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Investigate best-practices for aerodynamic predictions of high-lift @
configurations through a full angle-of-attack sweep including
Cmax and stall

Objective

On validity of RANS
for CLmax

Does HRLES \
improve RANS?

Is WMLES a - . o
capable tool for

C1max @nd stall?

Comparison of

free-air results .\/

between methods '

Wind Tunnel vs

Free Air

Simulations
Cost comparisons

LAVA WMLES

Free Air
AoA: 21.47° ~ 1)
360 M Grid Points I ¢

Video Credit: Timothy Sandstrom (ARC-NAS)



AN
20 0% Y
QXK \

R

Computational Approach

All methods use curvilinear overset structured grid, compressible NS formulation

RANS
HLPW4 Committee curvilinear grids % % e : i
SA closure with corrections ' ’ 'i!illﬂl}"“"’
3'd order Roe + Koren limiter

ILU(1) Preconditioned GMRES WMLES

e Distinct topologies from RANS
¢  Constant-coefficient Vreman model

HRLES *  Algebraic wall-model
Further refinement of RANS * Sensor based blending between 3" order
surface grids and 4th order spatial discretization
ZDES-Mode 3 Enhanced * RK3Time stepping

Protection (Deck & Renard, 2020)
HWCNS — WENO3 and/or 4t
order central

BDF2 Time stepping

y* = 1 with
wall-normal
stretching

Npp =~ 10
with neglibible
stretching

nege




RANS Simulations (Baseline SA) — Grid sensitivity

GRID R-B
(64.7M)

GRID R-C
(224Mm)




RANS — SA Correction Terms
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RANS — SA Variations and Simulation Procedure
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HRLES — Improvements over RANS
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WMLES — Grid Sensitivity and “Convergence”

Lift Coefficient, ¢ L
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WMLES — Grid Sensitivity and Convergence
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Comparison Between Methods (Free-Air)
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Comparison Between Methods (Free-Air)
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Both WMLES and HRLES predict a
high-alpha pitch break in the wing-
integrated moments

RANS predicts an opposite high-alpha
break due to onset of large-scale
spurious outboard separation

The low-alpha pitch break seem to
occur due to sudden loss-of-lift on the
flaps; WMLES appears to predict the
correct trend, but RANS shows
abnormal behavior

All methods clearly over-predict lift
after CLmax is reached -



Tunnel —initialization and setup

Two precursor simulations: WM-RANS + WM-LES (coarse)
“Coarse-representation” of model geometry to capture blocking effect
- Full grid is approximately 77M compute points; time step is 25x larger than GridB
WMLES
- Roughness treatment used in upstream convergent section to “thicken” test section BL
- Fixed back-pressure (obtained from WM-RANS, with BL calibration)
- Precursor computational costs are approx. 10% that of a 50-CTU gridB simulation
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Lift Coefficient, ¢ L
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Tunnel — Loads compared with experiment
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Tunnel — RANS vs WMLES
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Cost — Are scale resolving methods competitive?

Simulation Methodology

Attribute RANS (Steady) RANS (Steady) RANS (Unsteady) HRLES WMLES
Grid R-C Grid R-D Grid R-C Grid H-A Grid W-B
Solve Points 223M 550M 223M 571M 360M
Timestep size - - 2.57x1073s 2.0x 1074s 3.5x1075s
Nodes used 35 Skylakes 100 Broadwells 70 Broadwells 200 Skylakes 100 AMD Romes
for benchmark (40 cores/node) (28 cores/node) (28 cores/node) (40 cores/node) (128 cores/node)
Core-time per
compute point - - 354.36us 139.5us 2.03us
per timestep
Timesteps per
CTU - - 40 514 29338
cOre(-:uT%e pet : . 901 hours 11360 hours 5970 hours
Simulation time
needed for - - 150 CTU 50 CTU 50 CTU
a =19.57°
Core-time
needed for 21,000 hours 44,800 hours 135,150 hours 560,000 hours 298,500 hours
a =19.57°
NAS SBUs
needed for 835 1,600 3,560 22,120 9,470
a =19.57°
Relative Cost
over typical 1.0 1.9 4.25 26.4 11.3

RANS




summary

Shortcomings of RANS for CLmax

* Drag polar is accurate at low-angles of attack, but abnormal trends observed in pitching moments — possible incorrect flow topologies on flaps?
e At C,,.« — strong sensitivity to both grid (on the outboard wing) and SA model corrections (inboard wing) seen
* In-tunnel simulations show excess inboard and outboard separation inconsistent with oil-flow and CP data from experiments

Does HRLES mitigate challenges of RANS?
* HRLES does show measurable improvements over RANS near C,,,., in terms of improved outboard flow-topologies and pitching moment predictions
* Improvements over RANS only achieved when an LES-appropriate grid and an LES-appropriate discretization is utilized

* Sensitivity is also reported for time-step size post C,,.x With excessively large time steps resulting in unphysical wing-root separation in the free-air

Is WMLES suitable for C,,,., problems?

*  WMLES offers substantial benefits over RANS in terms of a) Robustness (low sensitivity to parameters), b) Cost (competitive turn-around time) and
c) Accuracy (both flow physics and engineering metrics)

* Acceptable grid convergence is in CP and aerodynamic loading is observed at most angles, although: CMY shows sensitivity at both the highest and the
lowest angles
Can free-air simulations reproduce the stall physics observed in the tunnel experiments?
* Both HRLES and WMLES show corner-flow separation in free-air but both predict a much weaker pitch break going from C,,,., to the stall state.

*  WMLES in-tunnel simulations show quite accurate predictions of pitch break with both wing root and outboard flow topologies showing promising
agreement with experiment.

*  WNMLES with slip-wall treatment for the tunnel side-walls highlight potential sensitivity of the post C,,,., stall onset phenomenon to the tunnel side-wall
boundary layers

Future directions (will be addressed at Aviation 2022):

* Issues associated with thin leading edge boundary layers are the likely culprits with the WMLES problems. Further investigations will be performed.

* Installations effects involving a) tunnel blockage, b) standoff/mount and c) side-wall boundary layers need to be investigated further using WMLES.

* Further grid refinement studies in HRLES will be performed

* Scalability in grid generation needs to be addressed: Use of octree-immersed boundary treatments for WMLES
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