

[Invited] Phase-change material (PCM) based actively tunable filters for both terrestrial and spaceborne platforms

Hyun Jung Kim¹ (hyunjung.kim@nasa.gov),

Stephen Borg¹, William Humphreys¹, Matthew Julian², Calum Williams³, David Bombara⁴, Juejun Hu⁵, Yifei Zhang⁵, Tian Gu⁵

- 1. NASA Langley Research Center, VA, US
 - 2. Booz Allen Hamilton, VA, US
- 3. Department of Physics, University of Cambridge, UK
- 4. Department of Mechanical Engineering, University of Nevada, Reno, NV, US
 - 5. Materials Science and Engineering, MIT, MA, US

January 25th, 2022

Phase Change Material Research Trends

Team

- R&D: NASA Langley Research Center (LaRC), MIT, BAH, University of Nevada (Reno), and University of Cambridge (UK)
- Development & Testing (D&T): NASA LaRC and MIT
- New application: U. of Cambridge
- MISSE mission with MIT & University of Washington (Prof. Arka Majumdar)
- Mission Support NASA LaRC: DIAL (science mission), SAGE-IV, SCIFLI (space program)

Exploiting the extraordinary refractive index contract in PCMs has opened the door to unprecedented functionalities in photonic components

Amorphous-to-crystalline phase transition provides wavelength modulation arising from large index change

- \checkmark In 1966, PCMs (i.e., Ge₂Sb₂Te₅ / GST) were developed for re-writable, non-volatile memory applications
- ✓ Memory recording between amorphous (0) and crystalline (1) phase transitions
- ✓ Reversible, linear, non-volatile phase transition
- ✓ PCMs exhibit an ultrafast refractive index modulation across the infrared
- ✓ From 2014, large refractive index contrast utilization in photonic devices (*Nature, 511, 206-211 (2014*))

P-ACTIVE – Dramatic Improvement in Performance

State of the Art:

- Filter wheels comprised of several static filters physically rotate to switch spectral passband
- Has moving parts, large mass, slow response time (ms), and provides limited spectral resolution
- ✓ 0.8kg (weight), 725cm³ (volume), 15W to power motor

P-ACTIVE:

- ✓ Increased spectral and temporal resolutions
 - \checkmark GHz (ns) switching speed (10⁶x improvement!)
 - Continuously-tunable passband
- ✓ Single-component, non-volatile, broad tunability
- ✓ 10g (weight), 0.253cm³ (volume), ~mW average power to tune filter

P-ACTIVE can offer a flexible platform that can meet arbitrary mission requirements and provide more science information

1~10µm waveband, 'spectral fingerprint' for many chemical species

Chemical/Gas sensing – LIDAR Science mission

- Rapid profiling of targeted observables, greenhouse gases (NO₂, CO₂, CO, SO₂), ozone, water vapor
- DIAL (Differential Absorption Lidar) on/off switch: Capability to measure H₂O vapor & CH₄ profiles for deeper understanding of clouds responding to warming climate from greenhouse gases
- SAGE III / IV mission multi-spectral filter wheel

Thermal imaging – SLS Space mission

- Dynamic targets (e.g., turbulent plumes, volcano gases)
- SCIFLI project multi-spectral filter wheel: H₂O & CO₂/CO rocket plume emission

Prototype 1: Fabry-Perot Bandpass Filter with PCM cavity

center wavelength (λ_1 or λ_2) shift depending GST or Sb₂S₃ crystallinity (refractive index)

C. Williams. et al., Optics Express 28(7), 10583, 2020

Prototype 2: Metasurface filter with embedded GST

- Metasurfaces are sub-wavelength arrays which can be designed to strongly interact with the light
 - We utilized a Plasmonic Nanohole Array (PNA) metasurface filter
 - Integration of Ge₂Sb₂Te₅ (GST) with PNA
 - Transmission response dependent on hole index.
 Holes filled with GST (tunable)
 - GST filled nanohole arrays associated resonance at particular WL in metal film → transmission mode filtering

M. Julian et al., Optica, 7(7), 746-754, 2020

Metasurface GST filter shows ultrafast bi-modal wavelength switching in the MWIR

- 1-inch diameter size filter
- ✓ > 75 %T
- ✓ < 74 nm bandwidth
- 2.9 µm ~ 3.4 µm spectral tuning \checkmark
- Perfect reflection at the off-resonance
- ~ ns tuning speed \checkmark
- Multiple switching cycles \checkmark
- No settling time required \checkmark
- **Polarization insensitive** \checkmark

10

Pulsed-laser switching setup enables rapid center wavelength tuning

M. Julian et al., Optica, 7(7), 746-754, 2020 ¹¹

Electrically-tunable P-ACTIVE fabrication

bulk

Si₊∎

back etch

<u>~500µm</u>

Initial results of backside-etched Si substrate

- As a proof-of-concept electrically-tunable device, a Fabry-Perot (FP) filter was designed
- Filter geometry is integrated with MIT's doped-Si heater wafers
- Bulk Si wafer is backside-etched to reduce thermal sinking
- FP mirrors are deposited on either side of doped-Si 3x3 heater layer

P-ACTIVE opens new opportunity

NASA Scientifically Calibrated In-Flight Imagery

Goal: Obtain high quality thermal imagery data of the SLS base heat region and PIFS during a ascent to validate / reduce required TPS mass for future flights – increased payload
 Need: Reliable and adaptable MWIR filter for increased temperature accuracy from the current high speed (MHz), narrow band filter wheel – for next-generation active thermal imaging monitoring for future missions.

Neural Network (NN)-designed MWIR metasurface filter by MIT

Canonical example specs chosen to demonstrate flexibility for SCIFLI missions

Input Parameters				
Performance Metric	Spec Range			
Center wavelength	2 μm < λ < 5 μm			
Tunable Range	>1 µm			
Transmission FWHM	35 nm < FWHM < 100 nm			
Peak Transmittance	>70%			
Out-of-band rejection	> OD 3			
PCM material	GST or GSST			

Reconfigurable filter design

Result demonstration (Gaussian shape targets)

We are pursuing parallel fabrication of metasurface and FP heater structures on Si-heater substrates

Integrated Single-optic SPectroscopic Imager (I-SSPI) for Increased Measurement Resolution (eliminate the emissivity uncertainty problematic and expand the dynamic range of image) in a Reduced SWaP Form-factor Gimbal on NASA WB-57 (filter wheel installed)

SpaceX Crew Dragon capsule nighttime splashdown image—on November 8, 2021.

Credit: NASA

NASA MISSE Program

- MISSE Materials International Space Station Experiment
- Purpose is to determine the effects on the specimens due to the space environment
- All specimens returned to Earth for analysis
- P-ACTIVE launched through the MISSE-14 platform (Wake and Zenith)
- Wake Direction Facing away from the direction of ISS travel, no AO and moderate solar exposure (Lunar surface demo)
- Zenith Direction Facing away from Earth, grazing AO and highest solar exposure (LEO demo)
- Qualitative Analysis: High-resolution <u>photographs of</u> <u>specimens</u> about once a month to detect changes as a function of time
- MISSE <u>environment flight data</u> also provide (i.e., temperature, Ultraviolet (UV) radiation)

MISSE-14 opens new opportunity

Space PCM & Neural Network-based Filter Design

intelligently pairs user-/mission-defined performance metrics

Spaceborne LIDAR for Chemical / Gas sensing

1cm µ-SN Zenith Wake **µ-SM** imbedded Astronaut Ram Shoes and Rover Tires Nadir

µ-Spectrometer for Lunar

& Mars exploration

Expected Impacts of PCM alloys Beyond the P-ACTIVE...

Application	Switching contrast (relevant metrics listed)	Optical efficiency	Endurance (cycling lifetime)	Speed	Power consumption
Optical signal modulation	Extinction ratio		> 10 ¹⁵	> 1 GHz	
Spatial light modulation	Cross-talk	×.	10 ¹⁰	0.1 - 1 kHz	
Beam steering (LIDAR)	Cross-talk		10 ¹³	100 kHz	
Tunable filter	Tuning range		10 ³	1 kHz	
Adaptive optics	Phase correction coverage		> 109	>0.1 kHz	
Lens autofocus	Focal length tuning range		10 ⁴ - 10 ⁷	0.1 kHz	
Zoom lens	Zoom ratio & cross-talk	-	10 ³ - 10 ⁶	1 Hz	
Holographic display	Color gamut		10 ⁶ - 10 ⁹	0.1 kHz	
Reflective display (electronic paper)	Color gamut		> 10 ⁶	>1 Hz	Must be nonvolatile
Dynamic projection display	Color gamut		> 109	0.1 kHz	
Optical limiter	Extinction ratio		1 - 10	>1 GHz	
Adaptive thermal	Emissivity tuning		10 ⁴ - 10 ⁹	1 kHz	

Application of PCM-based active metasurfaces

"Design for quality: reconfigurable flat optics based on active metasurfaces", Nanophotonics, 9(11), 3505-3534 (2020). 21

Beyond January 25th, 2022

1966 PCM

Non-volatile. reconfigurable, **P-ACTIVE** fast-switching, fabrication & high degree of demonstration space radiation tolerance

2018

P-ACTIVE at LaRC

Success on

NASA mission-specific scenario development Key scientific component to

extract maximum information from active tuning

2019 ~ 2021

February 2021

MISSE-14 mission

P-ACTIVE and PCM alloys expose at ISS for 6-months

February 2022

Return to the facility at NASA for the post flight testing

P-ACTIVE in space

Based on Lessons Learned from MISSE-14