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Abstract 
We present D-SHIELD, a challenging climate science applica-
tion to plan coordinated measurements (observations) for a con-
stellation of satellites, each containing two different sensors, each 
with 61 pointing angle options. The L-band and P-band radar 
sensors collect data fed into a soil moisture model which tracks 
and predicts soil moisture across 1.67 million Ground Positions 
(GP). Soil moisture is an important predictor of wildfires, and 
then a predictor of floods, landslides and debris flow after a fire.  
 Each measurement covers multiple GP due to the sensor foot-
print. Each GP has a "model error" which represents the uncer-
tainty of the the soil moisture state prediction. Model error 
changes at different rates for each GP as the time since last obser-
vation increases and after significant events like rain. The plan-
ner's goal is to select measurements which maximize soil mois-
ture model improvement (reduce model uncertainty).  
 This problem is combinatorically explosive, involving many 
degrees of freedom for planner choices. Good domain heuristics 
can find solutions within a reasonable time for our application 
needs but cannot be proven optimal. In this paper we compare 
two different planning approaches to this problem: Dynamic Con-
straint Processing (DCP) and Mixed Integer Linear Programming 
(MILP). We match inputs and metrics for both DCP and MILP 
algorithms to enable a direct apples-to-apples comparison. We 
demonstrate and discuss the trades between DCP flexibility and 
performance vs. MILP's promise of provable optimality.  

Climate Science Problem and Application 
Soil moisture is important to manage fires both before and 
after they occur. Soil moisture predicts fire locations, then 
after they occur it predicts flooding, debris flow and land-
slides. The Planner must produce a coordinated plan for a 
constellation of satellites to observe ground positions (GP) 
based on predicted model and measurement errors. The 
planner's objective is to maximize soil moisture model 
improvement, where model improvement means reducing 
model uncertainty, which is the sum of model improve-
ment for all ground positions (GP) observed.  
 Important need for planning to solve problem: Rapid 
responses to quick changing natural phenomena (like fire) 
requires fast replanning with fewer humans in the loop to 
direct agile spacecraft to optimal observation location with 
the optimal sensor selection.  Offline engineering models 
of spacecraft, sensors and orbits do not include models of 
duty cycles of the expected plans to be executed, so cannot 

simulate/predict the system behavioral/dynamic require-
ments. Agile satellites that can change viewing angle pro-
vide new opportunities for opportunistic planning, com-
pared to satellites where the sensor angle is fixed. Planning 
is also required to optimize for minimizing error compared 
to the relatively simple metric of maximizing the # of GP 
observed regardless of model error and measurement error.  
 The D-SHIELD application (Levinson et. al., 2021) 
uses a (proposed) constellation of satellites looking at 
Earth to reduce global soil moisture model uncertainty by 
making observations that target spatio-temporal points of 
rising prediction error, which accurate data can alleviate.  
Such uncertainty reduction benefits accurate models for 
floods, wildfires, vegetation drydowns, etc.  
 D-SHIELD is a challenging climate science application 
to plan coordinated measurements (observations) for a 
constellation of satellites, each containing two different 
sensors, each with 61 pointing angle options. The L-band 
and P-band radar sensors collect data fed into a soil mois-
ture model which tracks and predicts soil moisture across 
1.67 million Ground Positions (GP). Soil moisture is an 
important predictor of wildfires and of floods, landslides 
and debris flow after a fire.  
 Each measurement covers multiple GP due to the sensor 
footprint. Each GP has a "model error" which is the uncer-
tainty of the prediction of the soil moisture state at a speci-
fied time (RMSE).  Model error changes at different rates 
for each GP as the time since last observation increases and 
also after significant events like rain. The planner's goal is 
to select measurements which maximize soil moisture 
model improvement (reduce model uncertainty).  
 The overall goal is to demonstrate a system which con-
tinually updates a hydrologic land surface model with ex-
ternal forcing functions (e.g. precipitation) and dynamical-
ly schedules new observations to improve the model where 
the error is greatest, such as right after rain occurs, or plac-
es which have not been observed recently, using instru-
ment parameters that minimize retrieval errors. The dy-
namic soil moisture model detects regional model quality 
degradation in near real-time and provides input to the 
planner about the highest priority ground positions (GP) to 
observe next from a science perspective. This paper focus-
es on the D-SHIELD planner more than the science model.  
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 Each satellite in the constellation includes at least 2 dif-
ferent radar instruments (L-band and P-band) to take imag-
es of ground positions (GP). Each image typically covers 
multiple GP. Each satellite has a set of access times when 
it can view various GP, based on its orbit. These access 
times are called timepoints (TP).  The planner creates an 
"observation plan". It must decide which satellites look at 
which GPs, at what times, with which instruments using 
which available viewing angles. For 3 satellites over a 6-
hour period, the constellation sees a total of 1,062,777 GP 
distributed over 29,700 TP. Each satellite can see an aver-
age of 354,259 GP, distributed over an average of 9,900 
TP. The planner produces satellite plans. For every satel-
lite, the planner must choose <instrument, angle> meas-
urement pairs (or choose no measurement) for every TP 
when it can see any GP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 Figure 1 shows the D-SHIELD system. The solid lines 
show the closed-loop control flow while the dashed lines 
show external data sources used to update the model. The 
process is initialized with inputs based on the satellite or-
bits and specifications for the spacecraft and instruments, 
which are used to determine available observation times, 
along with slew time and energy requirements.   Those raw 
inputs go through pre-processing to generate the planner 
input files. The planner searches through the space of all 
available observation times and decides what to look at, 
when to look at it, and how to look at it. The planner pro-
duces a sequence of commands for the Controller to exe-
cute (command the instruments to take the images). 
 The (simulated) spacecraft executes the plan, collects the 
observation data and passes that to the Soil Moisture Simu-
lator, to update the model based on the new observations. 

The Soil Moisture Model is a dynamic database which 
maintains a record of the current model error for each GP.  
 The planner's job is to create a coordinated multi-
satellite observation plan which improves the model quali-
ty by observing the GP with the highest model error using 
measurements with the least error. Each plan step is an 
observation command of the form <time, instrument(s), 
viewing angle>, which specifies the time when one or both 
instruments will take images at the given viewing angle.  
 Model and Measurement Error Tables: Planner input 
includes a model of predicted soil moisture for the next 24 
hours (the "model error"), and a measurement error table 
which defines the expected measurement error for any 
combination of instruments and viewing angles and biome 
type (e.g., forest, marshland, urban).  Measurement error is 
the predicted RMSE for using the given (combination of) 
instruments at a given angle. D-SHIELD uses high-fidelity 
models of spacecraft and soil moisture dynamics, com-
bined with a constraint satisfaction planner to generate new 
observation plans for all satellites in the constellation with 
the objective of improving model quality. Model quality is 
inversely proportional to the model error associated with 
each GP. Model error for each GP is a combination of a 
given prior model error (predictive uncertainty) and meas-
urement error (soil moisture estimate retrieval error) from 
new observations. Model error increases over time without 
new observations and increases when rain occurs. Meas-
urement error is a function of which instrument (L-band or 
P-band) is used, the viewing angle, the type of ground cov-
er (e.g., barren, shrubs, forest, croplands), and other ancil-
lary parameters. 
 Constraints: The planner must enforce the following 
constraints: 
Deconfliction constraints (each satellite can do only one 
thing at a time). The image lock and slew time constraint 
constraints are enforced per satellite. 
    Image Lock - Each observation requires the instrument 
to hold its viewing angle for 3 seconds so that a stripmap 
image can be created. This blocks out slewing to another 
viewing angle during that 3-second image lock period. 
    Slew time constraints - The satellite must slew to change 
viewing angles. There are constraints on how quickly it can 
change viewing angles, depending on the slew magnitude. 
Changing viewing angle takes a different amount of time 
depending on the combination of initial angle and target 
angle. This is called the slew time constraint. The planner 
must ensure there is enough time to slew between each 
observation. 
    Duplicate observations (enforced swarm-wide) - We do 
not want the collective swarm to look at the same position 
twice in the same 24-hour period to cover more unob-
served locations. There are exceptions for serendipitous 
cases when we aim at one GP but capture others in the 
same image, and for intentional cases when we plan a fol-
low-up observation. These are the only swarm-wide con-
straints. 

Figure 1: D-SHIELD architecture 
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Planning Problem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Preprocessing involves assimilating a wide range of heter-
ogeneous input data, to produce two 2 search spaces as 
planner inputs. The TP choices (left) specifies the space of 
commands available at each TP. The GP choices (right) 
maps each GP to choices for observing it with associated 
model and measurement errors.   
The TP space is the satellite command space describes 
commands: <sat, time, inst, angle> for all sats, times, in-
strument, angles. This is the primary search space which 
corresponds to the required output: an observation plan for 
each satellite. This is the physical search space. 
 GP command space is the scientific search space, where 
GP are sorted in decreasing order of scientific value. In our 
case this means the GP with the highest model error which 
can benefit most from high quality measurements. The GP 
space is used as a local heuristic to sort the choices in the 
GP space. See (Levinson et. al 2021) for more details about 
how the local heuristics work in the DCSP.  
 The planner's job is to assign commands for every satel-
lite for every timepoint (TP) when it can observe any 
ground position (GP). The TP when a satellite can observe 
a GP is called an access time.  There are too many GP to 
observe them all so this is inherently an optimization prob-
lem. The objective is to reduce the average model error by 
observing as many high-error GP as possible.  

Planner challenges beyond the State of Art 
The desire for near-real time response to rapidly changing 
climate phenomena, combined with the complexity of the 
problem produces many planner challenges.  Our concept 
of operations involves at least 6 satellites and a 3 to 6 hour 
plan horizon. The larger problems can be solved by DCP in 
a time reasonable for our needs, but we don't know how  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
close to optimal the solution is. The MILP cannot be prov-
en optimal on those large problems within 40 hours run-
ning on Gurobi, so we don't yet know the optimal solution 
for those cases. For example, on a problem a tiny fraction 
of the size of our target, the MILP solver can take 13 hours 
to find an optimal solution and another 25 hours to prove it 
was optimal.  
 
 
 
 
 
 
 
 
 

 
 
Our target scenario involves generating plans for a swarm 
of 6+ satellites for a 6 hour plan horizon, possibly concate-
nated into a 24-hour plan horizon (21,600). Our actions are 
modeled on the scale of 3 to 25 seconds. At any given sec-
ond the swarm may have a choice of 50 different com-
mands, many of which are mutually exclusive. 
 Problem size is huge (90 million MILP constraints for 1 
satellite with 6 hour plan horizon). There are many degrees 
of freedom (branching factor) for available command 
choices and observation targets. Preprocessing is required 
to prune infeasible choices. Problem difficulty increases 
with increasing number of command choices/TP, and when 
many TP are clustered together within 25 seconds. Close 

Figure 2:  Preprocessing produces TP choice files for each satellite (left) and a single GP choice file (right) for the swarm. 
  
 
 

Figure 3: Planner Output is a plan for each satellite contain-
ing scheduled observations and slew actions 

Ground Position (GP) choices:  
• When & how to view each GP  
• Science-return search space used in local heuristics 
• Measurement error depends on GP biome-type (shrub, forest, 

baren) 
• One file for whole constellation 

                                             cmd                      model          meas. 
GP        satellite       Time           choices                    error            error 
3165:      1               1311              L.32                        .008             .038 
                1               1311              P.32                        .008             .017 
                1               1311              L.32 & P.32           .008             .010 
                2               1259              L.33                       .042             .028  
                2               1259              P.33                        .042             .028  
                2               1259              L.33 & P.33           .042             .030  
  

Satellite 2 Timepoint (TP) choices:  
Command choices and times for viewing 
each GP (per satellite) 
• Command search space, 1 file for 

each satellite 
 
Command choice examples:  
L.32 = <L-band, angle 32> ,  
P.34 =  <P-band, angle 34>  
  
                Cmd 
Time     choices        GP covered by choice 
1311:      L.32:                   [3165]               
                L.34:                   [3445, 3446]    
                P.33:                   [3165]               
                P.34:                   [3445, 3446]    
                P.35:                   [3445, 3446] 
               L.32 & P.32:       [3165] 

Satellite 1 Timepoint (TP) choices:  
Command choices and times for viewing 
each GP 
• Command search space, 1 file for 

each satellite 
 
Command choice examples:  
L.32 = <L-band, angle 32> ,  
P.34 =  <P-band, angle 34>  
  
                Cmd 
Time     choices        GP covered by choice 
1311:      L.32:                   [3165]               
                L.34:                   [3445, 3446]    
                P.33:                   [3165]               
                P.34:                   [3445, 3446]    
               L.32 & P.32:       [3165] 

Satellite 2 Plan:    
   
 Time      Com-
mand  
    [2-4]          P.48  
  [5-14]           Idle  
[15-17]          L.48  
[18-36]           Idle 
[37-40]          Slew 
[41-43]          L.44    

Satellite 1 Plan:    
   
 Time      Command  
    [2-4]          P.48  
  [5-14]           Idle  
[15-17]          L.48  
[18-36]           Idle 
[37-40]          Slew 
[41-43]          L.44   
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temporal proximity between TP requires more deconflic-
tion constraints. The closer the TP are the more constraints 
are required to deconflict them, up to the maximum slew 
time of 25 seconds.   
 Near real-time response to rapidly changing phenomena 
such as wildfires and mudslides. This requirement seems 
out of reach for exact solutions while heuristic solutions 
are available. We are interested in using MILP's exact solu-
tions in non-real-time to evaluate the DCP approximate 
solutions which may meet our performance needs.  Plan-
ners running onboard satellites have limited resources 
which increases the challenge.  

Planning Model and Methods 
We now introduce formal terms which are shared by both 
the DCP and MILP solutions. Given the following inputs: 
 
𝑁 = the # of satellites in constellation 
𝑠!  = satellite 𝑖,    1 ≤ 𝑖 ≤ 𝑁 
𝐺! = the set of all GP visible by 𝑠! in plan horizon  
𝑇!  = Set of all times in plan horizon, s.t.: 𝑠!  can see any 
𝑔" ∈ 𝐺! 
𝐶!,$ = the set of command choices for 𝑠! at time t,    each 
command choice = <instruments, params>,       ∀𝑡 ∈ 𝑇! 
 
𝐺!,%,$ = set of Ground Positions (GP) covered by sat i exe-
cuting command 𝑐 ∈ 𝐶!,$.  Note: 𝐺!,%,$ is filtered to remove 
gp in cases where 𝑟&,%,$ 	< 	0 (model err at time t cannot be 
improved by any commands available at t.)  
 
𝑒𝑟𝑟&,$	    = the model error for GP 𝑔 at time t, including 
weather forecast but prior to new observation. ∀𝑔 ∈ 𝐺	 
 
𝑒𝑟𝑟%,()	 = the measurement error for command c in biome 
type b 
 
𝑟&,%,$ = 𝑚𝑎𝑥(𝑒𝑟𝑟&,$		 − 𝑒𝑟𝑟%,()	, 0)                                      (1) 
         = GP reward = GP g's error improvement        
If 𝑟&,%,$	  < 0 then taking an image with command c would 
increase model error for GP 𝑔	. Observations which in-
crease error are discarded, so 𝑟&,%,$	 has a lower bound of 0. 
Equation (1) is the basis for the plan score metric (objec-
tive value) for our tests with both the DCP and MILP 
methods.  
 
𝑠𝑙𝑒𝑤%!,%"

*  = slew time duration between angles for 𝑐+	and 𝑐,  
 
 
 

Constraint Processing  
A Constraint Processing System (Dechter 2003) is defined 
generically as: 
• Set X of variables {𝑥! , . . 𝑥-} 
• Set D of variable domains {𝑑! , . . 𝑑-} for each variable 
• Set C of constraints on legal variable combinations 
• Satisfiability requirement: Find a consistent set of var-

iable assignments for all variables for hard constraints 
 
There are too many GP to observe them all. This is an 
oversubscription planning problem so it's inherently a Con-
straint Optimization Problem (COP) rather than pure con-
straint satisfaction/feasibility problem.  
 
Decision Variables: We define a set of decision variables 
𝑥!,$	, each representing the command choice for sat 𝑠! at 
time t. ∀	𝒕	 ∈ 	𝑇!,   𝑇!= {All access times (TP) for sat 𝑠!}. 
This model is "sparsely time sliced", meaning we only de-
fine 𝑥!,$for times when satellite S has access to view a GP. 
Each satellite has only about 9000 seconds out of a 21,600 
second plan horizon (6-hours) when it can see any GP, but 
on each of those 9000 seconds it can see many GP.  
Complexity:     # of 𝑥!,$	 vars = O[  |𝑇!| ] 
  
Variable Domains: 𝑥!,$ 	 ∈ {𝑑!,$}. The variable domain 𝑑!,$ 
is the set of command choices for each 𝑥!,$. The domain of 
choices for 𝑥!,$ is the set of all command options for sat s at 
time t.  𝑑$.	 ∈ 		{(<instrument1, viewAngle1>, <instru-
ment2, viewAngle2>)}. The variable domain is symbolic 
compared to the MILP's requirement for quantitative do-
mains. Here, a variable 𝑥!,$ may be assigned a value from 
the domain shown as 'cmd choices' in figure 2, such as 
L.32 & P.32.  
 
The search space is a node tree. Each node is a plan con-
sisting of a (possibly partial) set of variable assignments 
(cmd choices). Each branch/edge in the tree represents a 
variable assignment. A node with all valid assignments for 
all of its variables is a solution node. Each node contains: 
• Set of decision variables 𝑥!,$, each representing the 

command choice for sat 𝑠!  at time t. ∀	𝑡	 ∈ 	𝑇!,   𝑇!= 
{All GP access times (TP) for sat 𝑠!} 

• Set of variable domains 𝑑!,$ representing command 
choices for each 𝑥!,$∀	𝒕	 ∈ 		{access times}. The do-
main of choices for 𝑥!,$,  is the set of all command op-
tions for sat 𝑠! at time t.  

 
 
 

 
Figure 4: Decision variables for the root node 
Figure 4 shows and example of the decision variables for 
the root node. 𝑥!,$ = the command for sat 𝑠! at time t. The 
root node is initialized with variables for every TP for eve-
ry satellite. There is 1 variable per TP per satellite. The 

Root Node variables: 
𝑥!,#	 , 𝑥!,!	 , 𝑥!,%	 , 𝑥%,%	 , 𝑥!,&	 , 𝑥%,&	 , 𝑥%,',	 𝑥%,(	 , 𝑥!,)	 , . .. 
 



 
 

5 

root node variables are sorted chronologically, so all varia-
bles for time N precede all variables for times greater than 
N. There are variables only for the times when the satellite 
as access to a GP. This example shows there are variables 
for only sat 1 at times 0, 1, and 6. There are variables for 
both satellites at times 2 and 3, and variables for only sat 2 
at times 4 and 5. This is because those are the only times 
when the given sat has TP choices. We may choose to 
solve the variables in any order, but our default is to solve 
them in chronological order.  
 
Objective 
The objective is to: maximize reduction of model error.  
This means maximizing the sum of gpRewards (1) for all 
GP covered by all satellites' commands in the plan. This is 
the aggregate reward for including command c in the plan 
(the sum of rewards for all GP covered by c, for all 𝑠!).                  
 
Our objective is to maximize the sum of all gpRewards 
𝑟&,%,$, for all commands in the plan:   
 
maximize Σ!		/		0,%		∈	2,$		∈	3$,&∈	4$,&,'		𝑟&,%,$	 	

                       (2)  
where P = a list of commands c in a plan, and 𝑣!,%,$= the set 
of all GP which are visible to 𝑠! using command c at time t.                              
 
Equation 2 maximizes the sum of all gpRewards for all GP 
covered by all commands in the plan.  The 𝑟&,%,$	  in (2) is 
defined by equation (1). Equation (2) is the plan score as-
sociated with each node in the planner's search space.  
 
Search Control: On each loop of the search process: The 
planner chooses a beam width of nodes to expand based on 
the plan score (2) described above. Then the planner 
chooses a variable in each node to expand, then finally 
selects a value for each variable in the beam nodes. Do-
main-specific implementations of sortNodes(tree), sortVar-
iables(node), sortValues(variable) provide flexible meth-
ods to control the order of node, variable, and value selec-
tion. The search terminates when a valid plan is found. A 
valid plan is when all variables in a node have been as-
signed values which violate no constraints.  
 
Dynamic Constraint Processing (Choice propagation) 
We use a form of Dynamic Constraint Processing (Mittal 
and Falkenhainer 1990) because mutually exclusive varia-
bles are removed after each plan choice, so the solution 
does not require assignments for all variables created ini-
tially. Additionally, we do not need to pre-enumerate all 
possible constraints. Enforcing a constraint involves call-
ing a constraint handler method after each plan choice, so 
we never consider constraints which are not required for 
the plan.   
 Constraint handlers: Constraints are enforced through 
choice propagation  which uses forward checking (Russell 
and Norvig 2021) after each choice to remove any future 

variables which are inconsistent with it. For example, the 
3-second image lock is implemented as follows: when a 
decision is made to start taking an image at tick 10, then all 
choices for timepoints 11 and 12 are removed so nothing 
else will be scheduled during that 3-second hold.  Choice 
propagation is also used to enforce constraints for slew 
time and duplicate observations.  After each command is 
selected by the planner, choice propagation dynamically 
removes GP's, commands, and TP. This means the search 
space size is significantly reduced after each choice. 
 This is form of dynamic constraint problem [Mittal and 
Falkenhainer, 1990]. Instead of pre-enumerating all con-
straints between all variables, our constraints are enforced 
by calling software constraint handlers after each variable 
assignment is made. The constraints are only 'realized' for 
variable assignments selected for the plan. This is in con-
trast with MILP where 10's of millions of constraints must 
be preconstructed and the solver must consider them, even 
though they involve variables which are mutually exclu-
sive with choices which are not in the final plan.  
 Deconfliction constraints are applied only to variables 
for the same satellite, while the duplicate observation con-
straint applies across all satellites. This means the image 
lock constraint for satellite 1, requires that only satellite 1 
hold its position. On the other hand, if satellite 1 observes 
GP 10, then satellite 2 is constrained to not observe GP 10.  
The following choice propagation example shows how it is 
used to remove duplicate GP observations from future var-
iables.  
 

 

 
 
 
 
Figure 5 shows two examples of choice propagation to 
enforce the no duplicates constraint. Case (a) shows the 
command choices for 𝑥+,,5	 , satellite 1 at TP 25.  After GP 
123 is observed, it is removed from the list of GP covered 
for every choice for all future variables.  In this example, 
that was the only GP covered by command choice L.32, so 
the command L.32 is removed from the domain of choices 
for variable 𝑥+,,5	 . Case (b) shows that when the last choice 
is removed from a variable's domain (producing an empty 
domain), then the variable is removed from the node. In 
this case, after GP 253 is observed, it's removed from the 
GP list for command P.42, leaving an empty GP list. The 
command P.42 is removed from the domain for variable 
𝑥+,67	 , leaving an empty variable domain, so 𝑥+,67	  is re-
moved from the list of open variables. This is different 
from a pure CSP system where all variables must receive a 
valid assignment, and a variable with an empty domain 

(a)   [𝑥+,,5	 : {L.32: [123],  
                   L.33: [436349, 436350, 436351],  
                   P.32: [436350, 436351, 436352]] 
 
(b)  [𝑥!,&)	 : {P.42: [253]}] 
 

 Figure 5: Choice propagation examples 
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indicates infeasibility.  In our case, choice propagation 
removes variables which have no valid assignments based 
on the path dependencies of the current plan (node). 
Choice propagation also updates the energy model and the 
plan score for each node. 
 Heuristics: We have developed and tested a wide range 
of local heuristics, which sort command choices at each 
TP. These heuristics include maxErrReduction, 
gpRankedChoice, maxGpCount.  
 Explainability: GP which are not included in the plan 
are annotated with explanations about why they were ex-
cluded (a constraint or preference involved in the deci-
sion). A GP may be excluded due to rain, poor viewing 
angle, redundancy, or when the satellite is busy doing 
something else such as slewing to a new viewing angle.   
 
MILP 
Given: 
𝐺 =∪8/0 {𝐺!} = The set of all (unique) GP visible to all 
sats 
𝑇 =∪8/0 {𝑇!}  = The set of all TP (available measurement 
times) for all sats 

Decision Vars: 
𝑥!,$,% 		= 	1		 ↔ 	 𝑠! 	executes	𝑐𝑜𝑚𝑚𝑎𝑛𝑑	𝑐	at	time	𝑡	 (bina-
ry) ∀𝑖 ≤ 𝑁, ∀	𝑡 ∈ 𝑇!, ∀𝑐 ∈ 𝐶!,$  
 
This requires the same # of variables as 𝑥!,$ in the CO 
model, multiplied by  ∑ 	8,9  | 𝐶!,$|, the sum total of the num-
ber of commands per satellite ∀  𝑡 ∈ 𝑇!.  
• Complexity: O [	∑ 	!/:,$∈3$ S𝐶!,$S  ] = the total # of cmd 

choices c for all sats i at all times t.  
 
𝑦&,!,%,$ = 	1	 ↔ GP g is observed by sat i using command c 
at time t (binary variable).  
 
∀𝑔 ∈ 𝐺, ∀	𝑡 ∈ 𝑇!, ∀𝑐 ∈ 𝐶!,$  
 
• Complexity:      O [	|𝐺	|	x 	∑ 	!/:,$∈3$ S𝐶!,$S ]    
• Equals complexity for 𝑥!,$,%		 times |𝐺| 
• This y variable is not part of the CO model.  
 
Constraints: 
Deconfliction constraints create constraints between mutu-
ally exclusive actions in overlapping time windows. For 
each satellite, each command must hold for 3 seconds dur-
ing which no other command can be scheduled, and when 
pointing angle change, no commands can be scheduled 
while slewing between angles. Slew time ranges from 0 
seconds (no angle change) to 22 seconds depending on 
slew magnitude. The means for each satellite, any pair of 
command choices which occur within slew time + 2 sec-
onds are mutually exclusive. For each satellite	𝑠!, mutual 
exclusion constraints (1) are created to enforce: 
• One command at a time constraint 

• Image lock mutex constraints (each command c must 
be held for 3 seconds)  

• Slew mutex constraints (no commands allowed while 
slewing) 

𝑥!,%!,$! + 𝑥!,%",$" ≤ 1						                                                  (3)                                                     
 
∀𝑖 ≤ 𝑁,			∀𝑡+, 𝑡, ∈ 𝑇!        :  𝑡+ ≤ 𝑡, ≤ 𝑡+ + 2 + 𝑠𝑙𝑒𝑤%!,%"

*    
∀𝑐+	 ∈ 𝐶!,$! , ∀𝑐,

	 ∈ 	𝐶!,$"   : 𝑐+ ≠ 𝑐,		 
• Complexity: O [ 

∑ 	!/:,$!,$"∈3$:	$,<$+/	.=>?&!,&"
( S𝐶!,$S	]    

 
gpCoverageConstraints (constrain 𝑦&,!,%,$ by relating GP 
each g to commands c which cover it)  
𝑦&,!,%,$ 	≤ 𝑥!,%,$																		                                                 (4) 
	𝑖	 ≤ 𝑁,								∀	g ∈ 𝐺!,%,$ ,							∀𝑡 ∈ 𝑇! ,						∀𝑐 ∈ 𝐶!,$                             

• Complexity: O [ |G| x (avg # cmds/GP)], where 
avg # cmds/GP =  ∑ 	@/	!A:,$∈3$ S𝐶!,$S/|𝐺| 

 
duplicateGpLimitConstraints: (no more than 𝑑)BC	dupli-
cate obs of any GP g) 
∑ 𝑦&,!,%,$	 ≤ 𝑑)BC!,%,$		 											∀&∈ 𝐺!,%,$                            (5) (6) 
where 𝑑)BC = max # of duplicate observations allowed  
(default 𝑑)BC	= 1) 

• Complexity: O [|G| x (avg # cmds/GP)] 
 
Objective:                                                                                                                                                                                
maximize ∑ 		𝑟&,%,$			𝑦&,!,%,$∀&∈E	                                        (6)                                                                                      

• Complexity:   same as complexity for 𝑦&,!,%,$	vars 
=   O [	|𝐺	|	x 	∑ 	!A:,$∈3$ S𝐶!,$S ]    

 
The 𝑟&,%,$	 in (6) is defined by equation (1). Notice the simi-
larity between the MILP objective (6) and the DCP objec-
tive (2) and the GP Reward (1). This shared metric, along 
with identical input data, is the basis for our apples-to-
apples comparison between the two methods.  
 The solver terminates when optimality is proven or 
when a specified time limit has been reached without prov-
ing optimality. Optimality is proven when the gap between 
the "primal" objective (6) and the MILP's "dual" objective 
reaches zero (within some tolerance). Equation (6) is the 
primal objective. Since this is a maximization problem, the 
"dual" objective is a minimization problem. It has been 
proven that the minimum value of the dual is equivalent to 
the optimal maximal value of the primal. MILP solvers 
exploit this property and flip back and forth between trying 
to maximize the primal and minimize the dual until no gap 
remains, at which time we know the primal objective is 
optimal.  

Evaluation 
We compare the DCP and MILP methods using four test 
cases. It is important to note that there are far fewer rainy  
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GP than GP where it hasn't rained recently, so case 1 with 
rainy GP has far smaller search space.   
Case 1: 3 satellites, Rainy GP only, horizon = 6 hours 
Case 2: 1 satellite, no rain, 1000 ticks (16.67 minutes) 
Case 3: 1 satellite, no rain, for 1800 ticks (30 minutes) 
Case 4: 1 satellite, no rain. horizon = 6 hours, top 15 % of 
GP with largest model error. Select top 15 % of GP (sorted 
in decreasing model error). The 15 percent was selected 
empirically such that scenario produced around 20 million 
constraints (for acceptable solver times < 50 hours).  
Case 5: 3 satellites, horizon = 2 hrs, top 15 % GP. Select 
top 15 % of GP (sorted in decreasing model error). 
 Cases 4 and 5 are 'triage' scenarios where the top 15 per-
cent of GP which need the most help (have the most model 
error) are prioritized over less 'needy' GP. This may help 
the solver separate the wheat from the chaff so it spends 
less time trying to optimize the chaff which we may have 
limited effect on the objective.  
 Table 1 shows details about the search complexity and 
solver performance for each scenario. The table columns 
are as follows: Case ID,  # of satellites in the constellation, 
plan horizon followed by the number of TP in the horizon. 
The column TP/Horz = # TP/ Horizon. This represents the 
"TP density" which is a rough measure of problem com-
plexity (particularly for MILP). The next column, #cmd/TP 
is the average number of command choices at each TP (the 
average of all |𝐶!,$ |). #GP/TP = average # of GP visible per 
TP. Obs GP is the # of GP observed by the commands in 
the plan. # vars is the # of decision variables created. # 
cons is the # of constraints created. Constraints are pre-
enumerated only for the MILP solver. Time to best solu-
tion is the solver time required to find the best solution 
(which is optimal for MILP, but suboptimal for CSP).  

 
 
 
Time to prove opt is the time it takes the MILP solver to 
prove that the best solution it has found is actually optimal.  
 Note how much longer it takes to prove optimality com-
pared to the time it takes to find an optimal solution for 
cases 2, 3, and 4. The last column, makespan, is the # of 
commands in the plan.  
 The difference in complexity between rainy and non-
rainy is illustrated comparing case 1 (rainy case) with case 
3 (non-rainy). Case 1 includes 3 satellites and a 6 hour 
planning horizon, with a total of 1,705 TP, while Case 3 
includes 1 satellite and a 30 minute plan horizon for a total 
of 1,468 TP. This difference is caused by the larger number 
of observation opportunities for non-rainy GP.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6 shows a summary comparison of the objective 
values achieved by both planners on each scenario. All 
MILP objective values are optimal. DCP achieves 67% 
optimal for case 1, 56% for case 2, 59% for case 3, and 
58% for case 4. MILP performance is dominated by the  

Case	 #	
sats	

Horizon	
(secs)	

#	TP	 TP/	
Hrz	

#cmd/	
TP	

#GP/	
TP	
(chan
ge	to	
#	GP)	

Obs	
GP	

#	vars	 #	con-
straints	

time	to		
best	sol	

time	to	
prove	opt	

makespan	
(#	cmds)	

1	 3	 21,600	 1,705	 0.08	 12.55	 6.2	 	 	 	 	 	 	
MILP	 	 	 	 	 	 	 1,032	 26,959	 914	K	 156	s	 156	s	 	
DCP	 	 	 	 	 	 	 948	 1,705	 	 7	s	 	 	

2		 1	 1,000	 900	 0.93	 70.98	 64.0	 	 	 	 	 	 	
MILP	 	 	 	 	 	 	 620	 89,118	 14.4	M	 5	h	 16	h	 	
DCP	 	 	 	 	 	 	 666	 900	 	 5	s	 	 	

3	 1	 1,800	 1,468	 0.83	 55.83	 53.9	 	 	 	 	 	 	
MILP	 	 	 	 	 	 	 1,212	 122,675	 16.8	M	 13	h	 38	h	 	
DCP	 	 	 	 	 	 	 1,181	 1,468	 	 8	s	 	 	

4	 1	 21,600	 7,463	 0.35	 53.85	 47.2	 	 	 	 	 	 	
MILP	 	 	 	 	 	 	 4,010	 244,207	 20.8	M	 10.7	h	 10.8	h	 1,468	
DCP	 	 	 	 	 	 	 3,113	 7,464	 	 1.5	m	 	 	

5	 3	 7,200	 7,527	 1.0	 52.41	 	 	 	 	 	 	 	
MILP	 	 	 	 	 	 	 	 244,363	 20	M	 	 	 	
DCP	 	 	 	 	 	 	 3,140	 7,527	 	 2.5	m	 	 1,636	

6	 3	 2100	 	 	 	 	 	 	 	 	 	 	
MILP	 	 	 	 	 	 	 	 	 	 	 	 	
DCP	 	 	 	 	 	 	 	 	 	 	 	 	

15.8 9.7
22.9

99.6 101.2

23.7 17.2
38.7

171.6

0

50

100

150

Case	1 Case	2 Case	3 Case	4 Case	5

objective	=	Total	error	reduction	=	

DCP MILP	(optimal)

∑ 𝑟!,#,$	!,#,$
(eq. 1)

Table 1: Comparison of scenario search space complexity (branching factor)  

Figure 6: Comparison of MILP and DCP objective scores  
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exponential scaling in the number of constraints for some 
scenarios. The number of mutex constraints are dominated 
by deconfliction within 25-second windows.  The maxi-
mum slew time is 25 seconds, so mutex constraints are 
created only to deconflict command choices which occur 
within 25 seconds of each other. The number of mutex 
constraints is a function of how many TP and choices oc-
cur within any given 25 tick time window. 
 Trade Analysis. Table 2 shows a summary of the pros 
and cons for each method. DCP benefits include constraint 
and heuristic expressiveness and flexibility, and solver 
time. MILP offers the important 'certificate of optimality' 
at the cost of impractically long solver times. DCP and 
MILP fall prey to different scaling challenges. DCP is 
prone to local minima but far smaller search space (fewer 
vars and constraints).  MILP optimality ensures no local 
minima but scaling creates so many more vars and con-
straints that solver time becomes impractical (> 1 day) for 
desired plan horizons of 24 hours (or even 6 hours).  
 The cases in table 1 illustrate the boundary of scenarios 
which we can solve with MILP. For example if we in-
crease the horizons for any of the non-rain cases, then the 
model file becomes to large to write out, or it takes longer 
than 48 hours to solve.  

Future Work 

Several constraints have not yet been developed. These 
include: 

• "Multi-observations", where we may take multiple 
observations of the same GP within a 2 hour window 
which are "merged" together as a "single" observation 
with reduced measurement error.  

• Energy model to track energy consumed by instru-
ments and slewing and produced by solar panels, to 
ensure no satellite dips below a minimum energy. 

• Contiguous identical commands (contiguous GP ob-
servations > 2 seconds).  

• We also plan to integrate with new sensors and with 
multiple, independently developed planners for: down-
linking data, intersatellite communications, and UAV 
flight planning.  

Conclusion 
We have described an important climate change monitor-
ing application which requires online planning capabilities 
which are beyond the state of art. We have presented alter-
native methods to solve the problem, Dynamic Constraint 
Processing (DCP) and Mixed Integer Linear Programming 
(MILP), and described the many practical and challenging 
trades between them. Our conclusion is it makes sense to 
use them together because they serve complementary pur-
poses. DCP offers practical solve times for suboptimal 
solutions, while MILP provides "ground truth" for prova-
bly optimal solutions at the cost of solve times which are 
impractical for our application's near real-time require-
ments. Additionally, the process of comparing the two 
methods head-to-head on identical inputs with identical 
metrics, helped to identify implementation differences 
which led to improvements on both sides.  
 

Algorithm Pro Con 
DCP • Search control over order of node, var, and 

val choices Flexible (can model any con-
straint) or problem-solving procedure 

• Leverages domain heuristics. Easy to swap 
between different heuristics.  

• Fast, amenable to running onboard 
• Explainable  
• Constraint code is executed on demand ra-

ther than predefining  
• Symbolic reasoning (decision variable 

domains are symbols like 'L.34' for more 
flexibility vs. #s) 

• Suboptimal solutions 
• Local minima 
• Path dependency 

MILP • Provably optimal solutions 
• Slow 
• Relies on 3rd party solver (benefit of robust 

heavily tested tool) 

• Limited modeling flexibility 
• No domain heuristics 
• Limited explainability 
• Relies on 3rd party solver (disadvantage of it being 

a black box with limited insight or control of 
search process details).  

• Requires predefining all constraints in advance 
(10's of millions of constraints must be created but 
most are not required for any specific solution). 

• Requires all variable domains be quantitative. 

Table 2:  Summary of trades between DCP and MILP  
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