in SMB when paramertizing the MxHL model.133

S.1.5. Parameterizing the MxRadar - Herron and Langway (1980) Model134

The Herron and Langway (1980, HL) model requires three parameters: mean snow density, mean annual135

accumulation, and 10 m firn temperature. We use the snow properties estimated by the radar inversion136

(Fig. 5) and MERRA reanalysis temperature to parameterize the HL model in our measured-modeled,137

MxRadar-HL, framework. We chose the density parameter as the average of the densities estimated by the138

surface-wave (LMO) analysis and the reflected wave (NMO) analysis of the fall 2014 isochronous reflection139

horizon (IRH). We approximated the accumulation parameter using the radar estimated SMB (Eq. (S.12))140

that represented the average of the previous ∼ 2.5 years – as the IRH depth indicates the date November141

30, 2014, established by the firn core analysis, and the date of acquisition was June 13, 2017. Mean annual142

2 m air temperature was calculated from MERRA (1979−2012) data (Birkel, 2018) and used as a proxy for143

10 m firn temperature (Loewe, 1970). MERRA annual temperatures at GTC15 over the period 1979−2012144

show an increase of 0.06± 0.01 ◦C a−1 with a mean of −25.7± 1.0 ◦C.145

We evaluated the MxHL parameterization by comparing it to the GTC15 parametization (Fig. S.2) and146

an optimum set of parameters that were determined by minimizing147

φ =
RMS(τHL − τGTC15)

range(τGTC15)
+

RMS(ρHL − ρGTC15)

range(ρGTC15)
, (S.15)

using the Nelder and Mead (1965) method (NM) for nonlinear optimization. The objective function φ148

(Eq. (S.15)) measures the root-mean-squared error of the modeled (HL) and measured (GTC15) age (τ )149

and density (ρ) as a percentage, normalized by the range in the data for the entire depth of GTC15150

(∼ 28.5 m). An objective function measured by either τ or ρ individually does not contain a unique global151

solution upon minimization. We found that an appropriate fit to GTC15 τ or GTC15 ρ could be achieved152
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with a range of parameterizations, alluding to the non-uniqueness which we regularized by minimizing φ153

as a function of both the age and density.154

Average SMB, density, and 10 m bore hole temperature measured at GTC15 provided the true155

parameterization for the HL model. The age-depth scale (1969-2017) was measured by analyzing seasonal156

oscillations of δ18O, major ions, and dust observed in the firn core (Lewis and others, 2019). Annual157

SMB was measured by combining the age-depth scale with the firn density (Lewis and others, 2019).158

We estimated the GTC15 mean annual SMB using Monte Carlo resampling to assess uncertainties159

(0.306 ± 0.021 m w.e. a−1). We chose the GTC15 density parameter (359 ± 36 kg/m3), which is the160

“commonly reported average density over the first one or two meters of snow” (Herron and Langway, 1980,161

p. 7), at the interval that had the minimum residual with the NM optimum density. The central depth of162

the core interval nearest to the optimal density is 1.22±0.13 m. Uncertainties in the density parameter are163

assumed to be within 10% of the measurement. We measured firn temperatures using borehole thermistors164

at 6, 8, 10, 12, and 14 m depth. After the thermistor string reached equilibrium, temperatures between165

6 and 14 m depth closely agreed and we used Monte Carlo resampling to estimate the 10 m firn temperature166

(−24.9± 0.2 ◦C).167

The HL model parameterized by GTC15 data yielded φ = 6.4%, which is near the optimum φ = 6.2%.168

The MxHL parameters obtained in the vicinity of GTC15 achieved an agreeably close fit with φ = 7.0%.169

Table S.1 summarizes the three HL model parameterizations and their accuracy. Figure S.2 displays the170

MxHL parameters overlaid on slices of Eq. (S.15) through the GTC15 parameters.171

We completed the radar analyses using the MxHL model after making the following adjustments. We172

refined the density model using the LMO and NMO derived densities and depths to estimate the snow173

density-depth gradient. Using a linear model we replaced the upper one to two meters of the HL model174

with a piecewise segment that was extrapolated to the surface and merged with the HL model at the175

intersecting depth in the snow. We also refined the age model and improved the radar image quality using176

structure-oriented filtering (see section S.1.6).177
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Fig. S.2: Equation S.15 is represented as slices through the GTC15 parameterization. Viewing the 3D objective function this
way shows the model sensitivity to the parameters. The MxHL parameters are evaluated against the GTC15 parameterization
with 1σ uncertainties. These data are summarized in Table S.1.

Table S.1: HL parameters from MxRadar (MxHL), GreenTrACS Core 15 (GTC15), and Nelder and Mead (1965) optimization
(NM) are compared. Uncertainties in the GTC15 and MxHL parameterizations are expressed at 1σ. Accuracy is reported for
the modeled age (φτ ) and density (φρ) as the rms error and jointly as the normalized summed rms error φ.

Parameters ḃ (m w.e. a−1) ρ (kg/m3) T (◦C) τ
RMSE

(a) ρ
RMSE

(kg/m3) φ (%)

MxHL 0.313± 0.009 367± 8 −25.7± 1.0 0.528 20.2 7.0

GTC15 0.306± 0.021 359± 36 −24.9± 0.2 0.40 20.0 6.4

NM 0.306 358 −23.1 0.350 19.0 6.2
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S.1.6. Structure-oriented Filtering in the Wheeler Domain178

Accumulated snow is deposited in isochronous layers that propagate slowly as the firn stratigraphy evolves179

and are apparent in the radiostratigraphy (Arcone and others, 2005; Ng and King, 2011). However, as180

demonstrated in this study, larger amplitude stratigraphic undulations with wavelengths of / 5 km exhibit181

reduced coherence in the GPR imaging, an effect that is worsened by increased surface roughness. As182

described by Arcone and others (2004), artificial fading in the GPR image along the limbs of stratigraphic183

folds also interrupts the horizon continuity. The fading effect can be seen in Fig. 8 as a discontinuity in the184

inflection point of a fold at 48 km distance and ∼ 11 m depth. It is important to accurately capture SMB185

variability at < 5 km for evaluating downscaled surface mass balance models, but as we demonstrate, this186

effort would be limited to only a few horizon selections here because of noise contamination in the radar187

section.188

Structure-oriented filtering techniques often determine the structure from the time or depth image189

by localized eigenvalue decomposition of the image gradient tensor, such as filters applying nonlinear190

anisotropic diffusion (Fehmers and Höcker, 2003). We imposed the isochrone structure on the image, using191

the age model as a proxy for the stratigraphic structure. We flattened the firn structure by converting the192

time domain GPR image into coordinates of stratigraphic age, known as the Wheeler (1958) domain. We193

then applied linear prediction filtering, because flattening the traces improves their predictability by linear194

modeling. Conversion to stratigraphic coordinates can be achieved using plane wave deconstruction filters195

to determine local slope fields from the image (Karimi and Fomel, 2015). But it is to our advantage to196

work with the stratigraphic age because this information is necessary for SMB calculations. We found our197

approach outperformed filters that determine the structure orientation directly from the noisy image.198

To implement the structure-oriented filter, we produced a noisy time domain radar section from the199

multi-channel imagery (Fig. 7) by first transferring the measured-modeled firn density to stacking velocity200

(VNMO) and then applying normal moveout correction and offset stacking (Yilmaz, 2001). Provided that the201

radiostratigraphy in depth mimics the firn layering and is isochronous (e.g. Spikes and others, 2004), we used202

the HL age-depth model to estimate the firn structure orientation and age. To do so, we first converted the203

age model from depth to travel-time (Fig. S.3) by a vertical stretch (Margrave and Lamoureux, 2019) using204

the stacking velocity model. We created a pseudo stacking velocity model (Vpseudo) with units of years per205

nanosecond by dividing the age-travel-time model by the two-way travel times. Then we converted the radar206

image from travel-time to the Wheeler domain by a vertical stretch using Vpseudo (Fig. S.4). We oversampled207
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Fig. S.3: The age-travel-time model was calculated from pseudo velocities. Contours of this image are isochronous travel-
time horizons. January 1, 2010, 2005, and 2000 are labeled for reference. We used the age-travel-time model to flatten the
radar traces, by converting the time domain image into the age domain (Fig. S.4).

in the Wheeler domain to prevent signal aliasing. The age converted radargram has approximately flattened208

stratigraphy, such that any row of the image is isochronous. If we knew the structure orientation perfectly,209

and radar isochrones truly had the same age, the layers in the Wheeler domain would be theoretically210

flat. By picking, we calculated the residual age of five IRHs with an average epoch of 5.3± 2.7 years (the211

latest being the 1991 horizon) and used 1D shape preserving piecewise interpolation polynomials (Kahaner212

and others, 1989) to create a grid of perturbations for the age-travel-time model (Fig. S.5). Perturbations213

beyond the last picked horizon were set to zero. We applied the perturbations to the age model and re-214

flattened the image by stretching the traces to the updated age model (Fig. S.6). Radar amplitudes are now215

approximately horizontal across each row of the Wheeler domain image, indicating that the age-travel-time216

model fits the firn structure and IRH theory.217

We applied the fx-deconvolution noise suppression algorithm (Gulunay, 1986) to the Wheeler domain218

radargram (Fig. S.7). Fx-deconvolution relies on autoregression modeling of the GPR signal in the frequency219

domain to build the optimal complex Wiener filter (Treitel, 1974). We applied the filter by averaging220

overlapping computations along the age axis to alleviate non-stationarity of the signal frequency. This221

process can benefit any GPR imagery of polar firn, provided that an initial stratigraphic age model, as a222

proxy for the structure, and methods to convert the image domain are available. At GTC15 Spur West, due223

to the large spatial gradient in SMB, it was necessary to determine the model residual and re-flatten the224

image before filtering. For GPR imagery expressing small or gradual SMB variability it may be sufficient225

to apply the structure-oriented filter without residual corrections to the Wheeler image.226
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Fig. S.4: Using the initial age model, the Wheeler domain radargram has minor remnant undulations. Because the rows of
the Wheeler image are isochronous, the undulations that deviate from row-wise horizontal are the model residual. If the
age model was correct the radar reflections would be entirely horizontal (Fig. S.6). By interpreting five horizons of this
image, we interpolated the model residual (Fig. S.5) and applied these perturbations to update the age model such that it
is accurate in a relative sense.

Fig. S.5: Perturbations in the travel-time domain are calculated by picking IRHs in Fig. S.4. When applied, the Wheeler
domain image is reflattened (Fig. S.6), which ensures that the age model is accurate in a relative sense. We rely on ages
measured from the firn core for absolute accuracy in the age model.

Fig. S.6: After interpreting five horizons of Fig. S.4, calculating the model residual (Fig. S.5), and applying the perturbations
to the age-travel-time model (Fig. S.3), we re-flattened the Wheeler image. The radar amplitudes are now approximately
horizontal, indicating that the updated age model is accurate according to the IRH theory.
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Fig. S.7: Flattening the traces improves their predictability by linear modeling. We applied the fx-deconvolution algorithm
(Gulunay, 1986) to suppress the random noise that contaminates the linearly predictable signal.

S.1.7. Depth Imaging for Model Updates227

We converted the updated age-travel-time model to depth using the stacking velocity model and then228

we used the age-depth model to convert the Wheeler domain image to depth. We applied a vertical229

stretch for each conversion operation (Margrave and Lamoureux, 2019). Figure 8 reveals the smooth230

and continuous IRHs of the depth image. The additional step of structure-oriented filtering extended231

the interpretable isochrone record from 1991 to 1984 (which is only limited by the time-window range of232

the radar acquisition). We picked 16 IRHs on the depth image with an average epoch of 2.1 ± 1.7 years.233

Over an equivalent depth range, this compares to the seven IRHs at five year age resolution used by234

Lewis and others (2019) to estimate SMB along GTC15 Spur West. In the vicinity of GTC15 the residuals235

between the GTC15 age-depth scale and the picked IRH ages were calculated. We created a second set of236

age perturbations using 1D linear interpolation with linear extrapolation to estimate perturbations beyond237

the deepest picked IRH (Fig. S.8), and we applied these perturbations to update the age-depth model. We238

then used the updated age model to calculate the instantaneous SMB.239
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Fig. S.8: We interpreted 16 IRHs of Fig. 8 to measure their relative age at depth. We calculated the residual between our
interpreted ages and the ages measured from GTC15 and interpolated this grid of perturbations in the depth domain. We
applied these perturbations to the age-depth model which was used to calculate the SMB time-series. Applying this set of
perturbations makes the relative age-depth model accurate in an absolute sense.
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