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1. Abstract 
Peru's Madre de Dios region is a hotspot for dengue fever and leishmaniasis due to its tropical Amazonian climate. Though treatable, these zoonotic diseases are debilitating for under-resourced communities whose already close proximity to mosquito and sandfly vectors continues to increase via rapid urbanization and deforestation. Peru’s Ministries of Health (MINSA) and Environment (MINAM) are working to better understand the environmental factors amplifying the risk of dengue fever and leishmaniasis transmission. The first term of this project classified the land use and land cover of Madre de Dios’ 11 districts for 2010, 2015, and 2020 and identified a correlation between both diseases and urbanization. Our team expanded this analysis by creating urban-forest edge maps and incorporating climatic and topographic variables with data from Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), the Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), and the Shuttle Radar Topography Mission (SRTM). We determined these variables’ impacts on disease incidence by assessing existing literature and running regression models. Dengue fever correlated with urban-forest edge, urban area, slope, temperature, and precipitation. Leishmaniasis primarily correlated with forest-edge area and elevation, but lacking additional statistical significance prevented further work, a decision supported by the literature. Thus, the risk matrix and risk map which we scripted in R to visualize the risk of disease posed to districts alongside health post locations addresses only dengue fever. The results and products will inform MINSA and MINAM in public health interventions, resource distribution, and policy initiatives.
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2. Introduction 
[bookmark: _Toc334198721]2.1 Background Information
Madre de Dios is a biodiverse region of 11 districts located in the Peruvian Amazon (Figure 1, Figure 2). The tropical rainforest climate makes it a hotspot for dengue fever and leishmaniasis, two zoonotic diseases endemic to Peru. Dengue fever is spread by the yellow fever mosquito, Aedes aegypti, which breeds in damp urban environments (Guagliardo et al., 2015). Leishmaniasis is transmitted by Psychodidae sandflies in forest settings and city-forest borders, especially in areas with inadequate sanitation (World Health Organization, 2021). Rural, indigenous communities like the Awajún, Wampís, and Achuar report high contraction from hunting in remote areas (K. Hopfgartner, personal communication, October 17, 2021). Continued rural development has further disrupted these insects’ habitats and contact between humans and disease vectors have been rapidly increasing. Our team examined district-level climatic and topographic data from 2010 and 2020 with additional land use land cover (LULC) information for 2010, 2015, and 2020 to understand the region’s risk of dengue fever and leishmaniasis.
[image: ]                      [image: ]
Figure 1. Study area of Madre de Dios, Peru.          Figure 2. The 11 districts in the region of Madre de Dios.

Risk of zoonotic disease transmission is intimately linked with environmental variables. For example, dengue fever vectors are more active in warmer temperatures and the wet season, while leishmaniasis vectors rely on low seasonal variation for high transmission (Charette et al., 2020; Purse et al., 2017). Elevation is also a key determinant. Chowell et al. (2008) found that dengue fever rarely occurs below 1,500 meters, and Purse et al. (2017) identified elevation as the most important landscape predictor of cutaneous leishmaniasis. Moreover, land use change greatly contributes to the risk of zoonotic disease outbreaks. Madre de Dios has experienced an average forest loss of 4,128 ha per year since the construction of the Interoceanic Highway in 2011 (Nicolau et al., 2019). Much of this deforestation has been followed by gold mining and agriculture, which operate near rivers and rural forest fragments in which sand flies thrive, increasing the potential for human-vector interaction (Borges et al., 2015). Additionally, rural-urban nodes like the Interoceanic Highway facilitate dengue transmission (Salmón-Mulanovich et al., 2018), and population density further amplifies risk. Previous studies have analyzed the effects of environmental variables on zoonotic disease transmission. Using a stepwise regression model and time series analysis, Chowell et al. (2008) found a positive relationship between precipitation, temperature, and disease incidence in Peru. Another study used a Spearman’s rank analysis to correlate dengue fever incidence and population size in Europe to create a predictive model (Salami et al., 2020). These methods informed our project and guided the analysis of multiple environmental variables to create a model assessing disease risk.

Over two terms, the Peru Health and Air Quality project worked to uncover the relationship between zoonotic disease incidence and climatic, topographic, and land use land cover variables in Madre de Dios. Term I integrated satellite imagery from Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) into a LULC classification script in Google Earth Engine (GEE). They produced raster maps for 2010, 2015, and 2020 and quantified the results by total area and percent change, ultimately finding a correlation between urbanization (km2) and total dengue fever and leishmaniasis incidence. Our team integrated the LULC assessments into our expanded analysis of climatic and topographic variables influencing dengue fever and leishmaniasis incidence.

2.2 Project Partners and Objectives
The Peruvian Ministry of Health (Ministerio de Salud, MINSA) and Ministry of Environment (Ministerio del Ambiente, MINAM) were interested in exploring applications of remote sensing to address zoonotic disease outbreaks in Madre de Dios. MINSA regulates the national healthcare system, monitors diseases, and conducts outreach for preventative care. MINAM oversees matters relating to biodiversity and land conservation. Both ministries partnered with our NASA DEVELOP team to identify districts vulnerable to outbreaks of dengue fever and leishmaniasis. We also received additional technical support, cultural context, and satellite imagery from the Lab for EcoHealth and Urban Ecology at la Universidad Peruana Cayetano Heredia, La Asociación para la Conservación de la Cuenca Amazónica (ACCA), El Instituto del Bien Común (IBC), and La Comisión Nacional de Investigación y Desarrollo Aeroespacial (CONIDA).

We assisted MINSA and MINAM in determining the degrees of vulnerability for each district in Madre de Dios. We scripted disease outbreak risk matrices in R to correlate disease incidence in relation to climatic, topographic, and LULC variables. Our R script further maps risk alongside the current distribution of local medical centers, known as health posts, to emphasize the location of resources compared to risk. To increase public awareness about zoonotic disease in the region, we also recorded the project’s methodology and results in a video narrated in both English (https://youtu.be/z1C5YwoQYG0) and Spanish (https://youtu.be/gov429G5CK0). Ultimately, MINSA and MINAM can utilize the risk matrix, risk maps, and video, alongside the products from Term I, to identify which districts could benefit from public health interventions, expanded healthcare infrastructure, and designated protected land. These products can also support advocacy for best practices in urban planning, public sanitation, and resource management.

[bookmark: _Toc334198726]3. Methodology
3.1 Data Acquisition 
We used GEE to visualize and export temperature data from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 OLI, precipitation data from the Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), and elevation and slope from the Shuttle Radar Topography Mission (SRTM; Table 1). We used GEE scripts developed during the first term of the project to obtain information on LULC classes created using Landsat 5 TM and Landsat 8 OLI imagery (Stapleton et al., 2021). Ancillary datasets provided data for all other variables (Table 2). MINSA supplied weekly zoonotic disease incidence reports which were organized to display dengue fever and leishmaniasis cases originating in districts within Madre de Dios. To normalize disease incidence, we acquired population data for 2010 and 2020 from Term I’s interpolation of 2007 and 2017 census data from the Peruvian National Institute of Statistics and Informatics. Additionally, we downloaded health post points from Geo Perú’s Plataforma Nacional de Datos Georreferenciados. Lastly, information from Geoservidorperu (Sideteva) was also used during the first term of the project to help define mining areas while completing the LULC classification.

Table 1 
Earth Observation products, accompanying resolutions, and the derived variables
	Satellite and Sensor
	Parameters
	Spatial Resolution (meters)
	Years
	Source
	Variable

	Landsat 5 TM
	Surface Reflectance, Tier 1; Normalized Difference Vegetation Index (NDVI); Normalized Difference Water Index (NDWI); Enhanced Vegetation Index (EVI)
	30 m
	2010
	GEE
	LULC

	Landsat 7 ETM+
	Surface Reflectance, Tier 2; Temperature
	30 m
	2010-2014
	GEE
	Temperature

	Landsat 8 OLI
	Surface Reflectance, Tier 2; Temperature; NDVI; NDWI; EVI
	30 m
	2015-2020
	GEE
	Temperature & LULC

	GPM IMERG
	Precipitation, Version 6
	11,000 m
	2010-2020
	GEE
	Precipitation

	SRTM Digital Elevation Data
	Digital Elevation Model, Version 4
	90 m
	2000
	GEE
	Elevation & Slope



Table 2
Ancillary Datasets
	Dataset
	Years
	Source
	Variable

	Weekly Disease Incidence Reports
	2000-2021
	MINSA
	Disease Incidence

	Health Post Points
	2021
	Geo Perú’s Plataforma Nacional de Datos Georreferenciados 
	Health Post Locations

	Census Data 
	2007 & 2017
	Peruvian National Institute of Statistics and Informatics
	Population



3.2 Data Processing
3.2.1 Addressing Seasonality
Our team sought to better understand the complex interactions between environmental factors, disease incidence, and seasonality as dengue fever and leishmaniasis transmission varies over the course of the year. Additionally, some literature suggests a lag period five weeks following climatic conditions to time of infection, identified by Chowell et al. (2008) for dengue fever. To address these nuances impacting the risk of dengue fever and leishmaniasis, we organized temperature and precipitation data into seasons to compare these variables to disease incidence for a particular season. Informed by partners and meteorological reports, we classified the wet season as November to March and the dry season as April to October. With a span of five and seven months, respectively, these seasonal metrics better encompassed effects of a lag period. While the wet season remained an individual variable, we integrated the dry season into a new variable—seasonal year—which encompassed both wet and dry seasons from November to October. This merge was due to significant gaps in the satellite data for temperature during the dry season, potentially caused by sensor and coding errors. We chose to use the term seasonal year to distinguish that our period was November to October, rather than the typical calendar year of January to December which could be conveyed by “annual incidence.” We organized our health data to follow the same pattern. With dengue fever and leishmaniasis incidence reported at the weekly level, we calculated the total cases which occurred in the wet season and the seasonal year for both diseases. We executed all of these steps in R Studio, which we extensively utilized throughout our project to organize, analyze, and visualize our data.

3.2.2 Climatic and Topographic Variables
For temperature, we used the GEE interface to clip the Landsat 7 ETM+ and Landsat 8 OLI datasets to the 11 districts within the Madre de Dios region and filtered the wet and dry seasons for 2010, 2015, and 2020. We then organized our data according to the wet season and seasonal year. After converting temperature from Kelvin to Celsius to align with the metrics used in Peru, we applied the same clipping, filtering, and visualization process for precipitation, elevation, and elevation-derived slope. For each of these climatic and topographic datasets, we extracted the minimum, maximum, mean, and median values aggregated to the district level. Then, these data were imported into R, where we formatted each to include just the parameter value, removing superfluous information about the system index and identification numbers. We also calculated an additional metric of range in R by subtracting minimum values from maximum values. 

3.2.3 LULC Variables
The LULC data we obtained from the previous term contained eight classes (urban, forest, secondary vegetation, mining, agriculture, pasture lands, water, and wetlands), but we removed secondary vegetation due to our focus on the other categories identified as common areas for human-vector interaction. Scientific literature has consistently identified urban areas as important for dengue fever transmission and forested areas for leishmaniasis transmission. Thus, we retained urban and forest as individual LULC variables. Food production and wet environments are also proven vector breeding grounds and places of human-vector interactions (Lana et al., 2021; Tsheten et al., 2021; Yanoviak et al., 2006). To explore this pattern in our data, we grouped agriculture and pasture lands into one variable and water and wetlands were grouped into another. We also created another variable which combined urban, mining, agriculture, and pastureland to explore the significance of human-altered environments. The final LULC variables used in the project were (1) urban, (2) forest, (3) agriculture and pastures, (4) water and wetlands, and (5) human-altered environments (urban, mining, agriculture, and pastures). All data were measured by total area (km2), and from this metric we calculated proportion of the total district area (%).

We further processed our raw LULC data to calculate urban, forest, and urban-forest edges due to their importance in harboring vectors. Dengue-carrying mosquitoes are prevalent in microhabitats created by recent deforestation (Yanoviak et al., 2006). The first term of this project also noted that a large number of leishmaniasis cases occurred in Manu, a rural area undergoing high rates of deforestation. We adapted the methodology of Gambino et al. (2019), who studied tick-borne disease in Maine, to calculate the overlapping urban-forest edges in GEE using our LULC maps of Madre de Dios. This method uses Euclidean distance to calculate the distance within 30 meters for both urban and forest cover edges and then creates a buffer along edges using the focalmax and after which calculates the areas of overlap between forest and urban edge. The pixels and subsequent area for the three separate layers (i.e., forest edge, urban edge, and forest-urban edge) were counted as total raw values (km2) and as the percent area in each district (%). 

3.3 Data Analysis
3.3.1 Statistical Analysis
We first evaluated the correlations between variables within the climatic, topographic, and LULC variable categories for each disease for the wet season and seasonal year in 2010 and 2020 (Appendix A). We applied a Spearman’s rank correlation on our variables because it is a nonparametric test which does not assume normal distribution or linear relationships and is suitable for a small sample size. This process identified the correlated and collinear intra-categorical variables, which subsequently informed our primary statistical analysis that used multivariable regression models. In the case that two variables were highly corelated with each other, we selected one to avoid redundancy in our multivariable regression models.

After checking correlation and collinearity, we assessed our dependent variables for normality (the distribution of the data) and heteroskedasticity (the unequal variance of residuals) with the Shapiro-Wilks test and diagnostic plots to verify that our data met the assumptions of linear and stepwise regressions. We then ran stepwise and linear regression models for the wet season and seasonal year in 2010 and 2020 to determine the most appropriate climatic, topographic, and LULC variables for estimating disease incidence. Using the R stats package, we ran models with individual variables against disease incidence. Next, to build the strongest models, we used individual models to down select variables for a final model, integrating the variable with the strongest R2 and p-value in each category. We also chose variables which had an established association with each disease, regardless of statistical significance in our tests. The most explanatory individual variables (high R2 and low p-value) informed our likelihood axis in the risk matrix and risk map. The most explanatory multivariable models highlighted which individual variables held the greatest significance among the climatic, topographic, and LULC categories. From dengue fever models, we found urban area, urban-forest edge area, slope range, and precipitation range to be most effective. For leishmaniasis, forest edge area and elevation mean were important.

3.3.2 Risk Matrices and Risk Maps
To visualize each district’s risk, we created a script which generates risk matrices and risk maps in R. In the risk matrix, districts were organized with respect to their levels of risk as a product of likelihood and population, categorized from very low to very high risk. We built the likelihood axis from the results of our regression analyses, partners’ expertise, and scientific literature. Each variable contributing to likelihood was divided into four intervals based on quantiles and assigned a value between one, very low risk, and four, very high risk. We further assigned weights to variables based on the strength of their impact on disease transmission which was influenced by expert opinion. The weighted mean of these variables was then taken to calculate the overall likelihood parameter. 

The population axis represents consequence of disease transmission. With varying population density across Madre de Dios, the population parameter considers which districts have the higher potential for disease spread based on the number of people who can be infected. Population parameter intervals were also determined by the quantile of population values from 2007 to 2020. Points on the risk matrix represent individual districts in their overall risk, and as new data for subsequent years are input into the matrix, these points will move accordingly. To allow for these iterations, we incorporated linear interpolations for population using 2007 and 2017 census data and ultimately urban-forest edge and urban area using 2010 and 2020 LULC data. The script also includes the option for users to input updated data. To accompany the risk matrix, we created a script for risk maps which geographically visualize each district’s level of risk in the form of a choropleth map, where the colors of districts correspond with the risk assigned in the matrix. Additionally, we overlaid the current distribution of health posts to portray the level of risk compared to resources. 

[bookmark: _Toc334198730]4. Results & Discussion
4.1 Regression Results
4.1.1 Stepwise and Linear Regression
In meeting the assumptions of stepwise and linear regression, the distribution of dengue fever data was near-normal for the wet season and seasonal year in 2010 and 2020. In the Shapiro-Wilk test, dengue fever yielded normal p-values between 0.0489 and 0.145. Leishmaniasis data, however, did not yield the same normality. Only seasonal year 2010 displayed normality. Due to our small sample size (n=11) which may have obscured normality, we exercised extreme caution in reading results for leishmaniasis in our regression analyses.

In stepwise regression, the combinations of independent variables selected by the model were often correlated, weakening the efficacy of this model. Moreover, whereas the stepwise regression consistently produced results for dengue fever, this model yielded few results for leishmaniasis. We found greater success with linear regression models, though only with dengue fever, detailed below.

[bookmark: _Toc334198734]4.1.2 Dengue Fever Results
Urban area, urban-forest edge area, slope range, and precipitation range were the individual variables from each category which best explained dengue fever incidence across all years (Table 3). Even when linear regression assigned no statistical significance, these selected variables remained the most explanatory for that year and season compared to the other variables in their respective categories. Partner expertise and patterns in scientific literature also affirmed the importance of these variables. Urban areas and urban-forest edge areas foster habitats for mosquitoes and human-vector interaction. Precipitation range is also a logical explanatory variable as water is needed for vector breeding, but too much precipitation could destroy vector habitats. Slope range requires more interpretation but was presumably strongly correlated because slope impacts water retention and is strongly tied to elevation and thus climate. Temperature was notably omitted from our selected variables of importance, despite it being a known influencing factor for dengue fever vector survival and subsequently transmission. An error identified in our data acquisition process at this stage led us to discard the use of temperature in our regression models, risk matrices, and risk maps.

Table 3
Dengue Fever Regression Results: Individual Variables.
(** indicates statistical significance at the 1% level, * at the 5% level, and ∙ at the 10% level)
	Variable
	Wet Season 2010
	Seasonal Year 2010
	Wet Season 2020
	Seasonal Year 2020

	Urban Area (km2)
	R2 = 0.3725
	R2 = 0.3628
	R2 = 0.1681
	R2 = 0.1763

	
	[bookmark: _Hlk91591986]ρ = 0.0272
	*
	ρ = 0.02934
	*
	ρ = 0.1162
	
	ρ = 0.1101
	

	Urban-Forest Edge Area (km2)
	R2 = 0.5389
	R2 = 0.5536
	R2 = 0.2235
	R2 = 0.2167

	
	ρ = 0.006
	**
	ρ = 0.005229
	**
	ρ = 0.08044
	∙
	ρ = 0.08422
	

	Slope Range
	R2 = 0.4059
	R2 = 0.4023
	R2 = 0.4704
	R2 = 0.4587

	
	ρ = 0.02076
	*
	ρ = 0.02138
	*
	ρ = 0.01186
	*
	ρ = 0.01318
	*

	Precipitation Range (mm)
	R2 = 0.3153
	R2 = 0.3084
	R2 = 0.06715
	R2 = 0.05632

	
	ρ = 0.04209
	*
	ρ = 0.04427
	*
	ρ = 0.2222
	
	ρ = 0.2381
	



Overall, the ability of these variables to explain dengue fever incidence was stronger in 2010 than 2020. We cannot definitively attribute this trend to any variables, but it may have been influenced by climatic variation and long-running factors such as land use change and migration patterns. Dengue fever incidence in 2020 may have also been affected by the COVID-19 pandemic changing the interactions among humans and between humans and vectors. Additionally, the differences between wet season and seasonal year were often minor, a logical result as most dengue fever cases occur in the wet season. An extended table of regression results for each variable is available in Tables B1, B2, B3, and B4. 

After identifying these individual variables as important, we ran multivariable linear regression to explore which combinations were most predictive of dengue fever incidence. We built our models around the most significant individual variables and variables identified as important from the scientific literature. In most cases, the model did not greatly improve from the results of the strongest individual variable: urban-forest edge area. While these models were informative for our own understandings, the significance of individual variables was most important to our project. 

4.1.3 Leishmaniasis Results
Of all the individual variables analyzed against leishmaniasis incidence, slope and elevation metrics were the only ones to display statistical significance in linear regression. Metrics were often correlated, though elevation mean had the most explanatory abilities. The expected variables addressing human-forest interaction yielded low, and even negative, R2 values and high p-values (Table 4). We found this pattern across the other LULC and climatic variables as well (Tables C1, C2, C3, and C4). Multivariable linear regression models for leishmaniasis were similar to those run for dengue fever in that combinations did not greatly improve the results from the strongest independent variable. Notably, though, using forest edge in combination with elevation mean yielded the best performing model with an R2 of 0.8027 and p-value of 0.000621. 

Table 4
Leishmaniasis Regression Results: Individual Variables.
(*** indicates statistical significance at the 0.1% level and ** at the 1% level)
	Variable
	Wet Season 2010
	Seasonal Year 2010
	Wet Season 2020
	Seasonal Year 2020

	Elevation Mean
	R2 = 0.7461
	R2 = 0.7387
	R2 = 0.6239
	R2 = 0.5015

	
	ρ = 3.74x10-4
	***
	ρ = 4.27x10-4
	***
	ρ = 2.33x10-3
	**
	ρ = 8.86x10-3
	**

	Forest Area (km2)
	R2 = -0.07692
	R2 = -0.0794
	R2 = -0.1001
	R2 = -0.08193

	
	ρ = 0.6059
	
	ρ = 0.6175
	
	ρ = 0.7705
	
	ρ = 0.634
	

	Forest Edge (km2)
	R2 = 0.05229
	R2 = 0.04496
	R2 = 0.07705
	R2 = -0.03265

	
	ρ = 0.2443
	
	ρ = 0.2561
	
	ρ = 0.2086
	
	ρ = 0.4296
	

	Urban-Forest Edge (km2)
	R2 = -0.07998
	R2 = -0.02922
	R2 = 0.06285
	R2 = 0.05536

	
	ρ = 0.6228
	
	ρ = 0.4193
	
	ρ = 0.2284
	
	ρ = 0.2396
	



Other researchers have also encountered difficulty in working with leishmaniasis. Okwor and Uzonna (2016) explained the concentration of leishmaniasis in rural places and the limited access to healthcare facilities. In their review of leishmaniasis in Latin America, Romero and Boelaert (2010) discussed the lack of studies to control leishmaniasis vectors and the urgent need for researchers to prioritize the disease. Moreover, some of our partners noted the under-reporting and under-researching of the disease. Ultimately, we decided to proceed without leishmaniasis for our risk matrices and risk maps due to the limited statistical significance of our regression analyses, supporting literature about the difficulties of modeling leishmaniasis, and experiences of our partners.

4.2 Risk Matrix and Risk Map Results
Using the significant variables identified as important in our regression analyses and validated by partners, we created risk matrices for dengue fever. In our likelihood parameter, we used, in order of importance and assigned weight: urban-forest edge area (km2), urban area (km2), precipitation range (mm), and slope range. Additionally, we coded a framework to incorporate temperature minimum based on the values reported in the scientific literature. 

Risk matrices and maps were created for 2010 and 2020 and reviewed for their accuracy compared to incidence data. In particular, there was a shift from 2010 to 2020 to higher disease incidence that is reflected in a shift to higher risk (Figure 3, Figure 4, Table 5). Moreover, we found that assigning weight to variables according to expert opinion better matched a district’s level of risk to its total disease incidence, compared to the performance of risk matrices built with unweighted means. Overall, for the 2010 and 2020 matrices, districts with high and low levels of risk compared well to total disease incidence (Table 5). 

The role of increasing urban-forest edge area can be seen in districts such as Tambopata. In 2010, Tambopata had urban area in the very high category and precipitation range also in the very high category, leading to an overall classification of the district as one with somewhat high likelihood. Because Tambopata also has the highest population, it was assigned at high risk of transmission. In 2020, Tambopata doubled its urban-forest edge area. This increase shifted the district to higher likelihood and subsequently at very high risk for transmission. Inambari in 2020 had the largest area of urban-forest edge after undergoing an order of magnitude increase in its urban-forest edge area. Because of this change, it advanced from somewhat high to very high disease risk. Matrices were also depicted more intuitively in map format, the shift to red shades from 2010 to 2020 is apparent (Figure 5, Figure 6). 
[image: ]
Figure 3. Risk matrix for dengue fever for the 2010 seasonal year. Here, circles represent districts, denoted by their ID, plotted according to likelihood and population size. The color represents the intensity of risk.
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Figure 4. Risk matrix for dengue fever for the 2020 seasonal year.

[image: ][image: Map

Description automatically generated]
Figure 5. Risk map for dengue fever for 2010.                         Figure 6. Risk map for dengue fever for 2020.

Table 5. 
Total dengue fever cases for the 2010 and 2020 seasonal year. 
	District
	District Risk    2010
	Total Incidence 2010
	District Risk    2020
	Total Incidence 2020

	Tambopata
	High
	1371
	Very High
	4315

	Inambari
	Somewhat High
	43
	Very High
	1057

	Las Piedras
	Somewhat High
	32
	Very High
	1028

	Laberinto
	Low
	62
	Somewhat High
	390

	Huepetuhe
	Somewhat Low
	42
	High
	377

	Madre de Dios
	Medium
	6
	Somewhat High
	364

	Iberia
	Somewhat High
	145
	Medium
	296

	Iñapari
	Somewhat Low
	24
	Medium
	200

	Tahuamanu
	Somewhat Low
	7
	Medium
	150

	Manu
	Very Low
	0
	Low
	26

	Fitzcarrald
	Very Low
	1
	Low
	0



4.3 Limitations
Our work provides a framework for analysis rather than a comprehensive tool due to limitations around temporal parameters, access to high-resolution data, and results that undervalue established predictors of these diseases. In regard to temporal parameters, we divided the disease incidence data into wet and dry seasons, using almanac dates from the literature. In reality, seasonal changes occur gradually over a period of time. Significantly more satellite images were available for the wet season than for the dry season. This partially impacted our climatic variables, especially temperature data, which was inaccurate by several degrees. We did not include temperature in our model but acknowledge that it is an important factor to vector breeding and should be included in future models. In the R script, we left an option for partners to incorporate temperature into the risk matrix using externally acquired data.

Regarding low data resolution, we used data aggregated to a district level, which obscures local nuance. We could not use the finer-scale health data provided by MINSA because of the way disease is reported. Many of the cases recorded at health posts were contracted outside the district in which the health post is located. Cases in the Madre de Dios region often go unreported, further preventing an accurate landscape analysis of disease incidence. Our climatic and LULC variable data were similarly coarse. GPM IMERG has a resolution of 11 kilometers, which cannot represent local variation and increases error potential. We also identified a potential case of error in our LULC data, since the literature suggests that water is important for vector habitat but showed no significance in our model. The resolution of our LULC classification data may have also hidden significant trends for water, as our regression models did not reflect the importance of this variable for vector habitat.

Furthermore, the risk matrices we produced are also considered low resolution since they encompass large areas. Therefore, they should be used to inform, and not drive, decision making. We were also unable to integrate leishmaniasis into our risk matrices and risk maps as there were too many uncertain factors to consider in the framework of this project. It was not within our capacity to incorporate the lag period of 8 months between the climatic phenomenon in which leishmaniasis vectors breed and the actual transmission to humans.

4.4 Future Work
This project’s limitations could be addressed with future work. Successive researchers can build upon our findings by using higher-resolution satellite data and more detailed health data. PeruSAT imagery, which has a resolution of 3 meters, could create a more detailed, accurate LULC classification and allow for the inclusion of additional land types (Figure D1). Illegal mining, especially, is an important LULC variable that merits further analysis using high-resolution remote sensing data since it is one of the most common causes of habitat disruption, especially on indigenous lands. Researchers could utilize data from IBC to analyze disease risk in relation to proximity to sovereign territory. Researchers could also integrate higher-resolution satellite data to conduct more precise analyses for temperature and precipitation variables, since our team was not able to access accurate temperature data and had to use scaled precipitation data to match precipitation intervals established in the literature. After researchers have conducted more in-depth analysis around environmental variables, higher-resolution health data at the address-scale can be used to assess the source of disease incidence at the community level and the status of health infrastructure (e.g., staffing and medication availability). Researchers should also acquire data for and apply this process to leishmaniasis, as our team did not have the resources necessary to study the disease. Future studies should focus on evaluating which variables increase outbreak risk in areas with high incidences of leishmaniasis. 

[bookmark: _Toc334198735]5. Conclusions
Ultimately, our team created a streamlined process to explain dengue fever risk with climatic, topographic, and LULC variables and visualize this risk at a district level overlaid by health post locations. Through analyzing these variables individually and in combination with one another, we identified urban-forest edge area, urban area, precipitation range, and slope range as the model with the highest correlation for dengue incidence. According to the risk matrix and risk map we created, the districts of Tambopata, Las Piedras, and Inambari were at higher risk for disease transmission in both 2010 and 2020. Our methods of analysis, results, and visualizations will serve as a framework for further exploration into higher-resolution climatic data and more land-use change variables based on partners’ observations on the ground. Moreover, as zoonotic disease incidence continues to rise in Madre de Dios, MINSA, MINAM, and our collaborating partners can utilize our products to inform their decision making. The risk matrix and risk map script, along with our more general research findings, can help them direct resources to vulnerable districts and advocate for policy changes which can address the environmental variables amplifying risk. Additionally, this project exemplified the importance of interdisciplinary collaboration across academic, governmental, and non-profit organizations in addressing planetary health. 
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7. Glossary
Dengue Fever – A viral tropical mosquito-borne disease 
Endemic – Restricted in location to a native habitat
ETM+ – Enhanced Thematic Mapper Plus 
GPM – Global Precipitation Measurement
Health Posts – Local medical clinics
IMERG – Integrated Multi-satellitE Retrievals for GPM
Incidence – The occurrence of new cases within a set time frame
Leishmaniasis – A sandfly-borne parasitic disease 
LST – Land Surface Temperature 
SRTM – Shuttle Radar Topography Mission
Zoonotic Disease – A disease transferred to people from animals
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9. Appendices
Appendix A
Table A1
Regression Variables
	Category
	Variable
	Units
	Parameters

	Climatic
	Temperature
	Celsius
	Minimum, maximum, mean, median, and range

	Climatic
	Precipitation
	Millimeters
	Minimum, maximum, mean, median, and range

	Topographic
	Elevation
	Meters
	Minimum, maximum, mean, median, and range

	Topographic
	Slope
	Degrees
	Minimum, maximum, mean, median, and range

	LULC
	Urban Area
	Kilometers-squared
	Area (km2) and percent total area (%)

	LULC
	Forest Area
	Kilometers-squared
	Area (km2) and percent total area (%)

	LULC
	Agriculture and Pastures
	Kilometers-squared
	Area (km2) and percent total area (%)

	LULC
	Water and Wetlands
	Kilometers-squared
	Area (km2) and percent total area (%)

	LULC
	Human-Altered Environments 
(Urban, Agriculture, Pastures, Mining)
	Kilometers-squared
	Area (km2) and percent total area (%)

	LULC
	Urban Edge
	Kilometers-squared
	Area (km2) and percent total area (%)

	LULC
	Forest Edge
	Kilometers-squared
	Area (km2) and percent total area (%)

	LULC
	Urban-Forest Edge
	Kilometers-squared
	Area (km2) and percent total area (%)





Appendix B
Table B1
Land Use & Land Change Variables for Dengue Fever
	LULC
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Urban (km2)
	R2 = 0.3725
	R2 = 0.3628
	R2 = 0.1681
	R2 = 0.1763

	
	ρ = 0.0272
	ρ = 0.02934
	ρ = 0.1162
	ρ = 0.1101

	Urban (% area)
	R2 = 0.3908
	R2 = 0.3597
	R2 = 0.07291
	R2 = 0.07275

	
	ρ = 0.02348
	ρ = 0.03007
	ρ = 0.2142
	ρ = 0.2144

	Forest (km2)
	R2 = -0.06705
	R2 = -0.04187
	R2 = -0.0867
	R2 = -0.08694

	
	ρ = 0.5572
	ρ = 0.4591
	ρ = 0.6636
	ρ = 0.6652

	Forest (% area)
	R2 = -0.09992
	R2 = -0.1091
	R2 = -0.06992
	R2 = -0.06814

	
	ρ = 0.769
	ρ = 0.9002
	ρ = 0.5706
	ρ = 0.5622

	Water (km2)
	R2 = -0.03127
	R2 = -0.04615
	R2 = -0.08595
	R2 = -0.0824

	
	ρ = 0.4255
	ρ = 0.4738
	ρ = 0.6587
	ρ = 0.6372

	Water (% area)
	R2 = -0.1086
	R2 = -0.1067
	R2 = 0.001778
	R2 = 0.005357

	
	ρ = 0.8994
	ρ = 0.8539
	ρ = 0.3394
	ρ = 0.3314

	Agriculture & Pastures (km2)
	R2 = 0.1728
	R2 = 0.1435
	R2 = 0.0009191
	R2 = 0.004935

	
	ρ = 0.1127
	ρ = 0.1363
	ρ = 0.3413
	ρ = 0.3323

	Agriculture & Pastures (% area)
	R2 = 0.1847
	R2 = 0.1077
	R2 = 0.1772
	R2 = 0.1768

	
	ρ = 0.1043
	ρ = 0.1715
	ρ = 0.2095
	ρ = 0.1098

	Human-Altered Environments (km2)
	R2 = 0.1085
	R2 = 0.09278
	R2 = 0.0578
	R2 = 0.06562

	
	ρ = 0.1706
	ρ = 0.1887
	ρ = 0.2359
	ρ = 0.2244

	Human-Altered Environments (% area)
	R2 = -0.07558
	R2 = -0.07913
	R2 = -0.05715
	R2 = -0.05707

	
	ρ = 0.5988
	ρ = 0.618
	ρ = 0.515
	ρ = 0.5146



Table B2
Edge Variables for Dengue Fever
	Edge
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Urban-Forest Edge (km2)
	R2 = 0.5389
	R2 = 0.5536
	R2 = 0.2235
	R2 = 0.2167

	
	ρ = 0.006
	ρ = 0.005229
	ρ = 0.08044
	ρ = 0.08422

	Urban-Forest Edge (%)
	R2 = 0.3008
	R2 = 0.3044
	R2 = 0.04028
	R2 = 0.03536

	
	ρ = 0.04681
	ρ = 0.04559
	ρ = 0.2639
	ρ = 0.2724

	Urban-Edge (km2) 
	R2 = 0.39
	R2 = 0.378
	R2 = 0.1745
	R2 = 0.1835

	
	ρ = 0.0236
	ρ = 0.02604
	ρ = 0.1113
	ρ = 0.1051

	Urban-Edge (%)
	R2 = 0.3579
	R2 = 0.3309
	R2 = 0.05378
	R2 = 0.05375

	
	ρ = 0.03048
	ρ = 0.03747
	ρ = 0.242
	ρ = 0.2421

	Forest-Edge (km2)
	R2 = -0.04324
	R2 = -0.0562
	R2 = -0.0496
	R2 = -0.05764

	
	ρ = 0.4637
	ρ = 0.5112
	ρ = 0.4861
	ρ = 0.5169

	Forest-Edge (%) 
	R2 = -0.1099
	R2 = -0.1081
	R2 = -0.1108
	R2 = -0.111

	
	ρ = 0.9221
	ρ = 0.8791
	ρ = 0.9589
	ρ = 0.9816



Table B3 
Topographic Variables for Dengue Fever
	Topographic
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Elevation Minimum
	R2 = 0.02229
	R2 = -0.03178
	R2 = 0.3845
	R2 = 0.3836

	
	ρ = 0.2965
	ρ = 0.427
	ρ = 0.02472
	ρ = 0.02489

	Elevation Maximum
	R2 = 0.3039
	R2 = 0.2957
	R2 = 0.3545
	R2 = 0.3375

	
	ρ = 0.04575
	ρ = 0.04857
	ρ = 0.03131
	ρ = 0.03566

	Elevation Median
	R2 = 0.05133
	R2 = 0.0004743
	R2 = 0.6426
	R2 = 0.6307

	
	ρ = 0.2458
	ρ = 0.3424
	ρ = 0.001832
	ρ = 0.002136

	Elevation Mean
	R2 = 0.1224
	R2 = 0.09355
	R2 = 0.50787
	R2 = 0.4879

	
	ρ = 0.1561
	ρ = 0.1878
	ρ = 0.008337
	ρ = 0.01008

	Elevation Range
	R2 = 0.3022
	R2 = 0.2975
	R2 = 0.338
	R2 = 0.3211

	
	ρ = 0.04531
	ρ = 0.04793
	ρ = 0.03551
	ρ = 0.04032

	Slope Maximum
	R2 = 0.4059
	R2 = 0.4023
	R2 = 0.4704
	R2 = 0.4587

	
	ρ = 0.02076
	ρ = 0.02138
	ρ = 0.01186
	ρ = 0.01318

	Slope Median
	R2= -0.02949
	R2 = -0.06441
	R2 = 0.3423
	R2 = 0.3375

	
	ρ = 0.4202
	ρ = 0.5454
	ρ = 0.03438
	ρ = 0.03566

	Slope Mean
	R2 = 0.1218
	R2 = 0.08032
	R2 = 0.4167
	R2 = 0.4022

	
	ρ = 0.1568
	ρ = 0.2043
	ρ = 0.01897
	ρ = 0.0214

	Slope Range
	R2 = 0.4059
	R2 = 0.4023
	R2 = 0.4704
	R2 = 0.4587

	
	ρ = 0.02076
	ρ = 0.02138
	ρ = 0.01186
	ρ = 0.01318



Table B4
Precipitation Variables for Dengue Fever
	Precipitation
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Precipitation Minimum 
	R2= -0.0589
	R2= -0.07084
	R2= -0.104
	R2= -0.1024

	
	ρ = 0.52
	ρ = 0.575
	ρ = 0.8148
	ρ = 0.7959

	Precipitation Maximum 
	R2= 0.3152
	R2=0.3086
	R2= 0.06081
	R2= 0.0569

	
	ρ = 0.04213
	ρ = 0.0442
	ρ = 0.221
	ρ = 0.2372

	Precipitation Mean
	R2= -0.1055
	R2= -0.1042
	R2= -0.1088
	R2= -0.1083

	
	ρ = 0.8354
	ρ = 0.8171
	ρ = 0.8947
	ρ = 0.8831

	Precipitation Median
	R2= -0.09728
	R2= -0.1035
	R2= -0.08331
	R2= -0.08007

	
	ρ = 0.744
	ρ = 0.8087
	ρ = 0.6423
	ρ = 0.6233

	Precipitation Range
	R2= 0.3153
	R2= 0.3084
	R2= 0.06715
	R2= 0.05632

	
	ρ = 0.04209
	ρ = 0.04427
	ρ = 0.2222
	ρ = 0.2381
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Table C1
Land Use & Land Change Variables for Leishmaniasis
	LULC
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Urban (km2)
	R2 = 0.03552
	R2 = 0.09198
	R2 = -0.1024
	R2 = -0.09027

	
	ρ = 0.2722
	ρ = 0.1896
	ρ = 0.7957
	ρ = 0.688

	Urban (% area)
	R2 = -0.1058
	R2 = -0.08144
	R2 = -0.08829
	R2 = -0.09301

	
	ρ = 0.8404
	ρ = 0.6311
	ρ = 0.6742
	ρ = 0.7084

	Forest (km2)
	R2 = -0.07692
	R2 = -0.0794
	R2 = -0.1001
	R2 = -0.08193

	
	ρ = 0.6059
	ρ = 0.6175
	ρ = 0.7705
	ρ = 0.634

	Forest (% area)
	R2 = -0.07734
	R2 = -0.0414
	R2 = -0.1111
	R2 = -0.1078

	
	ρ = 0.6082
	ρ = 0.4576
	ρ = 0.985
	ρ = 0.8736

	Water (km2)
	R2 = 0.158
	R2 = 0.1731
	R2 = 0.1111
	R2 = -0.08707

	
	ρ = 0.1241
	ρ = 0.1125
	ρ = 0.9926
	ρ = 0.666

	Water (% area)
	R2 = 0.14
	R2 = 0.1678
	R2 = -0.1091
	R2 = -0.08762

	
	ρ = 0.1394
	ρ = 0.1165
	ρ = 0.9016
	ρ = 0.6697

	Agriculture & Pastures (km2)
	R2 = 0.1493
	R2 = 0.1788
	R2 = -0.08292
	R2 = -0.04966

	
	ρ = 0.1314
	ρ = 0.1084
	ρ = 0.6399
	ρ = 0.4863

	Agriculture & Pastures (% area)
	R2 = -0.002128
	R2 = 0.03572
	R2 = -0.07878
	R2 = -0.0857

	
	ρ = 0.3483
	ρ = 0.2718
	ρ = 0.6161
	ρ = 0.6572

	Human-Altered Environments (km2)
	R2 = 0.1832
	R2 = 0.2476
	R2 = -0.0776
	R2 = -0.03927

	
	ρ = 0.1053
	ρ = 0.0682
	ρ = 0.6096
	ρ = 0.4505

	Human-Altered Environments (% area)
	R2 = -0.1086
	R2 = -0.09222
	R2 = -0.07851
	R2 = -0.07688

	
	ρ =0.8905
	ρ = 0.7024
	ρ = 0.6145
	ρ = 0.6057



Table C2
Edge Variables for Leishmaniasis
	Edge
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Urban-Forest Edge (km2)
	R2 = -0.07998
	R2 = -0.02922
	R2 = 0.06285
	R2 = 0.05536

	
	ρ = 0.6228
	ρ = 0.4193
	ρ = 0.2284
	ρ = 0.2396

	Urban-Forest Edge (%)
	R2 = -0.1093
	R2 = -0.1083
	R2 = -0.03444
	R2 = -0.05339

	
	ρ = 0.9053
	ρ = 0.883
	ρ = 0.4352
	ρ = 0.5003

	Urban-Edge (km2) 
	R2 = 0.02514
	R2 = 0.08487
	R2 = -0.1058
	R2 = -0.09648

	
	ρ = 0.2911
	ρ = 0.1984
	ρ = 0.8406
	ρ = 0.7369

	Urban-Edge (%)
	R2 = -0.1088
	R2 = -0.08931 
	R2 = -0.09032
	R2 = -0.09438

	
	ρ = 0.89450
	ρ = 0.6812
	ρ = 0.6884
	ρ = 0.7193

	Forest-Edge (km2)
	R2 = 0.05229
	R2 = 0.04496
	R2 = 0.07705
	R2 = -0.03265

	
	ρ = 0.2443
	ρ = 0.2561
	ρ = 0.2086
	ρ = 0.4296

	Forest-Edge (%) 
	R2 = 0.007352
	R2 = 0.01721
	R2 = -0.04756
	R2 = -0.08351

	
	ρ = 0.3271
	ρ = 0.3065
	ρ = 0.4788
	ρ = 0.6435



Table C3
Topographic Variables for Leishmaniasis
	Topographic
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Elevation Minimum
	R2 = 0.57
	R2 = 0.5849
	R2 = 0.04997
	R2 = 0.07271

	
	ρ = 0.004379
	ρ = 0.003705
	ρ = 0.248
	ρ = 0.2144

	Elevation Maximum 
	R2 = 0.1554
	R2 = 0.2188
	R2 = 0.1887
	R2 = 0.07565

	
	ρ = 0.1262
	ρ = 0.08302
	ρ = 0.1015
	ρ = 0.2105

	Elevation Median
	R2 = 0.6872
	R2 = 0.698
	R2 = 0.309
	R2 = 0.2402

	
	ρ = 0.0009843
	ρ = 0.0008354
	ρ = 0.04408
	ρ = 0.07179

	Elevation Mean
	R2 = 0.7461
	R2 = 0.7387
	R2 = 0.6239
	R2 = 0.5015

	
	ρ = 0.0003744
	ρ = 0.000427
	ρ = 0.002329
	ρ = 0.008863

	Elevation Range
	R2 = 0.136
	R2 = 0.198
	R2 = 0.1841
	R2 = 0.06955

	
	ρ = 0.1431
	ρ = 0.09546
	ρ =0.1046
	ρ = 0.2188

	Slope Maximum
	R2 = 0.1049
	R2 = 0.2298
	R2 = 0.06377
	R2 = -0.04123

	
	ρ = 0.1747
	ρ =0.07707
	ρ = 0.227
	ρ = 0.457

	Slope Median
	R2= 0.5659
	R2 = 0.5038
	R2 = 0.1334
	R2 = 0.1072

	
	ρ = 0.004578
	ρ = 0.008662
	ρ = 0.1455
	ρ = 0.1721

	Slope Mean
	R2 = 0.6443
	R2 = 0.6002
	R2 = 0.3495
	R2 = 0.2577

	
	ρ = 0.001791
	ρ = 0.003102
	ρ = 0.03254
	ρ = 0.06358

	Slope Range
	R2 = 0.1049
	R2 = 0.2298
	R2 = 0.06377
	R2 = -0.04123

	
	ρ = 0.1747
	ρ = 0.7707
	ρ = 0.227
	ρ = 0.457



Table C4
Precipitation Variables for Leishmaniasis
	Precipitation
	Wet Season
2010
	Seasonal Year
2010
	Wet Season
2020
	Seasonal Year
2020

	Precipitation Minimum 
	R2= -0.07497
	R2= -0.1108
	R2= -0.078
	R2= -0.09408

	
	ρ = 0.5956
	ρ = 0.9617
	ρ = 0.6117
	ρ = 0.7168

	Precipitation Maximum 
	R2= -0.1107
	R2= 0.01717
	R2= -0.1081
	R2= -0.1051

	
	ρ = 0.9542
	ρ = 0.3066
	ρ = 0.8794
	ρ = 0.8301

	Precipitation Mean 
	R2= -0.07109
	R2= -0.05803
	R2= -0.1047
	R2= -0.1061

	
	ρ = 0.5762
	ρ = 0.5185
	ρ = 0.8247
	ρ = 0.8438

	Precipitation Median
	R2= -0.06818
	R2= -0.1076
	R2= -0.09205
	R2= -0.1051

	
	ρ = 0.5624
	ρ = 0.8703
	ρ = 0.7011
	ρ = 0.8301

	Precipitation Range 
	R2= -0.1108
	R2= 0.01665
	R2= -0.1077
	R2= -0.1056

	
	ρ = 0.964
	ρ = 0.3077
	ρ = 0.8712
	ρ = 0.8377
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Figure D1. Puerto Maldonado PeruSAT imagery in 2021 vs Landsat 8 OLI imagery in 2020.
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