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Supplementary materials. 
 
Kiln scar mapping 
We relied on a multisensor multitemporal dataset of high-resolution imagery to map the spatial 

distribution of charcoal kilns annually between 2013 and 2019. Kiln scars are patches of burnt soil 

created during the charcoal making process in the locations where kilns are built. They conform distinct 

features in high-resolution images, with low reflectance values in near infrared (NIR) (Smith et al., 2010; 

Chuvieco et al., 2019) and a significant spectral contrast with their immediate surrounding area. This 

spectral contrast remains visible for a period that can oscillate between few months and over a year 

depending on site conditions (Sedano et al., 2020b), enabling the detection of kiln scars as the basis of 

an indirect approach to monitoring forest degradation from charcoal production (Bolognesi et al., 2015; 

Dons et al., 2015; Sedano et al., 2016). Object detection methods for remote sensing optical images 

developed in the last decades can be labeled into four categories: template matching-based, knowledge-

based, object-based image analysis and machine learning (Chen & Han, 2016). Region growing is a 

clustering approach in which pixels were grouped into spatially contiguous regions based on 

discontinuities in intensity level and other predefined criteria. While an object-based approach in 

essence, the proposed strategy relied on a priori knowledge of the charcoal production process to 

simplify the segmentation problem and improve the robustness of its results. In this sense, this 

approach combined elements from both knowledge-based and object-based image analysis methods 

(Chen & Han, 2016). This a priori knowledge was used at various stages of the process: Basic knowledge 

of the spectral signal and spatial context of kiln scars guided the seed identification. Field-based 

information of kiln size and shape served to establish criteria for region growth (Baltsavias, 2004). 

Knowledge of the charcoal production process in the study area aided to restrict the kiln scar detection 

to a specific land cover type. RG was applied on a single band basis, with NIR band as a default option. 

Initial exploratory work indicated that late dry season conditions (July - December) maximized the 
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spectral contrast between kiln scars and surrounding areas, and gradually declined with the offset of the 

rains, as tree leaves sprout, and vegetation covers the ground. Therefore, when available, late dry 

season images were used for the region growing process. Outside of the dry season, tree shadows 

present low NIR values, complicating the reliable detection of kiln scars. As an alternative, NDVI images 

were used when only rainy season (January - June) images were available. Input images were 

preprocessed to increase the contrast between kiln scars and neighboring pixels as an initial step for the 

definition of seeds: 

𝐸𝐸 = (𝐺𝐺−𝑏𝑏𝑁𝑁𝑁𝑁𝑁𝑁)
𝑏𝑏𝑁𝑁𝑁𝑁𝑁𝑁

    [1] 

where, E corresponded to the enhanced contrast image; bNIR  was the NIR band; and G the Gaussian 

filtered NIR image applying a 60 m radius kernel size established from field observations. Kiln scar 

locations corresponded to pixels with positive high contrast values, and seed pixels were subsequently 

selected as pixels with values below a threshold. This threshold was adaptively computed as the average 

of the first percentile of the pixel values in the mopane woodlands of all the images in a given epoch. 

Regions were grown from seeds based on spectral similarity with seed pixels and size and shape criteria 

defined from field observations in the study area (Sedano et al., 2020b). Additionally, a location criterion 

was implemented to avoid double counting of kiln scars in overlapping images and kiln scars detectable 

in images from several imagery epochs. Kiln scars were only registered when a kiln scar had not been 

previously mapped in that location in previous images, establishing a conservative vicinity buffer (kernel 

radius= 15 m) to account for potential image georegistration errors. 

The approach was only implemented within the mopane woodlands in the study area because charcoal 

production takes place mostly in these woodland formations. These woodlands were identified in a 2011 

mopane mask created using supervised classification of Landsat 8 images (Sedano et al., 2020a). 

Additionally, a bare soil mask was applied to minimize potential commission errors due to surfaces with 



 3 

low NDVI values. This mask was created as the majority vote of an ensemble model from a set of masks 

created from the supervised classification of each imagery epoch using a combination of visual 

interpretation and field information as training data. The implementation of this region-based 

segmentation process retrieved kiln scar maps in the study area for each year between 2013 and 2019.   

Small adjacent kilns (< 4 m long) are often built to use the logs that could not be fitted in the main kiln. 

Considering the spatial resolution of the imagery, it was assumed that adjacent kilns could not be 

confidently mapped throughout the study area and period. Fieldwork information, obtained from 323 

sites visited in the field, indicated that 11.9 % of the kilns presented adjacent kilns. The final number of 

kilns per year included these adjacent kilns.  

 

Kiln dimensions 
A second region growing routine was implemented to extract kiln scar dimensions from very high-

resolution (0.5 m) panchromatic WorldView1 imagery from the year 2014. This analysis was carried out 

in six sample locations with charcoal production activities, under the assumption that kiln construction 

patterns did not significantly change during the study period. The total area of these sites covered 154 

km2 and included 10,823 kiln scars. This region growing routine used the kiln scars detected in the 

previous kiln scar mapping as seed pixels and growth based on the spectral similarity between seed and 

neighboring pixels, size, and shape criteria. Subsequently, the two main axes of each region were 

calculated as an approximation to kiln scar dimensions (length and width). Finally, a histogram matching 

was implemented to calibrate image-based kiln scar dimensions to kiln dimensions measured in the field 

(n = 76). 
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Figure 1. Comparison of histograms of kiln dimensions extracted from very high-resolution panchromatic 
WorldView 1 images and measured in the field. 

 

Aboveground biomass removals 
Annual AGB removals from charcoal production were calculated as the sum of the estimated wood 

biomass extracted to build all kilns mapped with the high-resolution imagery in the study area. 

For each detected kiln scar, kiln wood biomass was estimated as a product of the kiln dimensions, its 

wood volume proportion, debris rate and wood density: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ (𝐿𝐿𝑖𝑖 × 𝑊𝑊𝑖𝑖 × 𝐻𝐻𝑖𝑖)𝑁𝑁
𝑖𝑖 × (1 (1 − 𝑅𝑅))⁄ ×  𝑇𝑇 ×  𝐷𝐷   [2] 

where, AGBEXT represents total annual aboveground biomass removals; N represents the number of kiln 

scars in the study area during a given period; L, W and H correspond to the length, width and height of 

kilns. Kiln length and width distributions were estimated from the analysis of very high-resolution 

imagery after a field data-based calibration (histogram matching). Kiln height distribution was built from 

field information. The dimensions were approximated to normal distributions N (11.45, 6.34), N (3.41, 

0.69) and N (1.2, 0.2) for length, width and height respectively; R is the rate of debris (15.2 %), defined 

as the additional AGB left on site and not used in the kiln (e.g., small branches, twigs and leaves), 

obtained from previous studies in the region (Martins et al., 2016); T corresponds to the kiln wood 

volume proportion, fitted to a normal distribution N (78.52, 1.05) from information collected during a 
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field campaign in the study area (Sedano et al., 2020a); D is the mopane air-dry wood density, obtained 

from the literature as a fixed parameter at 1,080 kg/m3 (Carsan et al., 2012). 

Wood biomass for each kiln was estimated using Monte Carlo simulations (n = 100,000) to draw the 

values of each parameter from their respective statistical distributions.  

 
 
Ecosystem Model 
We used the Ecosystem Demography (ED) model (Moorcroft et al., 2001, Hurtt et al., 2002) to simulate 

potential biomass and extract relevant biomass trajectories for our study area for the region. ED is an 

individual-based, terrestrial biosphere model that uses a size and age-structured approximation of a gap 

model for modeling vegetation dynamics. By relying on these approximations, ED can simulate plant 

growth, phenology, mortality, belowground C and N dynamics and disturbance at the level of a single 

tree and scale up to an entire ecosystem to estimate changes in population structure and community 

composition, while simultaneously modeling natural disturbances, land use, and the ecosystem 

dynamics lands recovering from disturbances. ED offers an advantage over traditional Dynamic Global 

Vegetation Models (DGVMs) by combining the capacity of DGVMs to predict C dynamics at global scales 

with the fine-scale representation of ecological processes that can be performed by gap models. In ED, 

individual plants of different functional types compete mechanistically under local environmental 

conditions for light, water, and nutrients. These include C3 and C4 plants (as grasses), and early, mid and 

late successional species. ED divides the land surface under study into a sequence of ‘patches’ wherein 

each patch corresponds to a different age or stage of vegetation succession. Within each patch, cohorts 

of individual trees are organized. Each cohort has similar plant functional type and size and is 

represented mathematically as a single tree in the model. It is this mathematic simplification that gives 

ED its efficiency to operate at high resolution for large study areas.  The model has been validated at 

multiple temporal and spatial scales and used for assessment of ecosystem dynamics in South and 
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Central America (Moorcroft et al., 2001), patterns of tree mortality and its drivers in northeastern North 

America (Dietze and Moorcroft, 2011), U.S. carbon sink (Pacala et al., 2001), and projections of its 

future, including the importance of future fire and fire suppression (Hurtt et al., 2002). The model has 

also been used to simulate post-disturbance re-growth under various scenarios of charcoal production 

in woodlands of central Mozambique (Silva et al., 2016). The model version used in this study is based 

on the original version designed to evaluate the effects of land-use change on U.S. carbon balance (Hurtt 

et al., 2002, Flanagan et al., 2016, 2019), with model modifications and parameterization to match 

regionally observed estimates of biomass and NPP. To run the ED model, we processed the following 

datasets (Flanagan et al., 2016, 2019): 

Soils: 

The World Inventory of Soil Emission (WISE) dataset is global in nature, with a spatial resolution 

of approximately 10km at the equator. Introduced in the 1990’s (Batjes, 1996), it has grown in the number 

of soil properties available as well as filling in the missing information gaps globally (Batjes, 2005 and 

Batjes, 2009). It has been widely used to parameterize crop simulation models (Gijsman et al., 2007). We 

obtained soil depth information from WISE and use soil texture information from WISE to index a lookup 

table relating soil texture to saturated conductivity values (Cosby et al., 1984). ED uses a single soil-layer 

bucket model to simulate water percolation through the soil as mediated by the saturated conductivity 

of the soil. 

 

Climate: 

To determine the climatic inputs required by ED, we used the observation constrained CRUNCEP 

dataset (http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm). This dataset has been used in 

model inter-comparison projects and while relatively coarse resolution at half-degree, is global in scope 

(Huntzinger et al., 2013). 

http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm
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Further, we made the following adjustments to the model parameters to better match the observed 

growth rates and biomass trajectories in our study area: 

1. Parameterization and downregulation of carboxylation rate 

We adjusted the carboxylation rate (Vcmax) for each plant functional type (PFT). Vcmax controls the 

rate of carbon assimilation and respiration and is one of the most sensitive and poorly constrained 

parameters in earth system models (Rogers et al., 2014). Table 1 presents the original (Hurtt et al., 2002) 

and modified Vcmax values for each PFT. Our current Vcmax values are consistent with other earth system 

models (Albani et al., 2006) 

 

          PFT Original Current 

C4 grasses       37.5 12.5 

C3 grasses 37.5 12.5 

Early successional 37.5 12.0 

Mid successional 

Late successional 

Evergreen needle leaf 

Cold deciduous 

37.5 

37.5 

37.5 

37.5 

12.0 

7.0 

7.0 

7.0 

 

Table 1. Carboxylation rate (μmol m-2s-1) by PFT 

 

We also incorporated mechanisms to downregulate Vcmax based on length of day and the leaf area index 

of the overhead canopy based on the community land model (CLM) (Lawrence et al., 2011). 

Downregulating based on day length introduces a seasonal variation in Vcmax, accounting for the lower 
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carbon assimilation in fall. Plants also tend to conserve rubisco, a key enzyme controlling Vcmax, by 

maximizing its production at the top of the canopy. 

 

2. Computation and parameterization of density-independent mortality 

Density-independent mortality takes into account the net carbon balance (net primary productivity minus 

maintenance demand) of a cohort to compute its probability of survival. Since, we are now 

downregulating Vcmax based on day length, effectively shutting down photosynthesis in fall in many regions 

across the globe, we extended the time-horizon to compute the carbon balance to an entire year. 

We reparametrized density-independent mortality values in the southern hemisphere to better 

match regional estimates of biomass and NPP. A new term was added to the density-independent 

mortality calculation (0.015 yr-1). 

 
Charcoal production process – Images 
The following images serve as a visual reference of charcoal production in the Mabalane district. A 

detailed description of description of the charcoal production process can be found in the 

supplementary Materials of Sedano et al. (2020a). 
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Figure 4: Recent charcoal kiln scar. 

  
Figure 5: Old charcoal kiln scar covered by 
vegetation. 

 
 
 

 

 

 
 
Figure 2: Mopane logs in under construction charcoal 
kiln (kiln longitudinal section) 

  
Figure 3: Kiln under construction. Mopane logs in the 
process of being covered by branches and dirt. 
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Figure 6: Undisturbed mopane woodland. 

  
Figure 7: Disturbed mopane woodlands after 
charcoal production. 

 

 

 

 
 
Figure 8: Detail of mopane tree 
(Colophospermum mopane). 
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