Application of Advanced Earth Observations & Model Simulations to Improve Air Quality Monitoring in the Hindu-Kush-Himalayan Region

Aaron Naeger

Earth System Science Center, University of Alabama in Huntsville (UAH), Huntsville, AL

Co-l's (in Huntsville, AL unless where noted): **Jonathan Case**, ENSCO Inc.

Kevin Fuell, Earth System Science Center, UAH Bhupesh Adhikary; Mir Matin, Birendra Bajracharya, ICIMOD, Kathmandu, Nepal Michael Newchurch, UAH Emily Berndt, NASA MSFC

Air Quality Monitoring & Forecasting Challenges in HKH

- ➤ Air pollution is a serious threat to human health in HKH, as poor air quality (AQ) is a common occurrence across the region
- Air pollution is difficult to monitor and predict in HKH due to strong and rapidly evolving emissions
- ➤ New generation satellite sensors are capable of significantly advancing AQ monitoring capabilities, especially in areas of highly variable pollution
- New satellite observations are perfectly suited for constraining or assimilating chemical transport models and improving AQ forecasts
- Growing network of ground-based monitors / sensors for complementing satellite & model data

Project Objectives

- Intelligently fuse information from state-of-the-art satellite sensors to develop comprehensive products for advancing real-time air pollution & fog monitoring capabilities
- Design a tailored chemical transport model framework for providing accurate AQ, fog/smog, and temperature/stability forecasts
- Build a lagrangian dispersion model informed by our tailored products to aid in the rapid response to extreme AQ/disaster events
- 4. Implement the satellite- and model-based AQ products into applicable Decision Support Systems, and develop customized end-user training

Overarching Project Goal:

Deliver an advanced air quality monitoring & forecasting toolkit for providing accurate and timely alerts/warnings to the public

Key Products & Tools

SERVIR

- 1. Suite of Red-Green-Blue (RGB) products from the geostationary Advanced Meteorological Instrument (AMI) for monitoring diurnal evolution of dust, fires, smoke and fog
- 2. High-level (L2+) trace gas and aerosol products developed from composite satellite and model data to track air pollution in the troposphere and surface layer
- **3. High-resolution chemical transport model** for accurately predicting AQ in the HKH region and providing timely warnings to the public
- 4. Dispersion model designed for efficiently predicting dust pollution concentrations and enabling rapid response to dust storms

Geostationary AMI RGBs for Dust Monitoring

SERVIR

- ➤ Dust RGB product uses several IR bands from AMI to depict dust storms in magenta colors
 - Individual satellite bands are unable to characterize dust in the atmosphere
 - Dust RGB valid during the day and night due to use of IR bands alone
- Rapid 10-minute Dust RGBs are capable of monitoring the diurnal evolution of dust emissions and transport
- Effectively identifying dust with the **Dust RGB** can aid AQ management and source attribution assessments (e.g., dust and smoke pollution mixtures over Nepal)

Dust Transport and AQ event from March 29-31, 2021

- Dust RGB monitors transported dust from Pakistan and India, impacting areas of Nepal
- PM2.5 exceeded 250 µg m⁻³ at U.S. Embassy monitor site in Kathmandu from March 30-31
- ➤ Dust likely contributed to higher PM2.5 levels in Kathmandu, in addition to smoke (major contributor) from numerous fires across the region

Geostationary AMI RGB for Fog Monitoring

- AMI Nighttime Microphysics (NtMicro) RGB product monitors rapidly evolving low clouds (bright green) and fog (dull aqua) during the nighttime
- Product can aid in identifying areas of poor visibility for anticipating hazards to public transit and aviation
- NtMicro RGB can provide guidance on areas of potentially degraded air quality during nighttime
 - Fog and low cloud events are conducive to increased air pollutant levels

Geostationary AMI for Fire & Smoke Monitoring

SERVIR

- Fires are a major source of pollution in HKH and can lead to extreme pollution events
- Geostationary AMI can monitor the strong diurnal variation in smoke emissions from fires
- Our suite of satellite products for aiding smoke monitoring include:
 - AMI True Color RGB, valid for all pollutants
 including smoke (1 km resolution every 10 min)
 - **AMI Natural Color Fire RGB** for thick smoke and fires (2 km resolution every 10 min)
 - AMI 3.8 μm channel for fire detections (2 km resolution every 10 min)
 - Merged MODIS, VIIRS, & AMI fire detections
 (Hourly & Daily at raw resolution of sensor)

TROPOMI+OMI Fused High-Level Trace Gas Products

- ➤ Suite of high-level (L2+) near-real-time trace gas products for monitoring air pollutants in the troposphere and surface-layer over HKH
- ➤ L3 products blend L2 TROPOMI and OMI data using spatial interpolation techniques and quality assurance tests
- ➤ Surface-layer L4 products fuse L3
 TROPOMI+OMI products and model data
 to estimate trace gas pollution at the
 surface where people live!
- ➤ L3 and L4 products are produced once per day on regular 0.02° grid

AMI+MODIS+VIIRS High-Level Aerosol Products

- ➤ High-level (L2+) near-real-time aerosol products for monitoring particulate pollution in the atmospheric column and surface-layer over HKH
- ➤ L3 aerosol products blend L2 MODIS, VIIRS, and AMI (in development) AOD data using similar retrieval techniques and quality assurance tests
- Surface-layer L4 products fuse L3 MODIS, VIIRS, and AMI products and model data to estimate PM pollution at the surface where people live!
- ➤ L3 and L4 blended aerosol products are on regular 0.1° grid at hourly and daily time scales

Preliminary L2 AMI AOD

Chemical Transport Model AQ Predictions & Products

SERVIR

➤ Uses the Weather Research and Forecast Model coupled with Chemistry (WRF-Chem)

- ➤ 12 km grid over HKH region with finer 4 km centered over Nepal
- > Daily 48-hour forecasts initialized at 06 UTC
- ➤ Global WACCM model for chemical initial & lateral boundary conditions
- Chemical reactions including ozone chemistry predicted via RADM2 mechanism
- ➤ Assimilation of satellite AOD during initial time window from 03-09 UTC
- ➤ Assimilation of TROPOMI NO2 is in progress

AQ forecasting system can improve AQ warnings / alerts to the public

HYSPLIT Dispersion Forecasts for Dust Storms

- > Developing an efficient **HYSPLIT dispersion forecasting system** specialized **for rapid response to dust storms** over HKH
- ➤ Capable of providing longer term (> 3 day) dust forecasts to provide guidance on transported dust concentrations and impactful AQ events
- > Information from dust RGB product provides guidance on dust emission locations in HYSPLIT

GEMS Data for AQ Monitoring & Forecasting

Credit: Ministry of Science and Technology Information and Communication-Ministry of Environment-Ministry of Oceans and Fisheries

GEMS – Geostationary Environment Monitoring Spectrometer

- Hourly daytime observations of both trace gases and aerosols
 - Trace gases include: NO2, HCHO, O3, SO2
 - Aerosols include: AOD & Aerosol Effective Height
- ➤ GEMS scan coverage moves over the Nepal, East India, Bangladesh, and Bhutan by 0145 UTC
- Fusing GEMS data with satellite-based products and model assimilation techniques

Thank you!

