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Abstract 
This study examined the improvement of microscopy 

segmentation accuracy by transfer learning from a large dataset 
of microscopy images called MicroNet. Many neural network 
encoder architectures, including VGG, Inception, and ResNet, 
were trained on over 100,000 labelled microscopy images from 
54 classes. These pre-trained encoders were then embedded into 
multiple segmentation architectures including U-Net and 
DeepLabV3+ to evaluate segmentation performance on newly 
created benchmark microscopy datasets. Compared to 
ImageNet pre-training, models pre-trained on MicroNet 
generalized better to out-of-distribution micrographs taken 
under different imaging and sample conditions and were more 
accurate with less training data. When training with only a 
single Ni-superalloy image, pre-training on MicroNet produced 
a 72.2 percent reduction in relative segmentation error. These 
results suggest that transfer learning from large in-domain 
datasets generate models with learned feature representations 
that are more useful for downstream tasks and will likely 
improve any microscopy image analysis technique that can 
leverage pre-trained encoders. 

Introduction 
Establishing processing-structure-property (PSP) relationships 

is critical to the design and improvement of materials. 
Microscopy image segmentation is often the first and hardest 
step in quantifying material structure, which is the central link 
in PSP relationships. Traditional microstructure quantification 
requires numerous manual measurements on a micrograph 
(e.g., Refs. 1 and 2), is tedious, time-consuming, and prone to 
bias. Automatic segmentation using classic computer vision 
techniques such as image thresholding and morphology 
operations (Refs. 3 and 4) is much faster and repeatable, but 
difficult to implement and often not robust to slight changes in 
imaging or sample conditions. Recently, convolutional neural 
networks (CNN) pre-trained on ImageNet (Ref. 5) have 
produced superior microscopy segmentation results and are 
much easier to implement (Refs. 6 to 12). However, 
segmentation CNNs require expensively labeled training data 
to operate well and ImageNet pre-training does not adequately 
alleviate this problem when transferred to microscopy 

segmentation tasks because many of the learned filters are not 
applicable (e.g., those adapted to detect dogs). Therefore, we 
created MicroNet, a large dataset containing over 100,000 
labelled microscopy images. Here we show that leveraging 
transfer learning from classification models pre-trained on 
MicroNet rather than ImageNet produces segmentation models 
that perform better with less training data and are more 
successful at segmenting micrographs with imaging or sample 
conditions that were not seen in the training data.  

Semantic segmentation with CNNs is performed with 
encoder-decoder type architectures, which offer state-of-the-art 
performance on benchmark datasets such as the cityscapes 
dataset (Ref. 13). The encoder uses learned convolutional filters 
to extract semantic information from the input image, 
transforming the image data into a latent representation vector. 
The decoder then maps the extracted information to each pixel 
location in the image to generate a pixelwise classification 
prediction of the objects in original image (i.e., semantic 
segmentation).  

Training data for semantic segmentation is expensive and 
time consuming to create. Transfer learning can be used to 
supplement small training data by transferring learned 
parameters from a model trained on another similar task, such 
as image classification, which is significantly easier to create 
training data for. To leverage transfer learning with encoder-
decoder architectures, a CNN is first trained to perform image 
classification on a large image dataset as shown in the 
schematic in Figure 1. The classification model uses 
convolutional layers to extract semantic information from the 
image and a classification head, which contains several fully 
connected neural network layers, to make a classification 
prediction based on the extracted feature representation. The 
convolutional layers learn to extract useful features for 
classification during training by learning useful image filters. 
These learned filters are likely to be useful for other image 
analysis tasks such as segmentation. Transfer learning is 
applied when the trained convolution layers from an image 
classification model are copied directly to the encoder in an 
encoder-decoder segmentation model. ImageNet contains 
images of everyday life and is a common source of pre-training 
image classification data. The convolutional filters that are used 
to classify ImageNet images have also been applied very 
successfully to microscopy segmentation. However, recent 
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Figure 1.—Schematic of pre-training CNN encoders on MicroNet and embedding in a segmentation model through transfer 

learning. First, a classification model (top) with a convolutional encoder (blue box) and dense classifier head (gray box) is 
trained to predict the class of each material by learning filters (Conv filters, orange) which extract relevant features into a 
feature vector. Through transfer learning (blue arrow) the learned filters are copied into an encoder-decoder segmentation 
model (bottom) which learns to segment microscopy images with less training data than without transfer learning. 

 

work has shown that the first few layers of VGG models (a 
powerful early CNN classification model that is still widely 
used) are highly useful for transfer learning to microscopy 
segmentation while the deeper layers are not (Ref. 14). This is 
because the initial layers detect simple features like edges, 
corners, and simple textures, which are likely to appear in 
microscopy images, while the deeper layers detect higher level 
features such as dog ears and car tires, which do not appear in 
microscopy images.  

The central hypothesis of the work presented here is that 
because higher level feature detectors from models trained on 
ImageNet do not transfer well to microscopy segmentation, the 
full advantages of transfer learning are not realized. Therefore, 
we trained classification models on a large dataset of 
microscopy images called MircoNet so that the models could 
learn to detect higher level microstructure features that do not 
appear in pictures of everyday life such as grain boundaries, 
precipitates, and oxide layers. We show that transfer learning 
from models trained on MicroNet rather than ImageNet 
produces more accurate segmentation results with less training 
data and is more robust to changing imaging and sample 
conditions. 

Methods 
Description of Datasets 

A large dataset called MicroNet, containing 110,861 
microscopy images, was created to pre-train classification 

models to be used as encoders in segmentation models. The 
majority of MicroNet images were sourced inhouse with 
additional images from the UltraHigh Carbon Steel Micrograph 
DataBase (Ref. 15), the Aversa Scanning Electron Microscopy 
(SEM) dataset (Ref. 16), synthetic SEM powder data (Ref. 17), 
SEM images from the Materials Data Repository hosted by the 
National Institute of Standards and Technology, and a 
photovoltaic dataset (Ref. 18). MicroNet contains 54 classes 
and was split into train/validation sets with 50 images for each 
class in the validation set. The training set had some class 
imbalance with several classes containing less than 200 images 
and one class containing more than 10,000 images. Most classes 
had over 1,000 images. On average MicroNet images were 
much larger than ImageNet (1048×741 vs. 469×387 pixels) 
giving the MicroNet dataset a pixel equivalence of 474,323 
ImageNet images for the encoders to learn from. 

The segmentation algorithms were tested on two sets of 
material micrographs: SEM images of a Ni-superalloy and 
cross-sectional SEM images of a SiC/SiC environmental barrier 
coating (EBC) with a thermally grown oxide layer. The Ni-
superalloy had three classes to segment: a matrix phase, 
secondary precipitates, and tertiary precipitates. The EBC had 
two classes: an oxide layer and the background (not oxide layer). 

Training Classification Models 

Many CNN classification models were trained on MicroNet 
to use as segmentation encoders through transfer learning. 
Models for each architecture were initialized with weights from 
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pre-training on ImageNet. Additional models for most of the 
classification architectures were also initialized with random 
weights following Kaiming initialization to evaluate the effect 
of encoder training on MicroNet from scratch. The Kaiming 
initialization was designed to reduce the exploding or vanishing 
gradient problem by encouraging the variance of activations to 
be similar across network layers when using rectified linear unit 
(ReLU) activation functions (Refs. 19 and 20). During training, 
all images were preprocessed by mean centering and 
normalizing each channel according to the ImageNet statistics 
in order to best utilize pre-trained weights (Ref. 21). Image 
transformations were used to augment the training data set 
including random cropping, random resizing, horizontal and 
vertical flipping, rotation, photometric distortions, and added 
noise. Training was performed using the PyTorch Python 
library (Ref. 22) in a similar fashion to Tan et al. (Ref. 23). 
Optimization was performed with stochastic gradient decent 
with a momentum of 0.9 and an initial learning rate of 0.1 that 
decayed by 10 percent every 30 epochs. Weight decay was 1e-
4. A batch size of 1024 was used where possible and reduced 
for larger models due to hardware memory constraints. Models 
were trained until there was no improvement to the validation 
score using early stopping with a patience of 30 epochs. The 
following encoder architectures were tested in this work: VGG 
(Ref. 24) (with and without batch normalization (Ref. 25)), 
DenseNet (Ref. 26), dual path networks (dpn) (Ref. 27), 
EfficientNet (Ref. 28), ResNet (Ref. 29), Inception-V4 
(Ref. 30), Inception-Resnet-V2 (Ref. 30), Xception (Ref. 31), 
MobileNet-V2 (Ref. 32), ResNeXt (Ref. 33), and SE-Net 
(Ref. 34). 

Training Segmentation Models 

Segmentation models were trained using PyTorch (Ref. 22) 
and the segmentation models library (Ref. 35). Training data 
images were converted to color and each channel was 
normalized and mean centered in the same manner as the 
classification data. Training data augmentation included 
random cropping to 512×512 pixels; random changes to 
contrast, brightness, and gamma; and added blur or image 
sharpening. The superalloy data was also randomly flipped 
vertically and horizontally and rotated while the EBC data was 
only horizontally flipped to preserve orientation significance. 
While not applied here, random resizing could be included 
when desired to make the models robust to changes in 
magnification or image resolution. The Adam (Ref. 36) 
optimizer was used during training with a learning rate of 2e-4 
until there was no improvement on the validation dataset for 
30 epochs followed by training with a learning rate of 1e-5 until 
early stopping after another 30 epochs with no validation 
improvement. The model validation metric to determine early 

stopping and compare different models was intersection over 
union (IoU). The loss function was a weighted sum of balanced 
cross entropy (BCE) and dice loss (Ref. 37) with a 70 percent 
weighting towards BCE. Initial testing showed better results 
with the combined loss function than either independently or 
using IoU as the loss function directly. This is likely because 
BCE has more stable gradients while dice loss is more robust to 
imbalanced classes and similar to the real objective of 
maximizing IoU. The following decoder architectures were 
tested: Unet (Ref. 38), Unet++ (Ref. 39), Linknet (Ref. 40), 
FPN (Ref. 41), PSPNet (Ref. 42), PAN (Ref. 43), and 
DeepLabV3+ (Refs. 44 and 45). 

Results and Discussion 
Classification Results 

Seventy-six models were trained to classify MicroNet images 
into one of 54 classes. 40 models were initially pre-trained on 
ImageNet before training on MicroNet and 36 were randomly 
initialized with Kaiming initialization and trained from scratch 
(VGG-11, VGG-13, EfficientNet-b6, and EfficientNet-b7 
architectures were not trained from scratch). Pre-training on 
ImageNet allows useful features learned from classifying 
natural images to be reused for microscopy classification 
through transfer learning. The classification accuracy of these 
models on the MicroNet validation set are shown in Figure 2. 
The best classification model was EfficientNet-b4 pre-trained 
on ImageNet, which achieved a top 1 classification accuracy of 
94.5 percent. SENet-154 achieved the highest accuracy of the 
models trained from scratch with an accuracy of 94.0 percent. 
The EfficientNet, ResNet, and VGG models showed a strong 
benefit from pre-training on ImageNet. However, it is 
interesting to note that some architectures, including the 
squeeze and excitation (SE) and inception families of models, 
showed no benefit from initial pre-training on ImageNet. For 
the DenseNet and MobileNet architectures, pre-training was 
detrimental. There is no obvious trend between model size and 
the benefit of ImageNet pre-training for classification accuracy. 

An open question is whether progress in developing vision 
models, which are optimized for natural images, will transfer 
well to microscopy images or if architecture design is overfit to 
natural images. Figure 2(b) shows that in general, models that 
performed better on ImageNet tended to perform better on 
MicroNet. However, a notable exception to the trend is the 
EfficientNet family. A significant amount of testing was done 
during the development of EfficientNet to optimize the depth, 
width, resolution scaling, and other hyperparameters to develop 
an architecture that performed well on ImageNet (Ref. 28). A 
microscopy dataset of comparable size to ImageNet would be 
helpful to study the full extent to which progress on natural 
image processing transfers to microscopy image processing.  
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Figure 2.—Accuracy of classification models. (a) Top 1 accuracy of classification models on the MicroNet validation set. The models 

indicated with dark blue were initialized with Kaiming initialization and trained from scratch while the “Im  Micro” models shown 
in light blue were pre-trained on ImageNet and then finetuned on the MicroNet data. (b) Comparison of each architecture’s 
accuracy on ImageNet versus MicroNet. 

 
Such a study could help determine whether it would be fruitful 
to design architectures, scaling rules, and techniques 
specifically for microscopy analysis instead of largely 
borrowing best practices from large research efforts on natural 
images. From our results it seems that there would be value in 
optimizing the scaling compound coefficient used in 
EfficientNet for microscopy specific data. 

Segmentation Results 

The real measure of the value of the trained classification 
models (i.e., pre-trained encoders) is how well the learned 
representations transfer to downstream tasks such as 
segmentation. The pre-trained encoders were applied through 
transfer learning to seven segmentation tasks which came from 
two materials: nickel-based superalloys (hereinafter referred to 
as Super) and environmental barrier coatings (EBC). The 
number of images in each dataset split is shown in Table 1. 
Super-1 and EBC-1 contain the full set of labelled data from 
 

their respective materials. Super-2 and EBC-2 have only four 
images in the training set to evaluate the models’ performance 
in few-shot learning. Super-3 and EBC-3 had only one image 
in the training set to evaluate performance during one-shot 
learning. Super-4 had test images that were taken under 
different imaging conditions (Figure 5) to test how well the 
models’ would generalize to unseen out-of-distribution data 
(e.g., images from different microscopes, microscopists, 
microscope settings, sample preparation conditions, or different 
research groups). 

Pre-training on MicroNet led to a significant increase in 
accuracy in during few-shot and one-shot learning on the Super  
 

TABLE 1.—NUMBER OF IMAGES IN THE TRAIN, VALIDATION, 
AND TEST SPLITS OF EACH EXPERIMENTAL DATASET 

Experiment # Training # Validation # Test 

Super-1 10 4 4 

Super-2 4 4 4 

Super-3 1 4 4 

Super-4 4 4 a5 

EBC-1 18 3 3 

EBC-2 4 3 3 

EBC-3 1 3 3 
aThe test images in Super-4 were taken under different imaging 
conditions than the train and validation sets. 
 
datasets. The segmentation models were trained to segment 
each pixel into one of three classes: secondary precipitates 
(large blobs), tertiary precipitates (small blobs), and matrix 
(background). The training data splits and segmentation 
accuracy maps for these datasets are shown in Figure 3. The 
training, validation and test splits had similar looking images 
and an equal number of dark and light contrast images in each 
split. The train split for Super-3 had only one image which is 
outlined in orange in Figure 3(a) and did not contain dark 
contrast images. The average model performance across all 
encoder and decoder combinations when initialized with 
different pre-training weights are shown for each experiment in 
Table 2. Although the error bars are large because a few models 
failed to converge during training, it appears that on average 
when using less training data in Super-2 and Super-3, pre-
training with ImageNet followed by MicroNet was slightly 
better than pre-training with MicroNet or ImageNet alone. 
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Figure 3.—Segmentation results on Ni-superalloys. (a) shows images from the training data split. Super-1 had ten 
training images. Super-2 had the four images shown. Super-3 had only one training image which is outlined in 
orange. (b) and (c) show the validation and test data for the Super datasets respectively. (d)-(i) show the 
segmentation accuracy masks for the highest accuracy ImageNet and MicroNet models for the first three Super 
datasets. White pixels indicate true positive predictions, black is true negative, cyan is false positive, and magenta is 
false negative. (d)-(f) show the models pre-trained on ImageNet. As the number of training images reduce, there is a 
dramatic reduction in segmentation accuracy. (g)-(i) show the models pre-trained on MicroNet. Even with only one 
training image, the model accuracy is only slightly reduced when pre-training on MicroNet. 
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TABLE 2.—AVERAGE IOU PERCENT ACCURACY OF MODELS INITIALIZED WITH DIFFERENT PRE-TRAINING WEIGHT 
FOR EACH EXPERIMENT 

Pre-training Super-1 Super-2 Super-3 Super-4 EBC-1 EBC-2 EBC-3 
None 76.9±22.8 46.2±7.1 48.3±6.2 34.0±7.5 68.0±31.4 48.3±27.7 35.1±10.3 
Imagenet 93.8±7.9 62.1±12.1 59.7±7.9 47.7±14.1 87.9±19.9 82.9±17.4 43.9±7.0 
MicroNet 93.6±8.7 74.6±14.3 66.9±13.2 52.3±10.5 87.9±18.2 81.6±17.1 40.3±6.2 
Im  Micro 85.8±19.2 74.6±16.2 70.0±13.9 52.5±16.2 88.8±16.6 81.7±14.7 41.4±8.2 

 

TABLE 3.—AVERAGE IOU PERCENT ACCURACY OF DECODER ARCHITECTURES FOR EACH EXPERIMENT 
Decoder Super-1 Super-2 Super-3 Super-4 EBC-1 EBC-2 EBC-3 

DeepLabV3+ (Ref. 44)  -------------- -------------- -------------- -------------- 86.9±15.3 76.0±22.4 -------------- 
FPN (Ref. 41)  -------------- -------------- -------------- -------------- 75.6±34.9 -------------- -------------- 
LinkNet (Ref. 40)  84.9±20.1 59.3±15.5 53.1±11.9 42.1±12.8 81.6±25.8 65.8±26.2 -------------- 
PAN (Ref. 43)  -------------- -------------- -------------- -------------- 85.9±17.9 -------------- -------------- 
PSPNet (Ref. 42)  -------------- -------------- -------------- -------------- 72.4±28.5 -------------- -------------- 
Unet (Ref. 38)  88.0±15.1 67.0±17.7 62.3±12.3 48.4±14.9 89.9±13.1 76.7±22.1 40.3±8.4 
Unet++ (Ref. 39)  89.9±16.3 66.6±17.8 62.1±11.9 49.3±14.9 90.3±15.2 76.5±25.5 40.0±8.9 

 

Pre-training with MicroNet showed better performance than 
ImageNet. With no pre-training (randomly initialized encoder 
weights), model performance was significantly reduced. 
Table 3 shows that the UNet and UNet++ decoders were 
consistently more accurate than LinkNet decoders for Super-1-
3. From Table 4, none of the encoder architectures 
demonstrated clearly superior performance on Super-1-3, 
although some performed poorly on average. The performance 
of the best models pre-trained on MicroNet and ImageNet for 
each of the Super datasets are displayed above the segmentation 
accuracy maps in Figure 3. The best models pre-trained on 
ImageNet dropped from 96.5 to 74.8 percent IoU when 
reducing the number of training images from ten to one. Models 
pre-trained on MicroNet had only a slight drop in IoU (96.4 to 
93.0 percent) when reducing from ten to one training images. 
This represents a 72.2 percent reduction in relative error in the 
one-shot case when pre-training on MicroNet versus ImageNet. 
When training with 10 training images, the segmentation 
predictions of the top models pre-trained with ImageNet and 
MicroNet were both highly accurate as shown in Figure 3(d) 
and (g), respectively. However, when training with only four 
images, the ImageNet model significantly under-segmented the 
secondary precipitates in the lighter contrast images and over-
segmented them in the darker contrast images (Figure 3(e)). 
Tertiary precipitates were hardly identified in the lighter 
contrast image. These problems were exacerbated when trained 
on only one training image with ImageNet pre-training 
(Figure 3(f)). For example, the tertiary precipitates were not 
identified at all and the matrix material between secondary 
precipitates was misclassified causing many precipitates to be 
grouped into a single larger one. The MicroNet models were 
significantly more accurate when training with only four 
(Figure 3(h)) or one (Figure 3(i)) training images with only 
some under-segmentation of the tertiary precipitates in the 
lighter contrast images. Even with only one training image, 
extracting morphology and size statistics from the predicted 

segmentation masks would likely be highly accurate. Trying to 
extract those statistics from the ImageNet one-shot model 
would be highly misleading and significantly overestimate the 
size of the secondary precipitates while ignoring the tertiary 
precipitates. It is interesting to note that in the one-shot case, 
the MicroNet models produced only slight systematic 
differences in predictions due to image contrast compared to 
models pre-trained on ImageNet despite the lack of darker 
contrast images in the training data. This suggests that pre-
training on MicroNet leads to models that are more robust to 
changes in imaging or sample conditions. 

Segmentation accuracy on micrographs with different sample 
and imaging conditions was greatly improved when pre-
training on MicroNet. Figure 4 shows the segmentation 
accuracy of the Super-4 experiment where the test data was 
from a different distribution than the training and validation 
data (shown in Figure 3(a) and (b), respectively). For this 
experiment the top MicroNet model had an IoU of 78.5 
compared to 72.5 percent for the top ImageNet model. 
Although the accuracy on this extremely out-of-distribution test 
set is less than ideal, it shows that the MicroNet model has 
higher usability on a much wider range of sample and imaging 
conditions without having to label addition training data. For 
example in Figure 4(b) to (d), the ImageNet model over-
segmented and incorrectly aggregated the secondary 
precipitates (large blobs) while the MicroNet model accurately 
identified thin gaps between them. In Figure 4(c) tertiary 
precipitates (small blobs) identified in the MicroNet model 
were not identified in the ImageNet model. The higher accuracy 
on out-of-distribution data indicates that pre-trained MicroNet 
encoders are more general and useful for comparing results 
between research groups, microscopes, sample preparation 
conditions, and imaging conditions. When pre-training on 
MicroNet the top model showed significant improvement for 
the one-shot learning case on the environmental barrier coating 
datasets (EBC-3) compared to the top ImageNet model. From 
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Table 3, the best decoder architecture on average appeared to 
be UNet or UNet++, although DeepLabV3+ was not evaluated 
for all datasets and appears promising. The top models for each 
EBC dataset used the UNet++ decoder except one which used 
UNet (Figure 5). There was not a clearly best encoder 
architecture for the EBC datasets as shown in Table 4, although 
some architectures were clearly inferior. Table 2 shows that on 
average across all encoders and decoders, ImageNet models 
performed slightly better for EBC-2 and EBC-3 while pre-
training on ImageNet and then MicroNet gave the best average 
performance on EBC-1. However, it is difficult to determine 
which pre-training method was clearly superior from the 
average results because of the wide error bars and the 
occasional poor performance of a few models that randomly 
failed to converge. A lack of any pre-training lead to 
significantly degraded performance. A clearer picture of the 

best pre-training method is given by the segmentation results of 
the best ImageNet and MicroNet model for each EBC dataset 
as shown in Figure 5. On EBC-1 and EBC-2 when training with 
18 and 4 images, respectively, there was not a significant 
difference between pre-training on MicroNet and ImageNet, 
although ImageNet pre-training was slightly better for the top 
models. For EBC-3 the top MicroNet model saw a 14.3 percent 
reduction in relative error compared to the top ImageNet model 
(65.9 percent IoU vs. 60.2 percent IoU). This resulted in a large 
over segmentation of the oxide layer with the ImageNet model 
making it impossible to measure oxide thickness (Figure 5(b) 
third row). Meanwhile the one-shot MicroNet model 
(Figure 5(c) third row) is highly useable for oxide thickness 
measurements after simple morphological operations such as 
binary opening which is useful for removing small objects. 

 

TABLE 4.—AVERAGE IOU PERCENT ACCURACY OF ENCODER ARCHITECTURES FOR EACH EXPERIMENT 
Encoder Super-1 Super-2 Super-3 Super-4 EBC-1 EBC-2 EBC-3 

DenseNet121 (Ref. 26) ------------ ------------- ------------- ------------- 89.1±6.2 80.9±10.8 38.3±5.3 
DenseNet161 (Ref. 26) ------------ ------------- ------------- ------------- 90.9±4.8 86.1±5.5 39.6±2.9 
DenseNet169 (Ref. 26) ------------ ------------- ------------- ------------- 90.8±4.7 81.5±9.2 ------------ 
DenseNet201 (Ref. 26) ------------ ------------- ------------- ------------- 90.3±5.1 86.5±4.8 ------------ 
dpn107 (Ref. 27) ------------ ------------- ------------- ------------- 90.7±5.6 80.7±22.1 ------------ 
dpn131 (Ref. 27) ------------ ------------- ------------- ------------- 86.7±18.0 79.8±16.8 ------------ 
dpn68 (Ref. 27) ------------ ------------- ------------- ------------- 74.6±29.2 61.9±27.1 40.1±5.2 
dpn68b (Ref. 27) ------------ ------------- ------------- ------------- 69.6±29.6 56.9±29.4 36.5±8.5 
dpn92 (Ref. 27) ------------ ------------- ------------- ------------- 84.1±17.8 78.3±12.3 ------------ 
dpn98 (Ref. 27) ------------ ------------- ------------- ------------- 87.1±17.9 72.9±26.9 ------------ 
EfficientNet-b0 (Ref. 28) 77.7±23.9 56.9±14.3 51.1±12.6 53.7±15.8 59.0±41.5 55.9±32.7 34.7±16.9 
EfficientNet-b1 (Ref. 28) 66.9±26.4 62.9±19.5 52.8±19.7 58.7±13.9 60.0±40.7 57.1±33.7 40.7±7.1 
EfficientNet-b2 (Ref. 28) 65.1±26.0 66.9±21.6 51.1±18.4 59.4±14.6 68.6±36.0 57.6±33.6 ------------ 
EfficientNet-b3 (Ref. 28) 69.4±26.9 68.1±22.0 62.4±19.1 59.2±11.4 71.6±33.9 60.0±33.0 ------------ 
EfficientNet-b4 (Ref. 28) 74.8±26.0 67.9±18.7 58.9±15.2 57.2±13.9 70.3±35.3 61.4±33.0 ------------ 
EfficientNet-b5 (Ref. 28) 76.3±23.0 70.5±22.5 61.3±17.2 57.7±17.3 73.4±35.6 64.6±31.3 36.4±17.0 
Inception-ResNet-V2 (Ref. 30)  94.5±3.1 64.4±12.2 63.0±11.0 43.1±11.1 87.9±10.4 75.6±25.7 38.2±5.2 
Inception-V4 (Ref. 30) 91.6±8.8 76.2±19.9 69.1±13.3 48.6±12.1 84.0±26.4 73.2±26.9 39.3±6.3 
MobileNet-V2 (Ref. 32) ------------ ------------- ------------- ------------- 71.3±34.5 60.5±34.2 45.7±6.5 
ResNet-101 (Ref. 29) ------------ ------------- ------------- ------------- 86.4±18.1 76.1±15.7 38.5±8.6 
ResNet-152 (Ref. 29) ------------ ------------- ------------- ------------- 86.2±18.7 75.5±23.7 ------------ 
ResNet-18 (Ref. 29) ------------ ------------- ------------- ------------- 89.8±5.9 82.1±7.3 ------------ 
ResNet-34 (Ref. 29) 94.3±2.1 57.9±11.7 59.5±7.2 35.8±11.3 91.1±5.3 80.2±9.7 ------------ 
ResNet-50 (Ref. 29) 91.2±7.2 48.9±11.9 55.3±5.9 32.2±9.4 82.5±24.2 81.2±9.6 38.2±3.4 
ResNeXt-101_32x8d (Ref. 33)  95.3±1.5 57.5±12.1 57.3±4.4 39.8±8.8 ------------ ------------ ------------ 
Resnext-50_32x4d (Ref. 33) 90.9±8.9 54.7±11.6 54.6±7.8 39.0±9.6 81.9±23.9 69.9±27.0 33.4±5.1 
SE_ResNet-101 (Ref. 34) 93.3±8.4 66.4±13.1 57.8±9.4 47.7±11.2 93.3±4.0 84.6±7.8 42.4±6.6 
SE_ResNet-152 (Ref. 34) 95.2±1.9 60.6±12.5 57.4±6.0 38.6±9.3 93.0±4.4 82.7±19.2 40.2±4.1 
SE_ResNet-50 (Ref. 34) 94.8±4.3 63.1±15.3 57.3±5.4 39.8±9.2 88.9±18.2 81.6±14.6 47.3±8.2 
SE_ResNeXt-101_32x4d (Ref. 33) 95.4±1.3 67.3±19.3 60.8±13.5 44.2±8.6 91.8±6.0 79.5±18.7 45.6±5.3 
SE_ResNeXt-50_32x4d (Ref. 33) 96.0±0.3 67.3±17.4 59.6±5.1 44.4±9.4 92.6±4.0 83.3±14.0 41.6±2.5 
SENet-154 (Ref. 34) 94.5±4.2 76.6±17.5 63.2±12.7 51.0±15.0 91.9±6.7 75.9±30.0 42.2±4.5 
VGG-13_bn (Ref. 24) 94.2±6.6 65.2±17.8 64.3±14.8 46.6±15.0 ------------ ------------ ------------ 
VGG-16_bn (Ref. 24) 95.2±2.1 66.6±19.0 66.2±14.7 40.2±17.0 87.5±18.7 84.0±5.1 33.8±8.4 
Xception (Ref. 31) 93.8±4.5 61.3±10.8 54.1±7.8 39.3±9.9 92.0±5.1 74.6±33.9 42.5±9.7 
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Figure 4.—Accuracy of Super-4 segmentation models 

evaluated on test data with unseen imaging conditions. (a) 
shows from left to right: the test image, the results for the top 
ImageNet model, and the results for the top MicroNet model. 
(b)–(e) show the same for each of the remaining test set 
images. The colors represent the same as in Figure 3. 
 

 
Figure 5.—Results of EBC segmentation. (a) 

shows examples from the train and test splits of 
the EBC datasets. The single training image for 
EBC-3 outlined in yellow. (b) shows the 
segmentation results for the top ImageNet 
model for each EBC experiment. (c) shows the 
segmentation results for the top MicroNet 
model for each EBC experiment. The colors 
represent the same as in Figure 3. 
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Conclusion 
Transfer learning from CNN encoders pre-trained on 

MicroNet produced accurate segmentation models with 
significantly less training data than pre-training on ImageNet 
and the models generalized to better to unseen data with 
different imaging or sample conditions. This is significant 
because labeling training data for segmentation tasks is 
expensive and the labeled data cannot account for all possible 
imaging and sample conditions that the model should be 
expected to perform accurately on. By generalizing better to 
out-of-distribution microscopy images, this technique produces 
segmentation results that are more accurate and comparable 
between microscopes, microscopists, and research groups, thus 
increasing the utility and shareability of the trained models. 
These results suggest that the MicroNet pre-trained encoders 
generate superior microstructure feature representations and 
will likely improve the accuracy of other deep learning 
microscopy analysis tasks that commonly utilize pre-trained 
ImageNet encoders. The pre-trained MicroNet encoders have 
been made readily available and can be used in existing projects 
with only a couple lines of code. Accurate microscopy 
segmentation and quantitative microstructure feature extraction 
is critical to quantitatively linking the processing-structure-
property relationships of materials. A quantitative 
understanding of these relationships is required to accelerate 
materials discovery and design through traditional or data-
driven methods such as Bayesian active learning. 

Data Availability 
Data that supports the findings of this study, including 

labelled segmentation data and pre-trained encoders trained on 
MicroNet, are available at https://github.com/nasa/pretrained-
microscopy-models.  

Code Availability 
All code necessary to apply this technique and supports the 

findings in this study is available at https://github.com/nasa/ 
pretrained-microscopy-models.  
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