Supplement: Investigating oxygen and carbon isotopic relationships in speleothem records over the last millennium using multiple isotope-enabled climate models

Janica C. Bühler^{1*}, Josefine M. Axelsson^{2*}, Franziska A. Lechleitner³, Jens Fohlmeister^{4,5}, Allegra N. LeGrande⁶, Madhavan Midhun^{7,8}, Jesper Sjolte⁹, Martin Werner¹⁰, Kei Yoshimura¹¹, and Kira Rehfeld^{1,12}

¹Institute of Environmental Physics, Heidelberg University, Heidelberg, D-69120, Germany

²Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden

³Department of Chemistry, Biochemistry and Pharmaceutical Sciences and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland

⁴Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany

⁵GFZ German Research Centre for Geosciences, Section "Climate Dynamics and Landscape Development", 14473 Potsdam, Germany

⁶NASA Goddard Institute for Space Studies and Center for Climate Systems Research, Columbia University, New York, USA

⁷Department of Atmospheric Sciences, Cochin University of Science and Technology, India

⁸Earth Research Institute, University of California Santa Barbara, CA, USA

⁹Department of Geology, Lund University, Lund, SE-223 62, Sweden

¹⁰Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, D-27515, Germany

¹¹University of Tokyo, Tokyo, Japan

¹²Geo- und Umweltforschungszentrum, Schnarrenbergstr. 94-96, 72074 Tübingen, Germany

*These authors contributed equally to this work

Correspondence to: J. Bühler (jbuehler@iup.uni-heidelberg.de) and J. Axelsson (josefine.axelsson@natgeo.su.se)

List of Tables

ST1	Linear regression between isotopes, simulated climate variables and geographical information with 90%	
	intervals of the distribution for p, \mathbb{R}^2 , slope and intercept.	8

List of Figures

5	SF1	Simulation overview of δO_{iw} minus the multi-model mean	2
	SF2	Simulation overview of the variance	2
	SF3	Simulation overview of surface air temperature	3
	SF4	Simulation overview of precipitation amount	3
	SF5	Correlation fields between δO_{iw} and temperature or precipitation amount for all models	4
10	SF6	Comparison of last millennium SISALv2 subset to last century subset	5
	SF7	As Fig. 7 but for different continents	5
	SF8	As Fig. 8 but for different continents	6
	SF9	Spectra from Fig. 9 including a karst filter of 2.5 yr	6
	SF10	Synchronous extreme events to solar forcing	7
15	SF11	Synchronous extreme events with larger bin size	7

Figure SF1. As Fig. 3 minus the multi-model mean for better visibility, where individual simulations differ from the multi-model mean.

Figure SF2. As Fig. 3 but for the variance over the whole 1000 yr time period per gridbox.

Figure SF3. As Fig. 3 but for surface air temperature.

Figure SF4. As Fig. 3 but for precipitation.

Figure SF5. a-o) shows the correlation between simulated temperature or precipitation to simulated $\delta^{18}O_{iw}$ in the first two columns. The third column shows the areas, where absolute correlation estimated of $\delta^{18}O_{sim}$ are higher to temperature (red colors) or to precipitation (blue colors). Each row shows one simulation (a-c) iCESM, d-f) ECHAM5-wiso, g-i) GISS-E2-R, j-l) iHadCM3, m-o) isoGSM. p-q) show the agreement between the simulations. If a pair of simulations agrees in sign, the score increases by one.

Figure SF6. $\delta^{13}C_{speleo}$, altitude, temperature and precipitation globally with the last century data from Fohlmeister et al. (2020) selection.

Figure SF7. As Fig. 7 but for different continents. Continents are defined as Europe (36.7-75°N, 30°W-30°E), North and Central America (8.1-60°N, 50-150°W), South America (60°S-8°N, 30-150°W), and East Asia (15-39°N, 100-125°E).

Figure SF8. As Fig. 8 but for different continents.

Figure SF9. As Fig. 9 but in b) with a 2.5 yr karst filter applied (as in Bühler et al. (2021) following Dee et al. (2015)) to the annually resolved $\delta^{18}O_{sim}$ which is later down-sampled to the individual records' resolution.

Figure SF10. As Fig. 10 but using the respective solar forcings used in the simulations.

Figure SF11. As Fig. 10 but using bin-sizes of 50 yr which corresponds to the average age-uncertainty in the last millennium sub-sample of the SISALv2 database that we consider here.

Table ST1. Linear regression between isotopes, simulated climate variables and geographical information with 90% intervals of the distribution for p, R^2 , slope and intercept.

		p	R^2	slope	intercept
	Tropics	0.01 (0.00, 0.03)	0.35 (0.13, 0.39)	1.02 (0.51, 1.54)	1.78 (-1.87, 5.43)
$\delta^{18} \mathrm{O}_{iw}$ - $\delta^{18} \mathrm{O}_{dweq}$	Subtropics	0.00 (0.00, 0.01)	0.44 (0.27, 0.61)	0.74 (0.41, 1.07)	-2.02 (-5.01, 0.97)
	Extratropics	0.00 (0.00, 0.00)	0.67 (0.58, 0.76)	1.03 (0.80, 1.25)	0.07 (-2.24, 2.38)
	Tropics	0.00 (0.00, 0.00)	0.47 (0.38, 0.54)	0.78 (0.54, 1.02)	-24.67 (-30.64, -18.70)
Temperature- $\delta^{18}O_{dweq}$	Subtropics	0.00 (0.00, 0.00)	0.71 (0.60, 0.81)	0.51 (0.38, 0.64)	-15.82 (-17.71, -13.94)
	Extratropics	0.00 (0.00, 0.00)	0.49 (0.39, 0.58)	0.54 (0.36, 0.71)	-15.02 (-16.74, -13.30)
	Tropics	0.01 (0.00, 0.02)	0.22 (0.15, 0.30)	-0.00 (-0.00, -0.00)	-2.80 (-4.34, -1.26)
Precipitation- $\delta^{18}O_{dweq}$	Subtropics	0.00 (0.00, 0.00)	0.48 (0.39, 0.57)	-0.00 (-0.00, -0.00)	-5.29 (-6.79, -3.79)
	Extratropics	0.05 (0.01, 0.12)	0.14 (0.08, 0.20)	0.00 (0.00, 0.00)	-12.48 (-14.54, -10.43)
	Tropics	0.27 (0.06, 0.56)	0.04 (0.01, 0.10)	0.00 (-0.00, 0.00)	-7.19 (-9.92, -4.45)
Evaporation- $\delta^{18}O_{dweq}$	Subtropics	0.08 (0.01, 0.21)	0.18 (0.08, 0.30)	-0.00 (-0.01, -0.00)	-5.58 (-8.24, -2.91)
	Extratropics	0.04 (0.00, 0.10)	0.17 (0.09, 0.26)	0.00 (0.00, 0.01)	-12.46 (-14.31, -10.60)
	Tropics	0.61 (0.25, 0.96)	0.02 (0.00, 0.05)	-0.16 (-0.68, 0.36)	-2.88 (-16.09, 10.32)
Temperature- $\delta^{13}C_c$	Subtropics	0.77 (0.57, 0.97)	0.02 (0.00, 0.07)	-0.10 (-0.77, 0.57)	-4.29 (-15.20, 6.63)
	Extratropics	0.04 (0.01, 0.08)	0.18 (0.13, 0.24)	-0.27 (-0.47, -0.06)	-4.86 (-6.86, -2.85)
	Tropics	0.65 (0.31, 0.96)	0.01 (0.00, 0.04)	0.00 (-0.00, 0.00)	-7.47 (-10.01, -4.93)
Precipitation- $\delta^{13}C_c$	Subtropics	0.69 (0.57, 0.82)	0.04 (0.01, 0.07)	0.00 (-0.00, 0.00)	-6.75 (-11.55, -1.96)
	Extratropics	0.60 (0.25, 0.95)	0.02 (0.00, 0.06)	-0.00 (-0.00, 0.00)	-6.44 (-9.16, -3.72)
	Tropics	0.65 (0.31, 0.96)	0.01 (0.00, 0.04)	0.00 (-0.00, 0.00)	-7.90 (-11.92, -3.87)
Evaporation- $\delta^{13}C_c$	Subtropics	0.75 (0.50, 0.97)	0.03 (0.00, 0.10)	0.00 (-0.01, 0.01)	-6.45 (-12.95, 0.05)
	Extratropics	0.15 (0.04, 0.32)	0.10 (0.04, 0.17)	-0.00 (-0.01, 0.00)	-5.31 (-7.58, -3.05)
Latitude- $\delta^{18}O_{dweq}$		0.00	0.22	-0.06 (-0.09, -0.04)	-6.46 (-7.16, -5.74)
Altitude- $\delta^{18}O_{dweq}$		0.00	0.33	-0.00 (-0.00, -0.00)	-5.41 (-6.20, -4.61)
Latitude- $\delta^{13}C_c$		0.77	0.00	-0.00 (-0.03, 0.02)	-6.83 (-7.68, -5.99)
Altitude- $\delta^{13}C_c$		0.43	0.01	0.00 (-0.00, 0.00)	-7.23 (-8.17, -6.28)

References

Bühler, J. C., Roesch, C., Kirschner, M., Sime, L., Holloway, M. D., and Rehfeld, K.: Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium, Climate of the Past, 17, 985–1004, 2021.

Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson, D.: PRYSM: An open-source framework for PRoxY System Modeling, with applications to oxygen-isotope systems, Journal of Advances in Modeling Earth Systems, 7, 1220–1247,

5

https://doi.org/https://doi.org/10.1002/2015MS000447, 2015. Fohlmeister, J., Voarintsoa, N. R. G., Lechleitner, F. A., Boyd, M., Brandtstätter, S., Jacobson, M. J., and Oster, J. L.: Main controls on the

stable carbon isotope composition of speleothems, Geochimica et Cosmochimica Acta, 279, 67-87, 2020.