
Proof Mate: an Interactive Proof Helper for PVS
(tool paper)

Paolo Masci1 and Aaron Dutle2

1 National Institute of Aerospace?

paolo.masci@nianet.org
2 NASA Langley Research Center

aaron.m.dutle@nasa.gov

Abstract. This paper presents Proof Mate, an interactive proof helper
for the PVS verification system. The helper is integrated in VSCode-
PVS, the Visual Studio Code extension for PVS. It extends the capabil-
ities of VSCode-PVS by introducing new functionalities for suggesting
proof commands, sketching proof attempts, and repairing broken proofs
during interactive proof sessions. This work further aligns VSCode-PVS
to the functionalities provided by modern development tools, with the
ultimate aim to facilitate the adoption of formal methods in engineering
practices and education.
Tool available at: https://github.com/nasa/vscode-pvs

1 Introduction

The capabilities of formal methods tools have classically been measured by as-
pects such as the expressiveness of the specification language, the level of au-
tomation, and the scalability of the analysis when dealing with complex systems.
In recent years, an additional metric started to play an important role, linked
to the usability of the tool front-end. The current generation of proof engineers,
and likely future generations, favor graphical front-ends over command line ver-
sions. Functionalities like auto-completion, integrated help, and point-and-click
interactions are now considered baseline features that any modern tool front-end
is expected to provide.

Developers of formal methods tools are upgrading the front-end of their tools
to meet this new baseline. An example is VSCode-PVS [4], which upgrades the
Emacs front-end of PVS [7] to Visual Studio Code, a mainstream open-source
code editor widely popular in the developer community. VSCode-PVS provides
editor functionalities such as autocompletion, hover information, live diagnostics,
interactive proof tree visualizer and editor, among several others.

This work introduces Proof Mate, a new interactive tool for VSCode-PVS
that further extends the capabilities of the PVS front-end with new functional-
ities for proof development, proof editing and proof repair.
? Research by the first author is supported by the National Aeronautics and Space
Administration under NASA/NIA Cooperative Agreement NNL09AA00A.



2 P. Masci and A. Dutle

2 Theorem Proving in PVS and VSCode-PVS

The Prototype Verification System (PVS [7]) is an interactive theorem prover
(ITP) based on a sequent calculus for classical higher-order logic, used exten-
sively by NASA Langley Research Center’s formal methods team (see, e. g., [2,
6]). Specifications and properties are written in a human-readable “.pvs” file, but
contrary to many other ITPs, proofs are stored in a separate proof file using an
internal representation [5], and not generally intended for direct reading or edit-
ing. Proofs are constructed interactively in PVS using proof commands, which
are applied to a sequent. A sequent has the structure A1..An ` C1..Cn, where
Ai are called antecedent formulas, and Ci are consequent formulas. A proof
command manipulates the sequent (with some commands branching to several
sequents). A branch is closed (i.e., proven) when an antecedent is false, a con-
sequent is true, or the same formula appears in the antecedent and consequent.
An example proof command is assert, which expands and simplifies definitions.
Proofs can consist of many branches and hundreds of proof commands, stored
(essentially) as a list.

While the original PVS Emacs interface allows for viewing a proof in either
text or tree form, editing a proof in this form is difficult even for expert users,
and cannot be performed during an interactive proof session. VSCode-PVS [4]
is a new front-end that integrates PVS in the Visual Studio Code editor. In
VSCode-PVS, proof commands are entered in the Prover Console and displayed
as a proof tree in a side panel called Proof Explorer (see Figure 1). Proof Explorer
improves the viewing and navigation of proofs by incorporating a collapsible, file-
system like view. Edit operations in Proof Explorer, however, are intentionally
constrained, because the proof tree shown is intended to always reflect the proof
structure computed by PVS. This way, the user knows exactly what will be saved
in the proof file at the end of a proof session.

3 Proof Mate

Proof Mate extends the capabilities of VSCode-PVS by introducing new func-
tionalities for suggesting proof commands, sketching proof attempts, and repair-
ing broken proofs during interactive proof sessions. The tool is integrated in the
front-end as a side panel characterized by interactive tree views, inline actions,
and a toolbar (see Figure 1). Proof Mate has a similar look and feel to Proof
Explorer, but because it is not tied directly to the proof being attempted, offers
much more flexibility to experiment with and write proof segments.
Suggesting proof commands. Proof Mate provide hints for proof commands
during a proof session, while the proof engineer is proving a theorem. Hints are
selected using heuristics based on common proof patterns in PVS. The heuris-
tics are encoded into templates which ensure that the selected commands are
applicable. One example is: “if a consequent formula starts with FORALL or an
antecedent starts with EXISTS, then recommend skolemization commands (i.e.,
skosimp* or skeep).” Another example is: “if a formula has the form expr = IF



Proof Mate: an Interactive Proof Helper for PVS 3

Fig. 1. Proof Mate (lower left panel), Proof Explorer (upper left panel), Editor (upper
right panel) and Prover Console (lower right panel) in VSCode-PVS.

expr THEN expr ENDIF, recommend commands for lifting the innermost con-
tiguous branching structure out to the top level (i.e., lift-if).” When none of
the other heuristics are matched, general simplification procedures are recom-
mended (i.e., assert or grind). The hints are automatically computed by Proof
Mate during interactive proof sessions, every time a new sequent is returned by
PVS. A tooltip providing a brief description of the proof command is shown when
hovering the mouse on a recommendation. Point-and-click interactions can be
used to select a recommendation and send it to the prover console for execution.

Sketching proof attempts. Proof Mate provides a sketchpad that can be
used by proof engineers to create and edit proof clips. While the look and feel
of the sketchpad resembles that of Proof Explorer, proof clips shown in the
sketchpad are designed to reflect proof ideas in the mind of the proof engineer
developing the proof, as opposed to mirroring the proof tree internally created
by PVS. Because of this, proof clips can be edited freely. Multiple proof clips can
be created and stored in the sketchpad. Each clip is automatically labeled with
a timestamp or a custom name provided by the proof engineer. Edit operations
allowed on sketchpad clips include renaming, addition, deletion, and copy/paste
of proof commands and proof branches. Copy/paste operations are also allowed
between the sketchpad and Proof Explorer. All operations can be performed
with point-and-click interactions. Inline action buttons are provided for frequent
operations. Proof clips are maintained across different proof sessions, allowing
re-use of proof sketches created for other proofs. Interactive controls are available
for executing proof commands and playback of proof clips.

Repairing broken proofs. A PVS proof may break for various reasons, rang-
ing from changes introduced by the proof engineer in the PVS specification under



4 P. Masci and A. Dutle

Fig. 2. Proof Mate Architecture (arrows indicate exchange of data or events).

analysis (e.g., updated definitions or refactoring of terms), to enhancements in-
troduced by the PVS developers in the prover engine (e.g., when a new version of
PVS is released). When a proof breaks, PVS automatically discards a fragment
of the proof structure. Proof Explorer, which is designed to reflect the proof
structure internally stored by PVS, automatically prunes sections of the proof
tree corresponding to the part discarded by PVS. While this ensures consistency
between Proof Explorer and PVS, the net result is that a fragment of the proof
is effectively lost. Proof Mate seamlessly detects these situations and saves the
proof fragments that would otherwise be lost in the sketchpad. Proof engineers
can inspect the fragments saved in the sketchpad to understand what caused
the break and edit/execute the fragments to repair the proof. Figure 1 shows a
situation where a proof, that was previously complete, broke during a proof re-
run. In the original proof, PVS was generating two sub-goals (i.e., two branches)
after (inst? -1). In the proof re-run, PVS is not generating sub-goals. In this
situation, PVS discards the two branches and, consequently, Proof Explorer au-
tomatically prunes all nodes after (inst? -1). Proof Mate saves the pruned
fragments in the sketchpad, as a clip rooted in (inst? -1) — this provides a
visual cue that can help proof engineers map the content of the sketchpad with
that of Proof Explorer. In this example, the repair action involved executing the
first command in the first branch of the proof clip (i.e., assert).

4 Architecture and Implementation

The high-level architectural diagram shown in Figure 2 illustrates how Proof
Mate is integrated in VSCode-PVS and the Language Server Protocol3 (LSP)
architecture. Being a front-end module, Proof Mate is part of the client side of
the LSP architecture. It communicates with three VSCode-PVS components.
VSCode-PVS Client is used for sending a request to execute a proof command
to the VSCode-PVS server through the LSP connection. The client is also used
for receiving notifications about changes in the proof structure, in particular
3 https://microsoft.github.io/language-server-protocol



Proof Mate: an Interactive Proof Helper for PVS 5

deletion of nodes and proof branches. These events are used by Proof Mate for
seamless detection and handling of broken proofs.
Proof Explorer provides a shared clipboard that is used by Proof Mate when
performing copy/paste operations from/to Proof Explorer.
Prover Console provides APIs for writing text programmatically in the console.
These API are used by Proof Mate to provide feedback to the user when, e.g.,
point-and-click interactions with Proof Mate trigger the execution of a command.
The VSCode APIs are used by Proof Mate for creating the visual elements of the
view, as well as to link the view to the global command palette and clipboard
of the Visual Studio Code editor.
Implementation. Proof Mate is entirely implemented in TypeScript, a version
of the JavaScript language annotated with type information that can be statically
checked for type correctness. A class ProofMate implements the functionalities
of the module. The class inheritance mechanism is used to define the class as
an extended version of Proof Explorer and build on existing code. Overall, the
implementation of the Proof Mate module includes approximately 2K lines of
TypeScript code. Only minor additions were necessary in the other modules to
correctly integrate Proof Mate in the VSCode-PVS front-end.

5 Related Work

Pumpkin [8, 9] is a proof repair tool for the Coq proof assistant. The tool pro-
vides a semi-automatic repair-by-example approach to proof repair. The basic
intuition is that a same breaking change may cause similar problems in different
proofs. When a proof breaks, the proof engineer can therefore develop an ex-
ample patched proof, and then use automatic differencing techniques and proof
term transformations to synthesize a template patch candidate that can poten-
tially fix other proofs that were broken in a similar way. While this approach is
specifically designed for Coq, the concept appears to be generally applicable to
other theorem proving systems, including PVS, and will be explored to automate
some of the functionalities of Proof Mate.

Tactician [1] and TacticToe [3] are interactive proof helpers for Coq and
HOL4, respectively. Both tools are designed to suggest proof tactics than can
be used to complete a proof. Patterns are learned from existing proofs using
machine learning techniques. In Proof Mate, a different approach is taken, based
on direct encoding of expert knowledge into heuristics rules. An attempt is cur-
rently underway to extend the capabilities of Proof Mate with machine learning,
targeted at suggesting lemmas.

PeaCoq [10] is an experimental front-end designed to help novice users de-
velop a proof. The tool uses a visual diff view to highlight the effects of the
refactoring changes on the proof tree. Color-coded text is used to highlight dif-
ferences between the old and the new version of the proof script. A similar kind
of visualization was considered for VSCode-PVS, where changes in the proof
tree were directly visualized in Proof Explorer using strikethrough text for the



6 P. Masci and A. Dutle

highlighting deleted fragments. This possible solution was discarded because of
usability issues — the window quickly became cluttered and hard to navigate.

6 Conclusion and Future Work

Proof Mate brings a collection of new capabilities to the users of VSCode-PVS,
by suggesting relevant proof commands, providing a sketchpad for proofs or
proof sections to be assembled outside the interactive prover, and assisting in
repairing broken proofs in a number of ways. In contrast to most other interactive
theorem provers, PVS does not support editing of proofs outside of the sequential
interactive console in a simple way. Proof Mate fills this role and others, providing
a playground for copying, editing, writing, and even suggestion of proof sections
without restriction, and during a live proof session.

Each of the functionalities that Proof Mate provides (suggestion, sketching,
repairing) are ripe for modification and improvement. The current command
suggester is based on pattern matching of particular statements in the sequent.
While this is certain to find a command that will apply, there are more sophis-
ticated methods for finding relevant commands. Future efforts will incorporate
machine learning techniques to find commands that may be more relevant to the
user, such as suggesting appropriate lemmas to be used.

The proof sketching functionality in Proof Mate can also be extended in sev-
eral ways. Currently, Proof Mate allows for a block of commands to be selected
and used in the interactive prover console. A small extension would be to fa-
cilitate a user creating a custom local strategy from these commands, including
variables that could be replaced on use. This is a step toward the larger goal of
making the PVS strategy language more user-friendly and applicable. A much
more ambitious goal is the translation of a natural language proof of a theorem
or statement into a proof inside of PVS. While a full proof is unreasonable to
expect, a system that could identify and sketch the main skeleton of a proof
from a natural language description could aid in the formal verification.

The proof repair function of Proof Mate takes the pruned branches of a
previous proof attempt and copies it to the sketchpad. While this catches a
large number of broken proofs, there are situations where the sequent diverges
prior to where Proof Mate catches the change, and so repair is more difficult.
For example, if a change in a specification adds a statement to the antecedent,
there can be a long sequence of successful commands (hiding formulas, calling
lemmas, etc. ) before the first true “break” in the proof. Adding functionality to
find this divergence point is more difficult, since the proof is stored as a sequence
of commands and does not carry information about the sequent(s) resulting from
a command. Another possible enhancement would be for Proof Mate to save not
just the pruned sequent, but store the actual repair that was used, since a repair
in one proof is often needed in other similar repairs.



Proof Mate: an Interactive Proof Helper for PVS 7

References

1. Blaauwbroek, L., Urban, J., Geuvers, H.: The Tactician. In: International Confer-
ence on Intelligent Computer Mathematics. pp. 271–277. Springer (2020)

2. Dutle, A., Moscato, M., Titolo, L., Muñoz, C., Anderson, G., Bobot,
F.: Formal analysis of the Compact Position Reporting algorithm. For-
mal Aspects of Computing (2020). https://doi.org/10.1007/s00165-019-00504-0,
http://link.springer.com/article/10.1007/s00165-019-00504-0

3. Gauthier, T., Kaliszyk, C., Urban, J.: Learning to reason with HOL4 tactics. CoRR
abs/1804.00595 (2018), http://arxiv.org/abs/1804.00595

4. Masci, P., Muñoz, C.A.: An Integrated Development Environment for the
Prototype Verification System. In: Monahan, R., Prevosto, V., Proença,
J. (eds.) Proceedings Fifth Workshop on Formal Integrated Develop-
ment Environment, F-IDE@FM 2019, Porto, Portugal, 7th October 2019.
EPTCS, vol. 310, pp. 35–49 (2019). https://doi.org/10.4204/EPTCS.310.5,
https://doi.org/10.4204/EPTCS.310.5

5. Munoz, C.: Batch proving and proof scripting in PVS. NIA/NASA Langley,
NASA/CR-2007-214546, NIA Report No. 2007-03 (2007)

6. Muñoz, C., Narkawicz, A.: Formal analysis of extended well-clear boundaries for
unmanned aircraft. In: Rayadurgam, S., Tkachuk, O. (eds.) Proceedings of the
8th NASA Formal Methods Symposium (NFM 2016). Lecture Notes in Com-
puter Science, vol. 9690, pp. 221–226. Springer, Minneapolis, MN (June 2016).
https://doi.org/10.1007/978-3-319-40648-017

7. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
International Conference on Automated Deduction. pp. 748–752. Springer (1992)

8. Ringer, T.: Proof Repair. Ph.D. thesis, University of Washington (2021)
9. Ringer, T., Porter, R., Yazdani, N., Leo, J., Grossman, D.: Proof repair across type

equivalences. In: Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation. pp. 112–127 (2021)

10. Robert, V.: Front-end tooling for building and maintaining dependently-typed
functional programs. Ph.D. thesis (2018)


