@AGUPUBLICATIONS

Earth and Space Science

Supporting Information for

ICESat-2/ATLAS Onboard Flight Science Receiver Algorithms: Purpose, Process, and Performance

J. F. McGarry¹, C. C. Carabajal², J. L. Saba³, A. R. Reese⁴, S. T. Holland², S. P. Palm³, J-P A. Swinski¹, J. E. Golder², P. M. Liiva²

¹NASA Goddard Space Flight Center, Greenbelt, Maryland 20771.
²Sigma Space/Hexagon U.S. Federal, Lanham, Maryland 20706.
³Science Systems and Applications, Inc., Lanham, Maryland 20706.
⁴KBR, Greenbelt, Maryland, 20770.

Contents of this file

Figures S1 to S4 Table S1

Introduction

This document includes figures that show how the Receiver Algorithms processed onorbit data through various conditions (Figures S1 - S4), as well as additional material on building and testing the Receiver Algorithms (Table S1).

Table S1 lists a large selection of the tests performed during the various stages of Algorithms checkout from Simulator, through ATLAS Instrument, to Mission testing. Included in these tests were those that verified the performance during the various Design Cases.

The plots in Figures S1 through S4 are representative examples from our analysis of many hours of data that support our assessment of the Algorithms performance on-orbit and, combined with other analysis, lead to the conclusion that the Algorithms are meeting their requirements.

The data files used to produce Figure 6 and the Tables in the paper, as well as Figures S1 – S4 in this Supplemental Material, are available through the National Snow and Ice Data Center (<u>https://nsidc.org/data/icesat-2</u>, ATL02, ATL03 and ATL04 products) and the ICESat-2 website (<u>https://icesat-2.gsfc.nsa.gov/calibration-data</u>, Simplot text files).

Figure S2. Position of telemetry bands in the spot 3 Range Window (RW) during a Round The World (RTW) scan on 4 March 2019. The start of the RW (closest to the spacecraft) is at the top, while the end of the RW (closest to the surface) is at the bottom. Gray background in the range window of the (a) and (b) plots indicates night-time observations as does the gray section of the bar across the bottom. Yellow background in the range window of plot (a) indicates day-time observations as does the yellow section of the bar across the bottom. The red vertical lines in the RW in (a) and (b) are the primary telemetry bands and the green are the secondary. The bars across the top of plots (a) and (b) show: (1) the surface type (lower bar), and (2) results from the ATL04 cloud test (upper bar) indicating the likelihood of clouds being present. The middle plot is a zoom into the box shown in the top plot. The lower plot (c) shows the time of flight events within the secondary telemetry bands for a portion of the middle plot. The events captured in plot (c) are the Transmitter Echo Pulse (TEP) from internal reflections of the ATLAS laser. These internal reflections are collected for calibration purposes. This plot shows that the TEP is well centered within the telemetry band. The horizontal axis units are in relative Major Frames (MF) and seconds of day. The red line in the map inserted in plot (a) shows the global location of ICESat-2 during the data collection.

Figure S3. Position of telemetry band in the spot 5 Range Window (RW) during an Ocean Scan on 1 March 2019. The start of the RW (closest to the spacecraft) is at the top, while the end of the RW (closest to the surface) is at the bottom. Yellow background in the range window indicates day-time observations as does the yellow bar across the bottom. The red vertical lines in the RW are the primary telemetry bands and the green are the secondary. The bars across the top of the plot show: (1) the surface type (lower bar), and (2) results from the ATL04 cloud test (upper bar) indicating the likelihood of clouds being present. The horizontal axis units are in relative Major Frames (MF) and seconds of day. The red line in the map inserted in the plot shows the global location of ICESat-2 during the data collection.

Figure S4. Position of telemetry bands in the spot 3 Range Window (RW) during a pass near Mount Everest on 20 Nov 2018. This is a nadir pointing pass. The start of the RW (closest to the spacecraft) is at the top, while the end of the RW (closest to the surface) is at the bottom. Yellow background in the range window of the (a) and (b) plots indicates day-time observations as does the yellow bar across the bottom. The red vertical lines in the RW in (a) and (b) are the primary telemetry bands and the green are the secondary. Almost all of the secondary telemetry bands shown in this plot are the Transmitter Echo Pulse (TEP). The bars across the top of plots (a) and (b) show: (1) the surface type (lower bar), and (2) results from the ATL04 cloud test (upper bar) indicating the likelihood of clouds being present. The middle plot (b) is a zoom into the box shown in the top plot. The lower plot (c) shows the time of flight events within the primary telemetry bands for a portion of the middle plot. The signal is lost over segments of this region due to clouds. The horizontal axis units are in relative Major Frames (MF) and seconds of day. The red line in the map inserted in plot (a) shows the global location of ICESat-2 during the data collection.

			Test	
TEST	Test Title	Purpose	Length	Orbit File
ID		i ui pose	(minutes	
1	Deta Valerra Testa	Data and lance the formal instances and the formation	per spot)	N 1
1	Data Volume Tests	Data volume before instrument data	20	Nominal
2	(Preliminary)	Decimes available.	0	Naminal
2	Surface Type Tests	all surface type Receiver Algorithms	8	Nominal
		all sufface type Receiver Algorithms		
		and test the Receiver Algorithms through		
		various conditions Results of these tests		
		are also used to check the Cloud (Palm)		
		Algorithm.		
3	Probability of	Probability of finding signal as a function	196	Nominal
	Acquisition Tests –	of signal strength and background rate		
	Land Ice, Dynamic	for land ice.		
	(T003)/ Static (T003s)			
4	Probability of	Probability of finding signal as a function	147	Nominal
	Acquisition Tests – Sea	of signal strength and background rate		
	Ice, Dynamic (T004)/	for sea ice.		
	Static (T004s)			
5	Probability of	Probability of finding signal as a function	245	Nominal
	Acquisition Tests –	of signal strength and background rate		
	Land, Dynamic $(1005)/$	for land.		
6	Static (10058)	Prohability of finding signal as a function	147	Naminal
0	A aquigition Tests	of signal strongth and hashground rate	14/	Nominal
	Acquisition Tests –	for accor		
	(T006)/ Static (T006s)	loi occali.		
7	Multiple Signal	Ensure that the Receiver Algorithms can	2.5	Nominal
,	Locations Tests	handle more than one surface echo per	2.5	1 (ommu
	(Secondary Signals)	frame, can handle surface echo		
		movement within the frame and from		
		frame to frame, and can correctly		
		telemeter these signals.		
8	Multiple Signal	Check the performance of the Receiver	10	Nominal
	Locations Tests (TEP)	Algorithms in the presence of the		
		Transmitter Echo Pulse (TEP), when		
		there are two signals, and test the		
		handling of the TEP.		
9	Cloud Tests	Check the Receiver Algorithms	3	Nominal
		performance under various controlled		
		cloud conditions and to ensure that the $C_{1} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right)$		
		Cloud (Palm) Algorithm is being used		
1		when heeded and is working correctly.		

TEST ID	Test Title	Purpose	Test Length	Orbit File
			(minutes per spot)	
10	Full Orbit Test –	Full orbit test with nominal parameter	<u>90</u>	Nominal
	Nominal Parameters	settings. Replaced by test 25.		
11	Full Orbit Test –	Full orbit with increased solar	90	Nominal
	Increased Solar	background as a comparison against		
	Irradiance	nominal test.		
12	Full Orbit Test –	Full orbit test with parameters set to	90	Nominal
	Reduced Data Volume	decrease data volume. Replaced by test		
	Parameters	26.		
13	Full Orbit Test –	Full orbit test with parameters set to	90	Nominal
	Increased Data Volume	increase data volume. Replaced by test		
	Parameters	27.		
14	Full Orbit Test – DRM	Full orbit test using the DRM for land	90	Nominal
	for Land SW Bin Size	software bin size		
15	Orbital Maneuver Test	Check performance of Receiver	30	Maneuvers
	– Ocean Scan	Algorithms during Ocean Scans.		
16	Orbital Maneuver Test	Check performance of Receiver	90	Maneuvers
	– Round the World	Algorithms during Round the World		
	Scan	Scans.		
17	Orbital Maneuver Test	Check performance of Receiver	100	Maneuvers
	– Targets of	Algorithms during Targets of		
	Opportunity	Opportunity.		
18	Range Window and	Ensure Receiver Algorithms can handle	23.5	Nominal
	Signal Tests	the range window correctly, can follow		
		surface echo jumps and rates as required,		
		can handle no-signal situations, and can		
		limit the range window as the hardware		
		requires.		
19	No-Signal Tests	Ensure the Receiver Algorithms handle	10	Nominal
		no-signal conditions correctly. Each		
		surface type can be treated differently		
		and there are many knobs that can affect		
		the behavior of the Receiver Algorithms		
20	0 1 1 1 1	when there is no signal.	2	
20	Special Telemetry	lest major telemetry situations and	2	Nominal
	lests	parameters such as nonzero telemetry		
		band offset, increased relief padding,		
		modified no-signal scaling, tertiary signal		
		given priority over secondary signal, and		
		one ME		
21	Diagnostic Tests and	Test commands expected to be uploaded	15	Nominal
<u>~1</u>	Uploading Commands	on orbit.	т.Ј	TTOIIIIIai

			Test	
TEST ID	Test Title	Purpose	Length (minutes per spot)	Orbit File
22	Miscellaneous	Miscellaneous tests: limiting weak/strong spot separation, early avionics testing support, future dates, probability of acquisition, software channel disables, TEP_not, maximized data volume, rapidly changing background rate, maximum nutation, and no-signal cases that do not occur elsewhere.	13	Max Nutation/ Nominal/ Future
23	Full Orbit Test – Computed Solar Zenith Angle	Full orbit test with computed solar zenith angle.	90	Nominal
24	Full Orbit Test – High Data Volume	Full orbit test entirely in daytime, with cloud algorithm not used.	90	Nominal
25	Full Orbit Test – Nominal Parameters (New Orbit)	Full orbit test with nominal parameter settings. New orbit that covers more land ice for a more representative data volume. Replaces test 10.	90	Nominal
26	Full Orbit Test- Reduced Data Volume Parameters (New Orbit)	Full orbit test with parameters set to decrease data volume. Replaces test 12.	90	Nominal
27	Full Orbit Test- Increased Data Volume Parameters (New Orbit)	Full orbit test with parameters set to increase data volume. Replaces test 13.	90	Nominal
28	Orbit in the Life (OITL) – Abbreviated	Abbreviated OITL test to check the performance of the Receiver Algorithms before running full OITL.	30	OITL
29	Orbit in the Life (OITL)	Full OITL to support Thermal Vacuum (TVAC) and Observatory testing.	>240 (>4 hours)	OITL
30	Full Orbit Test – Increased Transmission (New Orbit)	Full orbit test with increased receiver transmission to evaluate effects on data volume.	90	Nominal

TEST ID	Test Title	Purpose	Test Length (minutes per spot)	Orbit File
30a	Several Days in the	To provide ATLAS data output during	>1440	Nominal
	Life (SDITL) -	Mission Observatory testing, to provide a	(>24	
	Abbreviated	realistic data volume flow during the	hours)	
		several days of testing. Designed for		
		unlimited time. Actual runs at		
		Observatory were > 24 hours.		
		NOTE: SDITL did not involve an		
		Embedded Simulator file for the Bench		
		Checkout Equipment (BCE) – rather the		
		BCE ran a constant background rate,		
		return signal strength and range to		
		surface.		
31	Day Rollover Test	Check that Simulator can handle a day	10	Maneuvers
		change in the middle of a simulation.		

Table S1. Table of Receiver Algorithms Tests. The ATLAS Receiver Algorithms (RA) were tested through a large range of possible on-orbit conditions. The tests were designed to determine the performance of the Receiver Algorithms over a range of conditions that included all the Design Cases as well as conditions under which the Receiver Algorithms were not expected to be able to determine the location of the ground return. This series of tests was also used to test various Algorithm Parameter configurations and to finalize our best estimate of the optimal Algorithm Parameter settings. All tests were run with the RA Simulator and the majority were run during Integration and Testing (I&T). During Observatory Testing, the Comprehensive Performance Test (CPT), Orbit In The Life (OITL), and Several Days In The Life (SDITL) were run. The CPT included test 25 and test 30.

Orbital files containing the spacecraft position, velocity, and attitude information were provided by the ICESat-2 Precision Orbit Determination Team or were produced using data from the Spacecraft Team, and were used for the Receiver Algorithms testing. Each orbital file contained 24 hours of data with spacecraft position and attitude at 1 second intervals. Each test in the Table S1 used one of the orbital files and started at a specific offset in the file. The offset for each test was based on the purpose of that test and the type of Earth conditions required. The orbital files used in Receiver Algorithms testing were:

- Max Nutation (Orbit file v7) This orbit file was generated during a period of time when the maximum expected nutation occurred.
- Nominal (Orbit file v8) The nominal expected orbital file was used for most tests. This orbit assumed the spacecraft was nominally nadir pointing.

- Maneuvers (Orbit file v9G) The expected maneuvers orbital file had periods of non-nadir pointing separated by nadir-pointing periods. Included in the nonnadir pointing events were Ocean Scans, Round the World Scans, and Targets of Opportunity.
- Future (Orbit file v9H) This orbit had dates in the future. While most of the orbital data used during testing were from 2005, this file was dated in 2018, and was used during testing in 2016 and 2017.