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Abstract 26 

Using collocated NASA’s Cloud Physics Lidar (CPL) and Research Scanning Polarimeter (RSP) 27 

data from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling 28 

by Regional Surveys (SEAC4RS) campaign, a new observational-based method was developed 29 

which uses a K-means clustering technique to classify ice crystal habit types into seven categories: 30 

column, plates, rosettes, spheroids and three different type of irregulars.  Inter-compared with the 31 

collocated SPEC Inc. Cloud Particle Imager (CPI) data, the frequency of the detected ice crystal 32 

habits from the proposed method presented in the study agree within 5% of the CPI reported values 33 

for columns, irregulars, rosettes, and spheroids, with more disagreement for plates.  This study 34 

suggests that a detailed ice crystal habit retrieval could be applied to combined space-based lidar 35 

and polarimeter observations such as CALIPSO and POLDER in addition to future missions such 36 

as the Aerosols, Clouds, Convection, and Precipitation (A-CCP).   37 

 38 

  39 
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1.0 Introduction 40 

Cirrus clouds consistently cover almost half of the Earth’s surface and impact the global 41 

climate system through their role in the radiative budget (Mace et al. 2009; Wylie and Menzel 42 

1999). Cirrus can either warm or cool the atmosphere depending on the height, particle properties, 43 

and optical thickness of the cirrus cloud. While cirrus cloud heights and optical thickness can be 44 

measured from space-based remote sensing (Campbell et al. 2015; Holz et al. 2016), cirrus 45 

microphysical properties remain a major uncertainty in determining their radiative impacts despite 46 

the high frequency of cirrus. Given this uncertainty, studies using radiative forcing models 47 

generally assume a random orientation of hexagonal planar or columnar ice crystals, which are 48 

only the building blocks to more intricate habits (Figure 1) (Liou et al. 1983; Baran et al. 2001a). 49 

This simplified assumption leads to inaccuracies in the estimation of cirrus radiative impacts 50 

(Zhang et al. 1999). A main source of ice cloud radiative forcing error stems from scattering 51 

parameters of the varying ice crystal habits (Wendisch et al. 2005). A better understanding of cirrus 52 

microphysical properties, especially the shape and size of ice crystals, is necessary to more 53 

accurately quantify their effects on the climate system.   54 

Ice crystal microphysical properties have long been studied in laboratory and field 55 

experiments; however, large scale in-situ measurements are costly and in-situ cirrus retrievals are 56 

unattainable on a global scale (Bailey and Hallett 2004; Lawson et al. 2019). The option of remote 57 

sensing has been explored in the past.  For example, van Diedenhoven et al. (2012, 2013) 58 

developed a method for quantifying ice crystals into habit types by utilizing aspect ratio derived 59 

from airborne polarimeter observations.  However, only broad plate-like or column-like categories 60 

can be derived using polarimeter observations alone.  Noel et al. (2004) found lidar depolarization 61 

ratio to be sensitive to modeled aspect ratio which allowed for a coarse classification of habit types.  62 
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Still only broad ice crystal categories including plates or spheroids, irregulars and columns were 63 

derived from the study.  Also, distinguishing small from large ice crystals is a challenging task 64 

using lidar observations alone.   65 

As suggested from previous studies (Bailey and Hallett 2009; Noel et al. 2004; van 66 

Diedenhoven et al. 2012; van Diedenhoven et al. 2016), to retrieve detailed ice crystal information, 67 

combined lidar and polarimeter data, which includes aspect ratio, lidar depolarization ratio, 68 

asymmetry factor and effective radius are needed. Cloud temperature is also necessary for 69 

additional information about the growth regimes of ice crystal habits. Those studies show that 70 

plate-like crystals with the lowest aspect ratios (<1) tend to have the highest asymmetry factors (> 71 

0.90) and are found at the warmest temperatures of the crystal habits (-20 to -40°C). Compact 72 

hexagonal crystals have the next lowest aspect ratio of approximately 1.0 but have depolarization 73 

ratios reaching 0.4. Rosettes have the next highest aspect ratio of approximately 2.0 and are found 74 

at colder temperatures (< -40°C). Due to variations in rosette development and number of 75 

branches, rosettes exhibit a range of depolarization ratios (0.25 to 0.50). Finally, columns tend 76 

toward the highest aspect ratios (>3.0) and largest depolarization ratios (>0.50) at cold cloud top 77 

temperatures (<-40°C). These findings are of general cirrus ice crystal characteristics; however, in 78 

reality, they would vary due to cirrus altitude and temperature, along with formation mechanism. 79 

van Diedenhoven (2018) calls attention to joint active lidar and passive multi-angle polarimeter as 80 

a promising avenue for ice crystal research. To accomplish more detailed habit classifications and 81 

gain an understanding of their properties, the combination of retrievals from lidar and polarimeter 82 

are necessary.  83 

In this paper, collocated lidar and polarimeter observations of cirrus during the Studies of 84 

Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys 85 
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(SEAC4RS) campaign collected over the continental United States and Gulf of Mexico are 86 

combined and analyzed using a K-means clustering technique. The results of the clustering are 87 

classified into columns, plates, rosettes, spheroids and three different type of irregulars. The 88 

classification technique is evaluated with in-situ data and frequencies of sampled habits from the 89 

remote sensing and in situ instruments are presented followed by an uncertainty analysis. This 90 

study is the first attempt to determine bulk ice crystal habit types using remote sensing data with 91 

the detail typical of in situ sensors. The ice particle habit results presented in this paper strengthen 92 

our understanding of cirrus cloud scattering parameters, while the classification method shown 93 

here can be used on other airborne remote sensing datasets and future space-based datasets to 94 

improve parameterizations of ice crystal habits and calculations of cirrus radiative forcing.   95 

 96 

2.0 Data 97 

In this study, spatially and temporally collocated NASA’s Cloud Physics Lidar (CPL) and 98 

Research Scanning Polarimeter (RSP) data from the SEAC4RS campaign were used for the study 99 

period of August – September of 2013.  The derived ice crystal habit types from the study were 100 

also inter-compared with the SPEC Inc. Cloud Particle Imager (CPI) data. 101 

 102 

2.1 CPL 103 

NASA’s CPL is an elastic backscatter lidar providing multi-wavelength backscatter 104 

measurements of clouds and aerosols at 1064, 532, and 355 nm (McGill et al. 2002). 105 

Depolarization ratio, used to discriminate between liquid and ice clouds, is measured using the 106 

1064 nm channel while cloud optical properties (i.e. extinction coefficient, ice water content) are 107 

retrieved from the 1064 and 532 nm channels (McGill et al. 2003). CPL has participated in over 108 
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two dozen field campaigns since its first deployment in 2000 and serves as a reliable tool in the 109 

study of atmospheric profiling at high spatial and temporal resolutions. CPL raw data have a 110 

temporal resolution of 10 Hz and vertical resolution fixed at 30 m. The data is averaged to 1 s 111 

when creating data products, which equates to a 200 m horizontal resolution for an aircraft speed 112 

of 200 ms-1. When mounted aboard NASA’s ER-2 aircraft CPL points off-nadir by 2 due to the 113 

pitch of the aircraft. Therefore, the effect of horizontally oriented ice crystals on CPL data is 114 

negligible (Yorks et al. 2011).  115 

Once instrument corrections and calibration are applied to raw photon counts, CPL 116 

provides profiles of total attenuated backscatter (ATB) and the ratio of perpendicular to parallel 117 

backscatter (depolarization ratio) of clouds and aerosols (McGill et al. 2007).  CPL produces 118 

linearly polarized light, and measures the perpendicular and parallel planes of polarization of the 119 

backscattered light using a beam splitter in the receiver optics. The linear volume depolarization 120 

ratio is the ratio of the perpendicular polarized 1064 nm attenuated backscatter coefficient to the 121 

parallel polarized 1064 nm attenuated backscatter coefficient. Deriving accurate depolarization 122 

ratios requires knowledge of the depolarization gain ratio, which describes the relative gain 123 

between the perpendicular and parallel channels. Yorks et al. (2011) reports that the error in gain 124 

ratio is less than 3%. Level 2 algorithms use ATB profiles and depolarization ratio to further derive 125 

cirrus physical and optical properties. CPL level 2 algorithms categorize identified layers as ice 126 

clouds, liquid water clouds, or eight different aerosol types.  A cloud phase (CP) algorithm is used 127 

to discriminate between liquid water clouds and ice clouds. High confidence ice clouds have a 128 

mid-layer temperature less than -20C and a depolarization ratio greater than 0.25 (Yorks et al. 129 

2011). Temperatures provided from MERRA-2 are interpolated to the CPL data and reported in 130 

the layer temperature product. 131 
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Five years of cloud optical properties from CPL were analyzed extensively by Yorks et al. 132 

(2011). A strong dependence of increasing layer volume depolarization ratio with decreasing 133 

temperature was found for all cirrus clouds. Statistics of ice cloud volume depolarization ratios 134 

and temperatures were explored to determine thresholds for cloud phase discrimination which are 135 

applied in this study.  Previous research has also examined the sensitivity of lidar depolarization 136 

ratio to aspect ratio for modeled randomly oriented hexagonal ice crystals. Results show that 137 

depolarization ratio can be used to classify ice crystals into three categories: thin plates or 138 

spheroids, big and small irregulars and columns. Uncertainties due to depolarization variability are 139 

lowest for columns (less than 4%) and generally less than the maximum of 15% for other habits 140 

(Noel et al. 2004). However, lidar alone does not provide sufficient information for a more detailed 141 

classification.  142 

 143 

2.2 RSP 144 

The RSP is a multi-channel, multi-angle airborne polarimeter with nine spectral channels 145 

in visible/near infrared and shortwave infrared bands providing measurements of total reflectance 146 

and polarized reflectance derived from the I, Q and U components of the Stokes vector. RSP scans 147 

along track over a ~120° angular range utilizing the fields of view of six boresighted refractive 148 

telescopes, which contribute to its 14 mrad field of view (similar to that of CPL). Each pixel is 149 

sampled at 152 viewing angles and 0.8° intervals (Cairns et al. 2003). When on board the NASA 150 

ER-2, the RSP’s viewing angles drop to 134 usable angles (Sinclair et al. 2017). RSP derives the 151 

cloud top height using a multi-angle parallax method (Sinclair et al. 2017). Subsequently, RSP 152 

data are mapped so that multi-angle views are available as a function of location at cloud top 153 

(Alexandrov et al. 2012). For RSP mounted on the ER-2, it takes about 2 to 3 minutes to collect 154 
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all viewing angles for a location on a cirrus cloud top. Ice-topped clouds are selected by means of 155 

a liquid index derived from multi-angle polarimetry measurements around the 140° scattering 156 

angle, where liquid-topped clouds lead to a pronounced cloudbow feature (van Diedenhoven et al. 157 

2012b).  Clouds identified by RSP with a liquid index less than 0.3 and a cloud optical thickness 158 

greater than 5 are considered ice. The 1.59 μm and 2.25 μm channels are utilized in ice cloud 159 

retrievals for their sensitivity to ice/water discrimination (van Diedenhoven et al. 2012a).  160 

RSP employs the first remote sensing method of retrieving ice crystal asymmetry factor 161 

from multi-directional polarized measurements of aspect ratio and crystal distortion (van 162 

Diedenhoven et al. 2012a, 2013). RSP retrievals rely on individual hexagonal columns and plates 163 

to serve as proxies for more complex habit types (van Diedenhoven 2013). The asymmetry factor 164 

values are determined by a closest fit to measured multi-directional polarized measurements from 165 

a look-up table consisting of randomly oriented hexagonal columns and plates with nearly 166 

continuous values of aspect ratio and crystal distortion levels (van Diedenhoven et al. 2012a). The 167 

distortion parameter (Macke et al. 1996) is a proxy for randomization of the crystal shape caused 168 

by a number of factors, such as large-scale crystal distortion and complexity, microscale surface 169 

roughness, and impurities within the crystals (Hong and Minnis, 2015; Liu et al., 2014; Neshyba 170 

et al., 2013). A definition of aspect ratio with an upper limit of unity for both columns and plates 171 

is used in this study (van Diedenhoven et al. 2016). Here aspect ratio is the ratio between 172 

dimensions of components of ice crystals. Given this definition, ice crystals must be specified as 173 

column-like or plate-like, as is standard for RSP ice cloud products. Once the crystal type is known 174 

the inverse of aspect ratio can be used to separate column-like crystals from their plate-like 175 

counterparts. Despite this separation, a finer habit classification is necessary for accurate 176 

representation of ice crystal shapes. Additionally, effective radius is retrieved at 1.59 and 2.25 177 
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microns, utilizing the 2.25 micron channel in this study for its ability to penetrate deeper into ice 178 

clouds (van Diedenhoven et al. 2016b).  RSP effective radius is ¾ the average ice volume divided 179 

by the average projected area (van Diedenhoven et al. 2016b). A look up table approach is used 180 

for effective radius retrievals that is described by van Diedenhoven et al. (2014, 2016). Note that, 181 

for each observation, an ice optical model is used for the effective radius retrievals that is consistent 182 

with the retrieved asymmetry factor for that observation, as described by van Diedenhoven et al. 183 

(2014). 184 

 185 

2.3 CPI 186 

The SPEC Inc. CPI records high-resolution (2.3 micron pixel) digital images of individual 187 

ice cloud particles that pass through the sample volume of the imager (Lawson et al. 2001). Within 188 

each frame, CPI can record upwards of 25 particles simultaneously. The collected images are 189 

processed using SPEC Inc. software which derives crystal length, width, area and perimeter 190 

(Lawson and Baker 2006b). These descriptors are then used to classify the ice crystals into seven 191 

habits: spheroid, column, plate, rosette, budding rosette, small irregular, and big irregular. A 192 

complete description of CPI classification criteria can be found in the Appendix of Lawson et al. 193 

(2006a).  194 

 195 

2.4 SEAC4RS 196 

Data from these instruments was collected during the NASA Studies of Emissions and 197 

Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) 198 

campaign. SEAC4RS took place in August and September 2013 and was based outside of Houston, 199 

Texas (Toon et al. 2016). During the campaign, 57 science flights were completed by NASA’s 200 
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ER-2 and DC-8 along with the SPEC Inc. Learjet spanning the continental United States and the 201 

Gulf of Mexico. A large suite of remote sensing and in-situ instrumentation was implemented to 202 

study radiation, chemistry, and cloud microphysics. The CPL and RSP were both on board 203 

NASA’s ER-2 for these flights, flying at a nominal altitude of 18-20 km (Sinclair et al. 2017). The 204 

following analysis consists of data from ten flights over the course of the campaign: August 2, 6, 205 

21, 27, 30, September 4, 11, 13, 18,  23. Continental and maritime cirrus were sampled during 206 

these flights, with special attention on the 18 September flight where all three aircraft flew though 207 

a region of maritime convection (Toon et al. 2016).  208 

 209 

3.0 Methodology 210 

3.1 Ice Crystal Habit Definitions 211 

The habit descriptions used in this study follow those put forth by Bailey and Hallett (2002, 212 

2004, 2009) and Lawson et al. (2006a), as also shown in Figure 1 using CPI imagery data collected 213 

on 18 September 2013 during the SEAC4RS campaign.  Here “plates” describes hexagons with a 214 

face width larger than height which results in an aspect ratio below unity. This category of crystals 215 

includes thick and thin plates along with asymmetric irregular plate-like crystals and is therefore 216 

not limited to pristine, symmetrical plates. “Columns” are hexagonal with a length greater than 217 

their face width resulting in aspect ratios greater than 1. Columns can be solid or hollow and short 218 

or long. Recent literature such as Baily and Hallett (2009) documents that an overemphasis of 219 

symmetric crystal habits exists in literature. The idealized shapes once found in habit diagrams are 220 

quite rare and the reality of defective and irregular crystals must be acknowledged (Bentley and 221 

Humphries 1931, Bailey and Hallett 2009). “Spheroids” are particles greater than 50 microns in 222 

diameter and appear spherical unless studied under close magnification. These are quasi-spherical 223 
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compacted particles usually highly faceted and distorted. “Rosettes” presented in this study include 224 

budding rosettes which are not fully developed and general rosette-shaped particles which have 225 

multiple columnar structures gathered at a central point. Finally, “irregulars” are composed of 226 

compact faceted crystals which account for non-symmetric and defective crystals that do not fit 227 

into any of the above categories. Irregulars with aspect ratios less than 1 are categorized as plate-228 

like irregulars, which consists of a larger and smaller category, while those with aspect ratios larger 229 

than 1 are column-like irregulars which likely contain side planes.   230 

 231 

3.2 Combined CPL-RSP Cirrus Retrievals  232 

Two of the most promising instruments for ice crystal retrievals are active lidar and passive 233 

multi-angle polarimeters (van Diedenhoven 2018). Lidar’s unique advantage to obtain vertical 234 

profiles of clouds allows for more detailed structure than passive or in situ sensors can provide on 235 

one overpass. Additionally, the sensitivity of lidar to optically thin layers allows for detections 236 

unattainable by cloud radars (Comstock et al. 2002). Multi-directional polarized measurements of 237 

varying ice crystal shapes provide information on the phase function and scattering of light by 238 

crystals using a minimum of three simultaneous observations. Thus, using collocated CPL and 239 

RSP data, a new method was developed for classifying ice crystal habit types from retrieved CPL-240 

RSP observations in this study.  241 

3.2.1 CPL-RSP Collocation  242 

Coincident CPL and RSP observations were identified from the flights previously listed. 243 

These data were collocated temporally by synchronizing the time of overpasses for observations 244 

with the closest timestamps between the CPL curtains and RSP’s near-nadir views. The maximum 245 

time allowed between observations to be considered collocated was one minute. CPL and RSP 246 
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were both mounted on the ER-2 and have similar fields of view so observations could be readily 247 

inter-compared. Despite these similarities, CPL and RSP have different sensitivities to cirrus 248 

clouds. For RSP cloud optical thickness greater than 5, the polarized reflectance does not depend 249 

on the optical thickness (Chepfer et al. 2001). However, for optical thicknesses less than 5 the 250 

cloud apparent optical thickness must be included in the look up table used for determining 251 

asymmetry factor. The apparent optical thickness is determined by minimizing the difference 252 

between simulated and total reflectance (van Diedenhoven 2012a). One of the advantages of 253 

including CPL for this study is its unique ability to measure optically thin cirrus layers (COD < 254 

0.03) with high accuracy (McGill et al. 2002). CPL can also measure the vertical structure of cirrus 255 

which is not possible for CPI or passive sensors.  256 

A ray-tracing simulation of light polarization as it interacts with hexagonal-based ice 257 

crystals is compared to retrieved CPL depolarization ratios of randomly oriented ice crystals in 258 

Noel et al. (2004). The depolarization ratio was found to be sensitive to the modeled aspect ratio 259 

which allowed for a coarse classification of ice crystals into three groups (and four habits) 260 

consisting of plates or spheroids with the lowest depolarization and aspect ratios, irregulars, and 261 

columnar crystals which are highly depolarizing and have larger aspect ratios. This comparison 262 

was recreated using CPL and RSP observations obtained during SEAC4RS (see Figure 2) to 263 

observe the evolution of linear depolarization ratio with aspect ratio. Two definitions of aspect 264 

ratio are commonly used. If AR = L/W where L is the prism length and W is the crystal basal plane 265 

width, the resulting aspect ratio is greater than 1for columns, and less than 1 for plates. Van 266 

Diedenhoven et al. 2016 propose a definition of aspect ratio as AR = min{L,W}/max{L,W} which 267 

limits the aspect ratio to below unity for both plates and columns. In using this definition, it needs 268 

to be specified whether crystals are plate-like or column-like. Figure 2 does not distinguish 269 
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between plate-like or column-like crystals, therefore the definition of aspect ratio is below unity 270 

for all crystal habits using the definition of aspect ratio set forth by van Diedenhoven et al. 2016.  271 

To the authors’ knowledge, this is the first confirmation that data from observations matches 272 

modeled data of the evolutions of depolarization ratio with increasing aspect ratio. Figure 2 273 

demonstrates the relationship between depolarization ratio and aspect ratio, therefore it validates 274 

the use of combined lidar and polarimeter data to classify ice crystal habits.  275 

The CPL properties investigated in this study are layer-integrated parameters, as such the 276 

results presented are bulk cloud top volume measurements of coincident lidar and polarimeter data. 277 

These bulk retrievals represent data on a ~1 km vertical by ~250 m horizontal “box”. Conversely, 278 

the CPI records individual ice crystals that are detected and trigger the pulse of the imaging laser 279 

(Lawson et al. 2001). Therefore, it is assumed that the bulk volume measurements presented in 280 

this study are representative of the individual cirrus particle properties.  281 

3.2.2 K-means based clustering analysis of ice crystal habit types  282 

Approximately two thousand seconds of ice crystal observations were identified in the 283 

collocated flight segments.  Each observation made by CPL was additionally filtered in order to 284 

ensure that only ice clouds were being analyzed. Only cloud layers classified as cirrus by a CP 285 

value of 3 were used. Additionally, these layers had to be colder than -20° C and have a 286 

depolarization ratio greater than 0.25. Due to the passive nature of RSP, only cloud top properties 287 

are retrieved and used in this study. Additionally, CPL signal attenuates before reaching cloud 288 

base for optically thick clouds. Therefore, results presented are for cloud tops of optically thick 289 

cirrus (COD >3.0). Once high confidence ice clouds classified from CPL and RSP were collocated 290 

and filtered, K-means clustering analysis was used to group ice crystals by the following features: 291 

depolarization ratio (CPL), aspect ratio (RSP), asymmetry factor (RSP), effective radius (RSP), 292 
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cloud-top temperature (CPL).  RSP’s crystal distortion retrievals were not used for clustering, 293 

since, for most cases, the maximum distortion level of 0.7 was retrieved during SEAC4RS. The 294 

tendency to retrieve maximum distortion is consistent with previous findings using POLDER data 295 

(Hioki et al., 2016). However, we do report on statistics of distortion values for the different 296 

clusters. Seven initial cluster centers were selected to represent the habits identified by CPI. To 297 

distinguish between planar and columnar crystals, initial clusters were separated based on aspect 298 

ratio. Clusters were assigned to data points with aspect ratios less than 1 which encompassed 299 

plates, plate-like irregulars and spheroids. Next, clusters were assigned to data points with aspect 300 

ratios greater than 1 which were made up of columns, column-like irregulars and rosettes. The data 301 

were normalized to allow all observations to be compared regardless of their units and to allow for 302 

an equal weighting of observations during the clustering. Through the iterative process each point 303 

in the normalized features was assigned to its closest cluster center and the seven cluster centers 304 

were updated to be the mean of the points within the cluster. The process terminates when the 305 

algorithm converges and there are no changes in cluster assignments within a threshold. Clustering 306 

was done for all SEAC4RS cirrus observations and for the 18 September 2013 case study. 307 

K-means was chosen for its efficiency in clustering several variables with many data points 308 

into a small number of known K values. Using the Euclidean mean produces tighter cluster centers 309 

than some other distance metrics (Singh et al. 2013). Additionally, data points are able to change 310 

cluster assignments as centroids are computed iteratively (Gan et al. 2007). Relative tolerance with 311 

regards to iteration of 1e-4 was set to declare convergence. K-means resulted in the classification 312 

of ice crystals habits into distinct clusters utilizing combined CPL and RSP observations for the 313 

first time. 314 

4.0 Results315 
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The results of K-means clustering for each of the features listed above are presented in 316 

Figures 3 and 4 for the entire SEAC4RS dataset. Two sets of clusters are presented: those for aspect 317 

ratios less than or greater than 1.0 (Figs 3 and 4, respectively). The clusters were assigned ice 318 

crystal habits based on their defining characteristics. Corresponding statistics for the clusters are 319 

summarized in Table 2. 320 

Plates were categorized as the cluster with the lowest mean aspect ratio (0.24) and highest 321 

mean asymmetry factor (0.80). These are typical characteristics of plates and have been previously 322 

reported (see Table 1). As previously noted, the definition of plates is not limited to symmetric, 323 

ideal hexagonal plates. In this study, the plate category includes thick, thin and asymmetric 324 

polycrystalline plate-like crystals; samples of which are shown in Fig. 1. Thin plates have the 325 

highest asymmetry factors with values surpassing 0.9, while thicker plates or aggregates of plates 326 

tend toward lower values of 0.73. Plates also have relatively warm cloud top temperatures, within 327 

this dataset with a mean cloud top temperature of -48° C. It is expected that plates have warmer 328 

temperatures than columnar crystals based on previous findings summarized in Table 1.  329 

At the very coldest temperatures, with a mean value of -71°C, small compact particles are 330 

found. At these temperatures it is likely that the particles are barely developed budding rosettes, 331 

small columnar crystals and irregular polycrystals (Bailey and Hallett 2009). This cluster is 332 

classified as spheroids; however, it should not be assumed that the particles are spheres; rather that 333 

they are distorted, spherical crystals that may be still developing into a distinct habit.  334 

The remaining clusters with aspect ratios less than unity are classified as irregulars within 335 

the plate-like regime. Irregulars within this regime were separated into two groups to further 336 

differentiate habits based on size: large and small plate-like irregulars. The first group of irregulars 337 

have a mean aspect ratio of 0.62. This group is warmer (mean temperature of -50°C) and larger 338 
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(mean radius of 43 microns) than the second cluster of irregulars. The colder and smaller group of 339 

irregulars with a mean cloud top temperature of -69°C and effective radius of 33 microns, has a 340 

higher aspect ratio of 0.78 due to a larger deviation from symmetry than the first group of 341 

irregulars. Both irregular clusters have asymmetry factors of approximately 0.73 suggesting dense 342 

crystals or distorted aggregates of crystals. High mean depolarization ratios of 0.40 and 0.44, 343 

respectively, confirm the irregular nature of these clusters. Irregulars also have the largest effective 344 

radii of clusters analyzed with aspect ratios less than unity with mean values of 43 and 33 microns. 345 

Although distortion parameter was not part of the clustering procedure, there was a distinct 346 

difference in the distortion values of irregulars and plates or columns. The average distortion 347 

parameter of the irregulars is greater than that of plates, which is consistent with greater crystal 348 

complexity for irregulars than for plates. A large cloud top temperature difference exists between 349 

the two irregular clusters. The smaller irregular cluster has minimum temperatures reaching -75°C 350 

while the larger irregular cluster has minimum temperatures nearly 15°C warmer. These 351 

temperature differences suggest the second cluster contains more compact crystals while those in 352 

the first group are thin. This is confirmed by the peak in lower asymmetry factors for the second 353 

group of irregulars (e.g. Table 2).  354 

Distributions of ice crystal habits with aspect ratios greater than 1.0 for SEAC4RS are 355 

shown in Figure 4. Rosettes and columns typically have aspect ratios greater than unity and can 356 

exceed aspect ratios of four (Bailey and Hallett 2009). In this dataset, the cluster with largest mean 357 

aspect ratios (2.63) and highest mean depolarization ratio (0.44) was identified as columns. These 358 

values agree with those listed in Table 1 which were found in previous studies. Additionally, 359 

column temperatures fit well within the known column temperature regime which is colder than -360 

40°C. Overall temperatures for the dataset are colder than previously published findings (Table 1). 361 
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This is due to the high altitude at which cloud top temperatures are retrieved as opposed to lower 362 

altitude in situ measurements. Columns with mean temperatures of -63°C suggest they are found 363 

near cloud top where in situ measurements are difficult to obtain. Rosettes also have high aspect 364 

ratios with values increasing as the number of attached branches increases (Um et al., 2015).  365 

Therefore, the group with the second highest mean aspect ratio (2.93) is categorized as rosettes. 366 

An example of the utility of combined retrievals can be highlighted on inspection of plates and 367 

rosettes. The mean depolarization ratios are quite similar for plates and rosettes (0.394 vs. 0.377). 368 

However, the aspect ratio for the habits is very different (0.238 vs. 2.93). Classification of these 369 

habits into distinct types is possible only though the combination of sensors.  370 

The associated standard deviation of rosettes is large due to the varying stages of 371 

development of the crystals and their branches. Rosettes fall within the expected temperature range 372 

(-30° to -40°C) reported by Bailey and Hallett (2009). Those found in warmer regions transition 373 

to grow in width and can contain side planes or hollow branches, while rosettes found in the colder 374 

temperatures have more distinct branches intersecting the central core. At the lowest temperatures 375 

where rosettes are found (< -50°C), there is a retardation in bullet growth and crystals are small 376 

and compact. These temperatures match those found by Lawson et al. (2010) for results in cirrus. 377 

Rosettes depolarization ratios are lower than columns (0.37 versus 0.44) as is expected based on 378 

values of depolarization ratio reported by Noel et al. (2004). 379 

The final cluster of crystals are identified as column-like irregulars. Although they are 380 

within the column regime, the mean aspect ratio of this group (1.35) is lower than that of columns 381 

or rosettes. The mean asymmetry factor (0.73) is also lower than that of other habits with aspect 382 

ratios greater than one. As also seen for the plate-like regime, the average distortion parameter of 383 

the column-like irregulars is greater than that of columns, consistent with their greater complexity. 384 
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The frequency of each assigned habit classification for the collocated CPL-RSP data during 385 

all of the SEAC4RS campaign are presented in Figure 5. Irregulars with low aspect ratios dominate 386 

the dataset with a frequency of 52.21% followed by spheroids (20.50%), plates (16.08%), columns 387 

and column-like irregulars (7.51%), and rosettes (3.70%). These results compare favorably with 388 

those previously found by Noel et al. (2004) in which CPL and CPI data was analyzed from the 389 

CRYSTAL-FACE field campaign. The habits found in convective anvils sampled by Noel et al. 390 

(2004) were dominated by irregulars (~ 60%), followed by plates and spheroids (34%) and 391 

columns (6%). Crystals could only be categorized into broad groups comprised of plates/spheroids, 392 

irregulars, and columns based on depolarization and aspect ratio. Because lidar depolarization ratio 393 

is not a function of particle size or particle asymmetry, no distinctions could be made between 394 

large and small crystals or rosettes and columns which both have aspect ratios greater than unity. 395 

Most of the SEAC4RS data sampled tropical anvil cirrus over the Gulf of Mexico, with 75% of 396 

data falling at a latitude between 19.11 to 27.56°N and longitude 124.2 to 92.4°W. The findings 397 

presented also compare favorably with those of Lawson et al. (2010) in which tropical anvil cirrus 398 

were sampled. Lawson et al. (2010) reported that fresh anvils rarely contain rosettes, but instead 399 

were comprised mostly of irregulars. These results highlight the agreement in current and previous 400 

findings and showcase the utility of a combined remote sensing retrieval technique for ice crystal 401 

classifications.  402 

5.0 Validation and Uncertainty  403 

The previously described analysis was applied to the case study date of 18 September 2013 404 

to classify ice crystals sampled in anvil cirrus into habit types. SPEC CPI habit classifications were 405 

compared to classifications made using the combined CPL and RSP retrieval method. This is the 406 
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only flight day of nearly coincident CPL, RSP, and CPI observations from the SEAC4RS 407 

campaign.  408 

The results of this comparison are shown in Figure 6. In both cases irregulars with low 409 

aspect ratios comprised over half of all observations.  Also, comparisons for both retrieval methods 410 

agree within 5% in frequency for plate-like irregulars, spheroids, columns and column-like 411 

irregulars and rosettes.  The least observed habit for the combined retrieval technique was rosettes; 412 

however, the least observed habit from CPI was plates which comprised only 0.4% of observations. 413 

A source of the disagreement stems from differences in habit classification definitions. In a study 414 

conducted by Lawson et al. (2006b) habits classified automatically by the CPI software were 415 

manually inspected to estimate the accuracy of the automatic classification. It was found that 12% 416 

of habits were misclassified with plates accounting for the largest percentage of misclassifications 417 

(27%). The definition of plates in this study does not limit crystals only to symmetric plates so this 418 

category likely includes irregulars. Sampling differences also contribute to the disagreement. 419 

While CPI captures individual particles, CPL and RSP sample bulk cloud properties. Additionally, 420 

the measurements from CPL-RSP and CPI are not exactly coincident. Both CPL and RSP were 421 

mounted on board the ER-2 while CPI was on the Learjet. These two aircraft never flew in a 422 

stacked alignment with the ER-2 above the Learjet, but rather sampled the same clouds at slightly 423 

different times. For the first half of this flight segment the Learjet flew at a lower altitude than the 424 

ER-2. While the CPI initially flew just above 6 km, the CPL cloud layer was between 10- 12 km. 425 

This means the CPI onboard the Learjet was sampling lower altitude, warmer clouds than CPL. 426 

This altitude difference can explain the higher frequency observations of plate-like irregulars and 427 

spheroids made by CPI. For the latter half of this segment the Learjet sampled clouds at the same 428 

altitude as the ER-2. Cloud tops were between 12-13 km indicating cold clouds likely comprised 429 



 20 

of columns and rosettes. Thus, the comparison is not “apples to apples” throughout the flight but 430 

we assume there is little cloud evolution over the minutes of sampling difference so that the CPI 431 

data are representative of the bulk cloud top retrievals by the lidar and polarimeter. To the authors’ 432 

knowledge, there are no existing datasets that include exactly coincident lidar, polarimeter, and 433 

cloud probe imagery to complete a more “apples to apples” study. 434 

For all cirrus layers on 18 September 2013, the mean CPL penetration depth is 1.66 km. 435 

Van Diedenhoven et al. (2014) estimated that effective radius RSP retrievals can be assumed to 436 

pertain to the top 1 km of the cloud based on all the data collected during the SEAC4RS campaign 437 

utilizing 2.25 micron channel. Depolarization ratio varies by 0.07 throughout the entire CPL 438 

penetration depth on 18 September 2013, and only varies by 0.04 in the lowest 0.66 km of the 439 

cirrus layer. Therefore, the layer-integrated depolarization ratio is representative of the mean 440 

depolarization ratio within the layer, which in turn is representative of the cloud-top properties for 441 

the optically thick cirrus clouds included in this study. 442 

To quantify the uncertainty in the presented analysis, the importance of each attribute used 443 

in the classification was assessed. To do this, the K-means technique was repeated five times, each 444 

time removing one of the following parameters: aspect ratio, depolarization ratio, cloud top 445 

temperature, asymmetry factor, and effective radius. The resulting clusters were classified into 446 

seven habits, just as before. The frequencies of habit types were compared to the frequencies when 447 

all five attributes were present in the analysis. Differences in frequencies were attributed to the 448 

parameter that was eliminated in that particular trial. For each habit, the differences in frequencies 449 

due to removing an attribute were summed. The change in frequency due to each attribute was 450 

divided by the sum and this fractional difference was used as the weight. Table 3 summarizes the 451 

weights for each attribute used in the habit classification. Whichever missing parameter caused the 452 
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largest change in frequency was deemed the most important. This analysis provided weights which 453 

could be applied to the corresponding attributes.  454 

Once an appropriate weight was established for each parameter in the classification, the 455 

uncertainty of a cluster from each attribute is computed by dividing the normalized variance in 456 

each attribute for a cluster by the normalized values of that attribute, then multiplied with the 457 

corresponding weight as defined in Table 3. The overall uncertainty for a cluster is thus computed 458 

by summing computed uncertainties from all used attributes for that cluster, as suggested in 459 

Equation 1. 460 

∆𝑐 =
𝜕𝑐

𝜕𝑇
∆𝑇 +

𝜕𝑐

𝜕𝑑𝑝
∆𝑑𝑝 +

𝜕𝑐

𝜕𝐴𝑅
∆𝐴𝑅 +

𝜕𝑐

𝜕𝑔
∆𝑔 +

𝜕𝑐

𝜕𝑟
∆𝑟              Eq. (1) 461 

Here c is the relative uncertainty of the classification method.  The derivative terms are 462 

the uncertainties in the classification method due to various parameters and are tabulated in Table 463 

3. T, dp, AR, g and r are the relative uncertainties in cloud-top temperature, depolarization, 464 

aspect ratio, asymmetry factor and effective radius respectively.  The overall uncertainty is 465 

computed based on Equation 1 and is listed in Table 4 for each habit. As expected, columns and 466 

plates have the lowest uncertainty of 9.7% and 11.3%, respectively. These habits are the most 467 

distinct and would have higher confidence classifications than other habits. Rosettes have the next 468 

lowest uncertainty with 20.1%. Fully developed rosettes will be easily distinguished from other 469 

habits, while budding rosettes are more likely to be misclassified. The irregular habits have higher 470 

uncertainties (29.4%, 45.4%, and 23.2 %), as expected. Those groups contain fewer distinctions 471 

to separate them from others and likely contain a mix of asymmetric, non-pristine crystals. 472 

Spheroids have an uncertainty of 44.1% likely due to their small size which makes them difficult 473 

to distinguish from other groups. Spheroids have the smallest mean effective radius of all plate-474 

like categories (30.57 microns). Additionally, spheroids likely contain a mix of irregularly shaped 475 
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crystals, quasi-spherical droxtals, and even hexagonals as noted in the recent work of Lawson et 476 

al. (2019). Visual inspection of spheroids classified by CPI noted in Lawson et al. (2019) suggests 477 

that a significant fraction of spheroids may be small budding rosettes which adds to their 478 

uncertainty. Relative layer-integrated depolarization ratio uncertainties from CPL are reported as 479 

<10% (Yorks et al. 2011) while van Diedenhoven et al. (2012a) and van Diedenhoven et al. (2016) 480 

report RSP relative uncertainties for aspect ratio (20%), effective radius (15%) and asymmetry 481 

factor (5%). Overall, the uncertainties presented are reasonable given the high-quality aircraft data 482 

used in the analysis. For potential space-based applications of this classification method, higher 483 

uncertainties would be expected.  484 

 485 

6.0 Conclusions 486 

By combining CPL and RSP cirrus cloud observations during the SEAC4RS campaign, a 487 

K-means clustering technique was applied to classify optically-thick cloud top ice crystals into 488 

seven habit types. This technique demonstrates a finer classification than what is possible from 489 

lidar or polarimeter alone. It was determined that the most critical parameters for determining habit 490 

type are aspect ratio and cloud temperature, followed by depolarization ratio, asymmetry factor 491 

and effective radius. The results of this classification were compared to in-situ CPI data and 492 

frequencies for irregulars, spheroids, columns and rosettes agreed within 5%, while less agreement 493 

was found for plates (~16%). The relationship between depolarization ratio and aspect ratio 494 

modeled by Noel et al. (2004) was successfully recreated using the combined CPL-RSP retrievals. 495 

While previous research showed a classification of ice crystals into 3 broad categories based on 496 

depolarization ratio, the present classification can be expanded to 7 categories.  Additionally, the 497 

high frequency of irregulars and spheroids in contrast to the relatively low number of observations 498 
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of rosettes agrees well with the findings presented in Lawson et al. (2010) for similar anvil cirrus. 499 

These findings are expected to agree with those of Lawson et al. (2010) because in both studies, 500 

mostly fresh anvil still attached to convection were analyzed. 501 

While radiative forcing models currently assume an oversimplified crystal classification of 502 

plates and columns, this unique dataset provides insights of ice crystal parameters for more detailed 503 

habit types. For the first time, lidar and polarimeter data are combined to provide valuable insight 504 

of microphysical ice crystal properties useful for model simulations and the ongoing investigation 505 

of radiative impacts of cirrus. Although depolarization ratio can be used for coarse habit 506 

classification, additional parameters such as aspect ratio and asymmetry factor provide information 507 

that is necessary for a finer classification.  508 

The presented technique may be applied to combined measurements of the CALIOP lidar 509 

and POLDER instrument (van Diedenhoven et al. 2014b), which were both in NASA’s A-Train 510 

constellation. Combined backscatter lidar and a multi-channel/polarization imager flown on board 511 

the same platform serves as a direct response to priorities set forth by NASA’s Decadal Strategy 512 

for Earth Observation from Space (2018). The Aerosols, Clouds, Convection, and Precipitation 513 

(A-CCP) spaceborne mission also calls for combined lidar and polarimeter observations to study 514 

cloud and aerosol properties. The usefulness of a combined retrieval method is extensive, however 515 

there is a dearth of coincident flights available for this type of analysis. Additional coincident 516 

observations from lidar, polarimeter, and in situ instrumentation are necessary for finer habit 517 

classifications and parameterizations in radiative forcing models, and to improve the technique of 518 

habit classification using remote sensing data shown here.  519 
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Table 1-Previously published values of aspect ratio, asymmtery factor, cloud temperature and 

depolarization ratio of various crystal habits (‡Bailey and Hallett 2009; §Noel et al. 2004; *†van 

Diedenhoven et al. 2012a; *†van Diedenhoven et al. 2016) 

 
 Compact 

Hexagonal 

Long Columns Plates Rosettes 

Aspect Ratio * ~ 1.0 > 3.0 0.01 to 1.0 > 2.0 

Asymmetry Factor† 0.70 to 0.80 0.80 to 0.90 0.90 to 0.95 0.80 to 0.90 

Temperature ‡ -20 to -70°C -40 to -60°C -20 to -40°C -40 to -60°C 

Depolarization 

Ratio § 

< 0.40 > 0.50 < 0.25 0.25 to 0.50 
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Table 2 – Summary of CPL and RSP ice crystal habit statistics for the entire collocated 

SEAC4RS dataset. 

 

 Plates Large 

Plate-like 

Irregulars 

Small 

Plate-like 

Irregulars 

Spheroids Columns Column-

Like 

Irregulars 

Rosettes 

Samples 495 834 631 556 83 129 108 

Mean Aspect Ratio 0.238 0.621 0.787 0.383 3.63 1.35 2.93 

Median Aspect Ratio 0.245 0.535 0.731 0.391 2.18 1.17 1.870 

Std dev Aspect Ratio 0.131 0.152 0.124 0.124 3.31 0.259 4.53 

Mean Depolarization 

Ratio 

0.394 0.400 0.440 0.392 0.441 0.404 0.377 

Median 

Depolarization Ratio 

0.399 0.402 0.447 0.373 0.438 0.395 0.374 

Std dev 

Depolarization Ratio 

0.059 0.067 0.073 0.075 0.056 0.074 0.054 

Mean Effective 

Radius 

31.86 43.21 33.47 30.57 28.03 33.83 33.54 

Median Effective 

Radius 

29.85 40.16 32.04 29.11 28.04 33.00 30.60 

Std dev Effective 

Radius 

12.15 15.64 7.67 8.31 9.04 6.54 14.18 

Mean Cloud Top 

Temperature 

-48.77 -50.72 -69.32 -71.42 -63.47 -67.41 -46.36 

Median Cloud Top 

Temperature 

-51.70 -51.69 -71.85 -74.30 -61.95 -71.65 -47.05 

Std dev Cloud Top 

Temperature 

10.05 8.64 5.78 5.38 6.55 7.39 7.61 

Mean Asymmetry 

Factor 

0.800 0.727 0.733 0.769 0.786 0.733 0.769 

Median Asymmetry 

Factor 

0.793 0.718 0.740 0.767 0.781 0.731 0.768 

Std dev Asymmetry 

Factor 

0.043 0.016 0.017 0.029 0.023 0.015 0.028 

Mean Distortion 0.577 0.659 0.616 0.586 0.558 0.656 0.589 

Median Distortion 0.700 0.700 0.600 0.650 0.600 0.700 0.600 

Std Dev Distortion 0.199 0.075 0.079 0.148 0.023 0.062 0.098 
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Table 3- Weights of individual attributes used to calculate overall uncertainty in each habit type.  

 
 
 

Aspect 
Ratio 

Depolarization 
Ratio 

Cloud Top 
Temperature 

Asymmetry 
Factor 

Effective 
Radius 

Plates 0.08 0.045 0.47 0.35 0.049 

Large  
Plate-like 
Irregulars 

0.34 0.03 0.23 0.26 0.11 

Small  
Plate-like 
Irregulars 

0.23 0.05 0.28 0.21 0.22 

Spheroids 0.43 0.06 0.25 0.17 0.08 

Columns 0.07 0.13 0.30 0.40 0.02 

Column-like 
Irregulars 

0.1 0.02 0.10 0.50 0.27 

Rosettes 0.10 0.20 0.30 0.13 0.21 

 
 
 
 
 
 
 

Table 4- Overall uncertainties calculated for each crystal habit type with lowest uncertainty for 

distinct habits (plates, columns, rosettes) and greater uncertainty for irregular crystals. 

 
 Plates Large 

Plate-like 
Irregulars  

Small 
Plate-like 
Irregulars 

Spheroids Columns Column-
like 

Irregulars 

Rosettes 

Overall 
Uncertainty 

 
11.3% 

 
29.4% 

 
45.4% 

 
44.1% 

 
9.7% 

 
23.2% 

 
20.1% 
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Figure Captions 

 

Figure 1. SPEC CPI imagery collected during 18 September 2013 flight from the SEAC4RS 

field campaign highlighting variations in crystal shape and size for plates, irregulars, spheroids, 

columns, rosettes. 

Figure 2. Evolution of depolarization ratio with aspect ratio for collocated lidar-polarimeter data 

obtained during the SEAC4RS campaign.   

Figure 3. Distributions of collocated observations of plate-like ice crystal habits for aspect ratio 

(a), depolarization ratio (b), effective radius (c), cloud top temperature (d), and asymmetry factor 

(e) for all SEAC4RS data. 

Figure 4. Distributions of collocated observations of column-like ice crystal habits for aspect 

ratio (a), depolarization ratio (b), effective radius (c), cloud top temperature (d), and asymmetry 

factor (e) for all SEAC4RS data. 

Figure 5. Frequencies of ice crystal habits for all collocated SEAC4RS data dominated by plate-

like irregulars (52.21%), followed by spheroids (20.50%), plates (16.08%), columns and column-

like irregulars (7.51%), and rosettes (3.70%). 

Figure 6. Frequencies of ice crystal habits classified by SPEC CPI (green) and the newly 

developed CPL-RSP technique (blue) for a case study on 18 September 2013 from the SEAC4RS 

campaign. Agreement for irregulars, spheroids, columns and rosettes is within 5% with less 

agreement for plates (~16%) 
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Figure 1- SPEC CPI imagery collected during 18 September 2013 flight from the SEAC4RS field 

campaign highlighting variations in crystal shape and size for plates, irregulars, spheroids, 

columns, rosettes.  
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Figure 2-Evolution of depolarization ratio with aspect ratio for collocated lidar-polarimeter data 

obtained during the SEAC4RS campaign.   
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Figure 3- Distributions of collocated observations of plate-like ice crystal habits for aspect ratio 

(a), depolarization ratio (b), effective radius (c), cloud top temperature (d), and asymmetry factor 

(e) for all SEAC4RS data. 
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Figure 4- Distributions of collocated observations of column-like ice crystal habits for aspect 

ratio (a), depolarization ratio (b), effective radius (c), cloud top temperature (d), and asymmetry 

factor (e) for all SEAC4RS data. 
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Figure 5. Frequencies of ice crystal habits for all collocated SEAC4RS data dominated by plate-

like irregulars (52.21%), followed by spheroids (20.50%), plates (16.08%), columns and column-

like irregulars (7.51%), and rosettes (3.70%).  
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Figure 6. Frequencies of ice crystal habits classified by SPEC CPI (green) and the newly 

developed CPL-RSP technique (blue) for a case study on 18 September 2013 from the SEAC4RS 

campaign. Agreement for irregulars, spheroids, columns and rosettes is within 5% with less 

agreement for plates (~16%) 
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