
A Data-Driven Reduced Order Model of an Isolated Rotor

Nicholas J. Peters
Aerospace Engineer

NASA Ames Research Center
Moffett Field, CA, USA

Christopher Silva
Aerospace Engineer

NASA Ames Research Center
Moffett Field, CA, USA

John Ekaterinaris
Prof. Aerospace Eng.

Embry-Riddle Aeron. Univ.
Daytona Beach, FL, USA

ABSTRACT
There are numerous conceptual design stage rotorcraft analysis tasks which demand a high-fidelity and low cost
method for rotor load distribution predictions. Considering Urban Air Mobility (UAM) vehicles aim to operate in
close proximity to buildings and with unique rotor configurations, there is a significant challenge in quickly and
accurately modeling rotors operating in complex, turbulent flow fields. One potential path for deriving a high-fidelity,
low cost rotor model is with data-driven surrogate modeling. In this study, an initial investigation is taken to apply a
proper orthogonal decomposition (POD) based reduced order model (ROM) for the purpose of pressure distribution
prediction. In this study, a POD ROM was derived to produce distributed pressure predictions on rotor blades subjected
to topology change due to variation in twist and taper ratio. Rotor twist was varied between 0◦, 10◦, 20◦, and 30◦
while taper ratio was varied between 1.0, 0.9, 0.8, and 0.7. All rotors consisted of a single blade. The POD ROM was
validated for three demonstration cases; a high thrust rotor in hover, a low thrust rotor in hover, and a rotor in forward
flight with a flight speed of M = 0.1. Results showed highly accurate distributed load predictions could be achieved
at minimal computational cost. Computational cost for hovering blade surface pressure modeling was reduced from
12 hours on 440 cores to 10−5 seconds on a single core. For blade in forward flight cost was reduced from 20 hours
on 440 cores to 0.6 seconds on a single core. For cases of high thrust and low thrust rotors, POD ROM was used to
undergo a design optimization of the rotor such that figure of merit was maximized. Total optimization time for each
case was 1 minute.

NOTATION

c search direction
CQ coefficient of torque
CT coefficient of thrust
FM figure of merit
M free stream Mach number

Mtip tip Mach number
n retained subset of POD modes
s̃ summation of singular values
si singular value i

u(x, t) snapshot matrix
ū(x) time-average of snapshot matrix

u(x, t)′ perturbation matrix
U POD modes

VT right-singular vectors of u(x, t)′
λ taper ratio
Ψ twist
Φi POD mode i
Σ singular value matrix
σ solidity
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INTRODUCTION

It is common for rotorcraft analysis to include fluid-structure
interactions, structural dynamics, vehicle component sizing,
topology optimization, flight simulation, etc. For each of
these tasks it is essential that there exist a model capable
of providing load predictions to a high degree of accuracy
for a variety of rotor configurations. One approach to ob-
taining these load predictions is through mid-fidelity design
tools such as Comprehensive Analytical Model of Rotor-
craft Aerodynamics and Dynamics (CAMRAD) (Ref. 1), Ro-
torcraft Comprehensive Analysis System (RCAS) (Ref. 2),
or Comprehensive Hierarchical Aeromechanics Rotorcraft
Model (CHARM) (Ref. 3). Through leveraging these analysis
tools numerous sub-topics of interest have been investigated
ranging from multi-rotor performance prediction (Refs. 4, 5)
to aeroelasticity (Refs. 6, 7). When applied to the early stages
of vehicle optimization, typically mid-fidelity tools provide an
excellent path to obtaining a limited design space from which
an optimal solution can be identified. Yet, there still remain
significant limitations to mid-fidelity analysis tool-sets when
applied to rotor operation in turbulent flow fields. These limi-
tations become particularly pronounced once considering that
many urban air mobility (UAM) rotorcraft will likely have
rotors operating in highly turbulent flow fields, particularly
those proposed to operate in multi-rotor configurations or in
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close proximity to buildings. As more rotorcraft designs are
beginning to account for these operating conditions, uncer-
tainty in mid-fidelity tools has led to a broadening of optimal
design spaces found in the early stages of the conceptual de-
sign process.

One potential solution for narrowing this design space is
through applying computational fluid dynamics (CFD). Nu-
merous solvers (mStrand (Ref. 8), SU2 (Ref. 9), OpenFoam
(Ref. 10), etc.) have been developed to help streamline the
process of rotorcraft CFD simulation. Through implemen-
tation of Large Eddy Simulation (LES) (Ref. 11) and De-
tached Eddy Simulations (DES) (Ref. 12) in CFD, numerical
based studies of rotorcraft have shown to be capable of re-
solving flow fields relevant for performance and loads of iso-
lated rotors in hover/forward flight (Ref. 13), during rotorcraft
pitch up maneuvers (Ref. 14), and rotor-ship wake interac-
tions (Ref. 15). Yet, despite significant advancements in both
the hardware (Ref. 16) and software (Ref. 17) rotorcraft CFD
simulations still prove to be too computationally expensive
for many engineering tasks. For a complete comprehensive
CFD analysis of a full scale rotorcraft, computational expense
commonly requires simulation run times ranging from days
to weeks (Ref. 18). For engineering tasks, which require hun-
dreds if not thousands of iterations such as design optimiza-
tion, full CFD modeling is not an option. It is this resource
limitation which has led to a desire for a CFD-based surro-
gate model.

While currently available computational resources limit the
number of CFD simulations during conceptual design to a
few tens of runs, recent studies have shown that by retain-
ing a truncated subset of dominate flow features a useful and
meaningful reduced order model (ROM) can be constructed
(Refs. 19, 20). While there exist many formulations of mode-
based ROMs, in this study an interpolation based ROM will be
presented. This ROM was constructed in a two step process.
First, a low rank subspace is identified. This subspace can be
found using a variety of modal decomposition methods such
as Proper Orthogonal Decomposition (POD), Dynamic Mode
Decomposition (DMD) (Ref. 21), Spectral Proper Orthogo-
nal Decomposition (SPOD) (Ref. 22), etc. In this study, POD
was utilized to identify a low rank subspace. Once a sub-
space was identified an interpolation scheme is then applied
to make predictions. Recent work (Refs. 23–29) has shown
that these ROM-based surrogate models are able to retain a
high degree of fidelity while operating at minimal computa-
tional cost. Example of areas of ROM application include
heat transfer, combustion, turbine blade modeling, boundary
layer ingestion, and store separation.

While previous studies have applied POD ROMs to isolated
bodies with varying inflow conditions, there is minimal ap-
plication to modeling surface pressure distributions for three
dimensional unsteady dynamic bodies, particularly once vari-
ation in surface topology is considered. A significant con-
tributing factor for this absence of literature is that data-
driven modeling relies heavily on the assumption that dom-

inate physics for the system of interest are comprehensively
captured in the training dataset. For this reason, many applica-
tions of CFD based data-driven ROMs, while valuable demon-
strations, rely on either two-dimensional flows (airfoil load
prediction (Ref. 30)), steady-state assumptions (supersonic
flows (Ref. 31)), or systems where symmetry/periodicity can
be leveraged (rotor-stator modeling (Ref. 32)) such that CFD
computational expense is minimized and the number of sam-
ple points can be maximized. For rotorcraft based applica-
tions of CFD based data-driven ROMs computational expense
is comparatively large resulting in minimal sampling of the
domain. As such, the POD ROMs demonstrated in this study
will need to extract meaningful information from a relatively
small number of samples.

Typically, there are two ways in which a parametric inter-
polation based POD ROM could fail to produce meaning-
ful predictions. The first potential situation could be through
the POD algorithm being incapable of representing the space
with a limited expansion of modes. While ultimately POD
mode retention could be expanded to several hundreds, if not
thousands, of modes these high mode counts often result in
more challenging interpolations. Typically, while initial POD
modes can smoothly be correlated to design parameters higher
mode numbers are often more stochastic resulting in more
challenging interpolations. The other way a POD ROM may
fail to provide accurate predictions is through under-sampling
a sufficiently non-linear design space. If a design space is
found to be too non-linear, then the total number of CFD sim-
ulations required to derive a model may no longer warrant the
construction of a ROM.

To investigate POD ROM capability in the field of rotor pres-
sure load predictions, a POD ROM was derived and tested
under three basic operating conditions for a single, isolated
blade. In each case, design space complexity is increased
to test reconstruction and interpolation capability. The first
ROM this study will present models a high thrust isolated
rotor blade in hover. The rotor blade’s taper ratio and twist
was varied to construct 16 CFD simulations using the OVER-
FLOW solver (Ref. 33). A POD ROM was constructed from
these cases, validated against an additional 3 CFD simula-
tions, and then employed to achieve a design optimization of
the rotor blade. This process was repeated again for a low
thrust isolated rotor blade in hover. With both high and low
thrust rotor cases, figure of merit, coefficient of thrust, and co-
efficient of torque will be used as metrics for ROM prediction
accuracy. For the final ROM, the study modeled an isolated
rotor blade in forward flight given the same variations in ta-
per ratio and twist. This ROM was also validated against 3
additional CFD simulations. Integrated sectional coefficient
of thrust was used as the metric of forward flight ROM pre-
diction accuracy. With these three ROMs, the study aims to
provide insight into the capabilities of POD ROMs for dis-
tributed load predictions given a variation in blade shape over
a variety of standard rotor operating conditions.
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NUMERICAL APPROACH

Before this study could begin, a procedure was required for
efficiently generating rotor blade grids given a linear variation
in taper ratio and twist. This procedure was necessary not only
for generating grids for CFD simulation, but also for applying
POD ROM for an iterative design optimization. As such, a
procedure was developed over the course of this study which
allows for a parametric definition of rotor blades. The proce-
dure starts by reading a single input file which holds the def-
inition of rotor blade’s twist (Ψ), taper (λ ), sweep, dihedral,
and airfoil cross section at a number of span-wise stations.
These input file formats can either be National Aeronautics
and Space Administration (NASA) Design and Analysis of
Rotorcraft (NDARC) (Ref. 34) geometry files or CAMRAD
input files. A PLOT3D (Ref. 35) file is then generated for the
rotor’s Cartesian surface grid. With the meshing algorithm
defined, the study began generating the 16 blades, as defined
in Table 1 and 3 validation grids, as outlined in Table 2. Each
blade consisted of 276 chord-wise and 128 span-wise nodes
for a total surface cell count of 34,944. All 16 blades had a
mean chord of 1 f t and a radius of 10 f t. Examples of blades
from cases c1 and c16 can be seen in Figure 1.

Each rotor was limited to a single blade to simplify rotor ge-
ometry and limit the influence of variables not represented in
the POD ROM from affecting blade pressure distributions. It
should be noted that this geometric constraint is not consis-
tent with blade counts found on rotorcraft and thus typical ro-
tor performance may not be represented in the current study.
Nonetheless, this geometric constraint still allows for pressure
distributions representative of those found for blades in hover
and forward flight to be modeled. The selected geometries
produce a constrained domain within which a POD ROM can
be tested for capabilities to reconstruct typical load distribu-
tions found on blades and model their evolution as a blade’s
twist and taper ratio varies.

To generate caps for the rotor’s root and tip faces, the
Chimera Grid Tools’ (CGT’s) WINGCAP software was used
(Refs. 36, 37). The CGT is a tool-set developed by NASA for
the purpose of pre- and post-processing of chimera overset
grids (Ref. 38), particularly for use in NASA’s OVERFLOW
CFD solver. An example of a grid generated for the rotor’s
tip cap can be seen in Figure 2. Volume grids were generated
from the surface meshes using CGT’s hyperbolic grid gener-
ator HYPGEN (Ref. 39) software. An example of the HYP-
GEN generated extrusion is shown in in Figure 3. Total near
body volume cell count for each case is 3.5 million. Normal
spacing at the surface was at a y+ of 1 and growth was limited
to a rate of 1.2. A Cartesian background mesh was then con-
structed with pressure farfield boundary conditions extending
15 rotor radii from origin. The SAMcart solver was used for
the background mesh.

For numerical simulation, the study used the CFD solver
OVERFLOW (Ref. 40). OVERFLOW is a CFD solver devel-

(a)

(b)

Figure 1: Comparison of two geometries used in this study.
Image (a) shows Ψ = 0◦ & λ = 1.0. Image (b) shows Ψ = 30◦
& λ = 0.7.

Figure 2: Example of tip cap surface mesh.

oped by NASA and uses a series of structured, overset grids to
model fluid flows. For turbulence modeling, the single equa-
tion Spalart-Allmaras model was used with curvature correc-
tions (Ref. 41). Second order temporal and spatial accuracy
was used. To assist in case setup, the CREATE-AV Helios
modeling tool was used (Refs. 42,43). The Helios code takes a
modular approach to numerical simulation where users are al-
lowed to interchange meshing and solver algorithms and thus
allows for a broader flexibility for the code to be applied to a
variety of topics (Refs. 44–46). For the hovering rotor cases,
5 startup revolutions were completed before extracting rotor
surface pressures. For the forward flight cases 8 rotor revo-
lutions were completed before extracting rotor surface pres-
sures. Startup revolutions were selected such that periodic so-
lutions were obtained. Clearly, because of these requirements
the cost of the CFD simulations is high. Each forward flight
CFD simulation required 12 hours to compute on 440 cores.
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Figure 3: Example of blade volume mesh. Shown with slices
of volume mesh at radial positions of x/R = 0.30, 0.57, and
0.86.

For the high thrust hovering rotor, 16 CFD simulations cov-
ering geometries outlined in Table 1, were completed with
a fixed collective of 8◦. These cases were used to construct
the first POD-ROM. This ROM was then validated against the
three additional validation rotor geometries outlined in Table
2. For the low thrust hovering rotor, CFD simulations were
again completed covering geometries outlined in Table 1 with
a fixed collective of 4◦. A POD ROM-based surrogate model
was constructed and validated for all three validation geome-
tries. For rotor in forward flight the same simulations were
completed with a fixed collective of 4◦ and free stream flow
of M = 0.1 moving in the positive x-axis direction. For all
CFD simulations a tip Mach number of Mtip = 0.5 was used.
For this study, no cyclic motion was defined for the blade.

Table 1: The below matrix summarizes the 16 geometries
used in this study.

Twist(deg) Ψ

0◦ 10◦ 20◦ 30◦

1.0 c1 c2 c3 c4
0.9 c5 c6 c7 c8
0.8 c9 c10 c11 c12

Taper Ratio λ 0.7 c13 c14 c15 c16

Table 2: The geometries used for validation of POD-ROM.

Geometries Twist (deg) Taper
v1 15◦ 1.0
v2 0◦ 0.85
v3 15◦ 0.85

For both the high and low thrust rotor cases, a POD ROM was
used to optimize the blade’s twist and taper ratio such that
figure of merit (FM) would be maximized. To undergo this

optimization, three blade surface grids were first generated.
The first grid was generated using the current iteration’s so-
lution for optimal twist and taper ratio. Two additional grids
were then generated, the first used a 0.1% increase in twist
while the second used a 0.1% increase in taper ratio. Solutions
for distributed pressures were solved using the derived POD
ROM from which loads were integrated and used to solve for
FM of each blade. First derivatives for FM with respect twist
and taper ratio were solved using a first order Euler approx-
imation and used to select new optimal twist and taper ra-
tio through usage of steepest descent algorithm. A criteria of
0.1% change in solution was selected as stopping condition.
An overview of the design optimization pipeline used in this
study is presented in Figure 4. In this figure, (Ψk,λ k) is the
current optimal solution, (1.001 ∗Ψk,λ k) is used to find first
derivative of FM with respect to Ψ, and (Ψk,1.001 ∗ λ k) is
used to find first derivative of FM with respect to λ . Optimal
solution used for the next step is (Ψk+1,λ k+1)

Figure 4: Overview of design optimization pipeline used in
this study.

In this study, FM was computed using Eq. 1. To compute
both coefficient of thrust, CT , and coefficient of torque, CQ,
blade distributed surface pressure solutions were numerically
integrated. For rotor in forward flight, integrated sectional
coefficients of thrust were plotted from azimuth 0◦ to 360◦.
While viscous CFD solutions were obtained in this study,
shear stresses were not utilized when computing integrated
loads for either POD ROM or CFD. Given that the objective
of this study was to provide an initial investigation of POD
ROM distributed load prediction capability for rotor blades,
expanding POD ROM to include multi-directional shear loads
was not warranted in the current work.

FM =
C3.0/2.0

T

CQ
√

2.0
(1)
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ROM APPROACH

In this section of the paper, the methodology for ROM con-
struction will be reviewed. The ROM method used in this
study consisted of two steps. First modal decomposition
method will be reviewed. Next, interpolation method used
in this study will be reviewed.

Proper Orthogonal Decomposition

The POD, which itself is a variation of the Principle Compo-
nent Analysis (PCA) (Ref. 47), was introduced as a method
for extracting a low dimensional subspace which captures the
majority of the variance, often referred to as energy, from
the full phase space (Ref. 48). While there exist numerous
formulations for POD, in this paper the snapshot method as
introduced by Sirovitch (Ref. 49) will be used. In this ap-
proach any scalar of the flow field can be represented by the
sum of the scalar’s time-average, ū(x), and n orthonormal
POD modes Φi(x) times the temporal coefficient ai(t). In
this study, surface pressure solutions were used to formulate
the snapshot matrix. The relationship is shown below, where
ai(t) =< (u(x, t)− ū(x)),ΦT

i (x)>.

u(x, t) = ū(x)+
n

∑
i=1

ai(t)Φi(x) (2)

To obtain Φi(x) the a snapshot matrix u(x, t) is first formed.
In this matrix, the row space holds spatial information while
the column space holds temporal information. The perturba-
tion matrix, u(x, t)′, is calculated by subtracting out the snap-
shot matrix’s time-average. The POD modes are then found
through a single value decomposition (SVD) of u(x, t)′, where
the subset of modes Φi are extracted from U. In Eq. 3, U con-
tains the eigenvectors for u(x, t)′ times it’s transpose, VT con-
tains the eigenvectors of the transpose of u(x, t)′ times itself
and Σ contains the singular values of the SVD.

u(x, t)′ = UΣVT (3)

The process of reducing dimensionality of the data-set down
to a low rank subspace has been described in numerous pub-
lications (Refs. 48, 50). For the present study, the process
of selecting an adequate subspace was based on energy re-
tention. For this approach, the number of modes which
must be retained is dependent on the behavior of the singu-
lar values, s, found in the diagonal of the Σ matrix. Given
that s is little more than the square of the eigenvalues of
< u(x, t)′,u(x, t)′T >, this then serves as a representation for
how much of the snapshot matrix’s energy is being captured
by each mode. The amount of energy being captured in each
mode can then be visualized by plotting the ratio of each sin-
gular value si to the sum of s denoted at s̃. The objective is

then to retain a subset of modes, n, such that the below equa-
tion is satisfied.

n

∑
i=1

si

s̄
≈ 1 (4)

Once a POD model of the form of Eq. 2 had been constructed
for the surface loads of various cases, an interpolation scheme
is needed in order to make use of these modes for intermediate
case predictions.

2-D Surface Map Interpolation

In order to produce a continuous representation of the tempo-
ral coefficients a two-dimensional mapping was constructed.
During the construction of these mappings, the objective was
to produce a continuous representation for the temporal coef-
ficients. This continuous representation was provided by re-
lating twist Ψ and taper ratio λ to the temporal coefficients
ai(t).

ai(t) = F(λ ,Ψ) (5)

Note that for the 2-D surface mapping method, it is an in-
herent requirement that the two variables selected combine to
produce a unique definition of each snapshot. In the case of
this study, selection of interpolation parameters becomes triv-
ial. By selecting λ and Ψ as the mapping variables, any loca-
tion on the snapshot matrix could be uniquely identified and
a spline surface could be fit for each mode temporal coeffi-
cients. The advantage is that this method is relatively simple,
accurate, and computationally inexpensive to setup. There is
no training requirement as in neural networks, or large matrix
inversions to make, and the user has a much greater degree of
control over how the mapping can be constructed — whether
a polynomial, linear, or logarithmic fit depending on the prior
knowledge of the problem in hand.

RESULTS AND DISCUSSION

In this section the results for CFD simulation, POD ROM
reconstruction and validation will be presented. Results are
primarily split between the three demonstration cases; high
thrust, low thrust, and forward flight. These three sections
will be further split into three additional sections showing
CFD simulation results, POD ROM reconstruction results,
and POD ROM validation results.

High Thrust Rotor

In the first scenario of POD ROM rotor blade modeling, a high
thrust rotor is used. With this demonstration case, the study
was able to first test for the most basic operation conditions
of which a POD ROM would be required to model. Thrust is
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kept high which helps convect rotors wake downstream, thus
contributing in a smaller degree of influence to the overall ro-
tor pressure distributions. Coefficient of pressure distribution
for case c4 (λ = 1.0,Ψ = 30◦) is shown in Figure 5. From
these pressure distribution, it can be seen that spanwise gradi-
ents are minimal. This allows for a relatively simple case for
a POD ROM to be derived and applied to make predictions.
Gradients are overall kept low, which typically results in fewer
modes required to reconstruct the system. This is in contrast
to low thrust rotor modeling where distributed loads vary to a
larger degree in the spanwise direction caused by the blade’s
wake being convected away at a slower rate. However, even
in the simplified case of the high thrust rotor there are still im-
portant characteristics the POD ROM must model with a lim-
ited mode count. Namely, these challenges are strong pressure
gradients at rotor’s leading edge along with a spanwise vary-
ing stagnation location. To obtain accurate predictions for CT ,
CQ, and FM these distributed loading characteristics must be
modeled with a high degree of fidelity.

Figure 5: Surface pressure coefficient distributions for a high
thrust rotor blade in hover. Blade geometry is defined by case
c4 (λ = 1.0,Ψ = 30◦).

Once all 16 blade geometries had been simulated, loads were
integrated to obtain coefficient of thrust CT , coefficient of
torque CQ, and figure of merit FM. These loads are plotted
as functions of λ and Ψ in Figure 6. Results show that for CT ,
CQ, and FM there is a nonlinear relationship with Ψ while
there is an almost linear relationship with λ . This character-
istic of having multiple variables with widely varying degrees
of influence on the system is commonplace for many practical
rotorcraft applications including hysteresis modeling, aeroe-
lasticity, controls, etc. If a multi-variable data-driven model
is to be successfully derived for rotorcraft applications it must
be capable of efficiently extracting the relationship each de-
sign variable has with rotor surface loads, whether that rela-
tionship be linear, quadratic, logarithmic etc.

(a) FM

(b)
CT

σ

(c)
CQ

σ

Figure 6: Surface plot of FM,
CT

σ
, and

CQ

σ
with respect to Ψ

and λ as computed through CFD. Results are shown for all 16
cases outlined in Table 1.
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ROM Reconstruction After completing all 16 high thrust
hovering rotor simulations, solutions for surface pressure
were compiled to form a single snapshot matrix. The POD
algorithm was then used on this snapshot matrix after which
it was iteratively determined that only 8 POD modes were re-
quired to produce mode count retention independent recon-
structs of the blade’s load distributions. In comparing load re-
construction capabilities for case c4 between Figures 5 and 7 it
can be seen that loads are being modeled with a high degree of
fidelity in comparison to CFD. Spanwise pressure distribution
is being correctly accounted for with the reduced representa-
tion. Maximum percent error between CFD and ROM surface
pressures for all 16 reconstructions was 1%.

Figure 7: Coefficient of pressure distribution for case c4 ob-
tained by POD ROM.

Once these loads are integrated it is shown that a near ex-
act representation of rotor load distribution is achieved with
a minimum mode count. All parameters of interest, namely
CT , CQ, and FM, are being accurately modeled through both
variation in Ψ and λ . It should be noted that largest relative
error during reconstruction was found for CQ reconstructions.
This deviation hints that the largest errors in reconstruction
are occurring towards the blade’s leading edge which would
be consistent with previous applications of POD ROM’s in lit-
erature. Historically, large gradients are challenging to model
through modal decomposition with minimum mode retention
counts. Yet, despite these challenges the results of this study
show that leading edge gradients are captured with sufficient
accuracy that CQ is still being modeled with a high degree
of fidelity. What remains to be shown is the capability of this
ROM to not simply make accurate reconstructions of the data-
set, but also make accurate predictions with new combinations
of Ψ and λ as outlined in Table 2 such that a design optimiza-
tion can be performed.

(a) FM

(b)
CT

σ

(c)
CQ

σ

Figure 8: Surface plot of FM,
CT

σ
, and

CQ

σ
with respect to Ψ

and λ as computed through CFD and POD ROM. Results are
shown for all 16 cases outlined in Table 1.
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ROM Validation After constructing the POD ROM and
comparing reconstructing capabilities to CFD solutions, the
study then moved to quantifying POD ROM predictive capa-
bilities for the geometries outlined in Table 2. When compar-
ing surface pressure distributions, shown in Figure 9, it was
found that with a minimum mode count the POD ROM was
capable of providing full distributed load predictions for all
three validation cases. Surface pressure predicted error was
largely limited to a narrow region on the rotor’s tip and never
exceeded 1.5% error compared to the CFD simulation.

Predicted surface pressures were then integrated to find
FM,CT , and CQ. When comparing POD ROM predicted load
coefficients to CFD it was found that for all three valida-
tion cases percent error never exceeded 1%, thus providing
strong evidence that a POD ROM can be efficiently deployed
to model a rotor blade’s full distributed load with a high de-
gree of fidelity. Summary of prediction capabilities for POD
ROM is shown in Table 3. This POD ROM was also shown
to make highly accurate predictions at minimal computational
cost. For the high thrust rotor case, surface pressures as com-
puted by CFD required 12 hours of compute time across 440
cores. Meanwhile the POD ROM was capable of making
comparable predictions of surface pressures in just 10−5 sec-
onds on a single core.

Given this massive reduction in computational expense, it be-
came possible to directly apply this POD ROM to a design
optimization of the rotor blade to derive a local maximum of
FM. To demonstrate that the POD ROM could be quickly de-
ployed for blade optimization applications the algorithm out-
lined in Figure 4 was used. In this algorithm, a POD ROM
was used for surface pressure predictions while the grid gen-
eration algorithm constructed during this study was deployed
for updating a blade grid at each iteration. Initial starting ge-
ometry was Ψ = 15◦ and λ = 0.85. Results showed that a
optimal geometry of Ψ = 21.5◦ and λ = 1.0 could be found
while taking 1 minute of compute time on a single core. A
total of 20 iterations were required to obtain the optimal so-
lution. These results show that by sampling a given design
space a POD ROM can be efficiently derived such that a low
cost and accurate model of the blade’s surface pressures can
be obtained and practically deployed.

Table 3: Summary of percent errors in coefficient of thrust,
torque, and figure of merit predictions using POD ROM.

Geometries CT CQ FM
v1 0.47% 0.62% 0.09%
v2 0.03% 0.81% 0.77%
v3 0.80% 0.84% 0.37%

(a) v1

(b) v2

(c) v3

Figure 9: Percent error distributions for POD ROM surface
pressure predictions with respect to CFD for all three valida-
tion cases.

Low Thrust Rotor

Up to this point, it has been shown how a POD ROM can
be derived for a high thrust rotor operating in hover. While
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these results provide evidence that POD ROMs can be a useful
tool when modeling specific rotor blade design spaces, there
were limitations to this specific application. As was previ-
ously identified, for high thrust rotors the wake holds a limited
influence in rotor pressure distributions, being largely held to
a narrow section of the rotor’s tip. Yet for low thrust rotors,
the wake is convected at a slower rate resulting in a stronger
influence in the rotor’s pressure distribution. Thus, through
the low thrust rotor condition this study demonstrates an in-
cremental increase in modeling complexity and it’s influence
on POD ROM’s prediction capabilities.

Figure 10: Coefficient of pressure distributions for a high
thrust rotor blade in hover. Blade geometry is defined by case
c4 in Table 1.

In addition to the more complex pressure distribution, we see
that integrated loads vary in a more complex pattern when
compared to the high thrust rotor. When observing surface
plots for FM, Figure 11, gradients with respect to Ψ are rela-
tively smooth when compared to Figure 6. In addition, for the
high thrust rotor maximum FM can continuously be found
near Ψ = 20◦ as λ goes from λ = 1.0 to λ = 0.7, as shown
in Figure 6. However, for the low thrust rotor FM, Figure 11,
it is shown to be both represented as a less smooth gradient
surface with respect to Ψ and have a varying local optimal Ψ

value as λ goes from 1.0 to 0.7. When λ = 1.0 local opti-
mal Ψ is found to be around Ψ = 10◦ while λ = 0.7 results
in a local optimal Ψ of Ψ = 30◦. These results also shown
an increase in non-linear influence for λ in the FM surface
plot. While this increase in non-linearity will not lead to dif-
ficulties in reconstruction capabilities of POD ROM, it will
ultimately create a more challenging modeling requirement
for POD ROM to produce accurate predictions.

ROM Reconstruction With all 16 CFD simulations of the
low thrust rotor completed, the study moved to first recon-
struct the simulated surface pressures with a minimum mode

(a) FM

(b)
CT

σ

(c)
CQ

σ

Figure 11: Surface plot of FM,
CT

σ
, and

CQ

σ
with respect to Ψ

and λ as computed through CFD. Results are shown for all 16
cases outlined in Table 1.
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count. It was found that POD ROM solution independence
could be achieved through retention of only 8 POD modes.
Once again, with the minimal mode retention count an excel-
lent representation of the rotor’s surface pressures could be
achieved. Results in Figure 12 show that an almost exact re-
construction of surface pressures is achieved in comparison
to Figure 7. Further observation of integrated loads for all
16 cases, as shown in Figure 13, highlight that efficient dis-
tributed load representation is achieved through POD.

Figure 12: Coefficient of pressure distribution for case c4 ob-
tained by POD ROM.

These findings provide an important insight into POD ROM
rotor modeling. Typically, when working with POD ROM’s
there are two potential ways in which a ROM will fail to gen-
erate an accurate representation. One potential failure point
is through an inability to accurately represent the subspace
through a low mode retention count. While often it is possi-
ble to extend POD mode retention count to many hundreds of
not thousands of POD modes to obtain a more accurate recon-
struction, higher mode retention counts provides a significant
modeling challenge. Initial POD modes can often be used to
extract meaningful relationships between parameters of inter-
est and a scalar of the flow field. However, later modes often
vary in a more stochastic manner, leading to significant chal-
lenges in extracting meaningful interpolations. Results shown
in this section highlight that even for low thrust rotors, an effi-
cient representation can be drawn with a limited mode count.
The second way by which a POD ROM may fail to produce
accurate predictions is if interpolation predictions can not pro-
vide meaningful results for how these modes vary.

This failure can happen if a domain of interest is both too
sparsely sampled and sufficiently non-linear. In the previous
section, it was discussed how non-linearity in the data-set was
increased for the low thrust case. In the next section, it will
be shown how this non-linearity increase affects POD ROM
prediction capabilities.

(a) FM

(b)
CT

σ

(c)
CQ

σ

Figure 13: Surface plot of FM,
CT

σ
, and

CQ

σ
with respect to Ψ

and λ as computed through CFD and POD ROM.
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ROM Validation In observing percent error in surface pres-
sure predictions for all three validation cases, two important
observations were identified. It is shown that for validation
case v1, surface pressure predictions were made with a high
level of fidelity as shown in Figure 14a. Given that case v1
only test for a change in Ψ, these results showed that POD
ROM was capable of making highly accurate predictions un-
der a variation in twist despite the noted increase in complex-
ity for the low thrust rotor case. Results in Table 4 show that
integrated load errors when predictions are made for only a
variation in Ψ remain below 0.5%.

However, the same level of surface pressure prediction accu-
racy was not achieved for validation cases v2 or v3. Results
in Figure 14b and 14c show that when accounting for a varia-
tion in taper, λ , there is a significant increase in prediction
error towards the rotor’s tip for a low thrust rotor as com-
pared to a high thrust rotor. This error results from the POD
ROM not accurately modeling how rotor tip pressure distribu-
tions will vary with λ . While surface pressure prediction er-
rors still never exceed a maximum of 1.5%, the increased area
over which error occurs leads to a significant increase in inte-
grated load error, raising FM prediction error from 0.77% and
0.37% for cases v2 and v3 of the high thrust rotor to 4.26%
and 4.25% for the low thrust rotor.

Results of the low thrust rotor case show the capability of a
POD ROM to make accurate load predictions is highly depen-
dent on how well sampled is the domain of interest. By sim-
ply varying the rotor’s collective this POD ROM is shown to
have significant deterioration in prediction capabilities. This
deterioration results not from a limitation in POD ROM re-
construction capability but rather through an under sampling
of λ in the domain of interest. To construct a more accurate
ROM, further sampling with new λ is required.

Yet, even with the limited sampling on the domain the POD
ROM is still providing reasonably accurate predictions once
accounting for the massive reduction in computational ex-
pense in evaluating each validation case. Prediction of sur-
face pressures through POD ROM are completed in 10−5 sec-
onds on a single core. In addition, results shown in Figure
11 show that local maximum for FM is found for a λ=1.0.
This implies design optimization of blade’s topology is largely
an optimization of Ψ. As such, it was still feasible that this
POD ROM could be leveraged to undergo a design optimiza-
tion. The same design optimization algorithm and initial con-
dition used for the high thrust rotor case was utilized. Results
showed that a local optimal solution for twist and taper could
be found at Ψ = 11.5◦ and λ = 1.0 while taking 1 minute
of compute time on a single core. This optimal solution was
found using 20 iterations. Despite the known limitations of
the POD ROM, this case still shows that with reasonable ac-
curacy a design space can be once again sampled and a ROM
can be derived such that design variables can be optimized.
To greater increase accuracy, further sampling of the design
space is needed with respect to λ .

(a) v1

(b) v2

(c) v3

Figure 14: Percent error distributions for POD ROM surface
pressure predictions with respect to CFD with all three vali-
dation cases.

Forward Flight

Up to this point in the study, the focus has been placed on
hovering rotor blades. Given that these cases would produce

11



Table 4: Summary of percent errors in coefficient of thrust,
torque, and figure of merit predictions using POD ROM.

Geometries CT CQ FM
v1 0.23% 0.15% 0.49%
v2 0.80% 2.94% 4.26%
v3 1.65% 1.69% 4.25%

a pressure distribution which was invariant to changes in az-
imuth, the study could limit modeling to a limited set of 16
blade pressure distributions. However, for practical imple-
mentation of POD ROMs it is essential to model cases where
blade load distribution varies with azimuth angle. As such, in
this section a POD ROM will be used for prediction of load
distribution of a rotor in forward flight.

There are numerous challenges which may arise for extending
the POD ROM to rotors in forward flight. The leading chal-
lenge could be an increase in non-linear relationship between
design variables and surface pressures. As shown in Figure
15, case c4 (λ = 1.0,Ψ = 30◦) and case c5 (λ = 0.9,Ψ = 0◦)
have widely differing CT distributions between azimuth of 0◦-
60◦ and a spanwise position up to r/R=0.50. This variation is a
result of flow separation occuring as the blade travels counter
clockwise past zero azimuth position. From Figure 15 it can
be seen that through varying of taper and twist ratio, degree to
which flow will separated will vary greatly. This flow separa-
tion and reattachment provides a significant increase in data-
set complexity which could potential exacerbate the issue of
POD ROM either not having enough sample points to making
meaningful interpolations or not being capable of represent-
ing the system with low mode retention counts. The later of
these issues will be addressed in the next section.

ROM Reconstruction After undergoing the POD algorithm
it was identified that for a rotor in forward flight, 16 POD
modes were required to obtain a mode retention count inde-
pendent solution. Reconstructions and reconstruction error
can be found in Figures 16 and Figures 17. This observation
provides two important conclusions. First through an addi-
tion of flow separation and a varying azimuth angle, energy
content in the training data-set has been expanded. This ex-
pansion in energy content has lead to an increase in required
mode retention count to obtain independent reconstructions.

The second important observation is that despite the expan-
sion in energy content, POD is shown to be capable of rep-
resenting the full rotor disks of all 16 geometries with only
16 modes. For accurate reconstructions, modes retained were
limited to modes with reasonably smooth variation with re-
spect to Ψ and λ . These results highlight that the POD algo-
rithm appears to be exceptionally well suited for applications
modeling periodic pressure distributions of rotors. Maximum
percent error of CT found for reconstructions of all 16 geome-
tries was found to be below 0.1%. In the following section,
the effect of increased distributed load complexity on POD

(a) c4

(b) c5

Figure 15: Contours of rotor’s CT as the blade rotates from
an azimuth of 0◦ to 360◦. Incoming flow is entering from the
180◦ direction while blade is rotating counter clockwise.

ROM prediction capabilities will be demonstrated.

ROM Validation Both prediction and error contours of the
rotor disk for all 3 validation geometries are summarized in
Figures 18 and 19. The first important observation is that POD
ROM is making highly accurate predictions for CT across the
rotor’s complete cycle. Both separation and reattachment of
flow is captured with a high degree of accuracy within each
validation case. Of additional importance is the observation
that despite large variations in rotor disk CT contours, the
POD ROM is still shown capable of making highly accu-
rate predictions with maximum percent error remaining below
0.5% for all 3 cases.

This observation underlines the two critical takeaways from
this study. First, if a modal decomposition algorithm is to
be deployed for surface pressure modeling it must be capable
of efficiently representing a complex domain. In this study, it
has been shown that for a wide variety of operating conditions
the POD algorithm has shown to perform exceptionally well
at representing rotor surface pressures with minimum mode
retention counts.
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(a) POD Reconstruction for c4

(b) POD Error for c4

Figure 16: Contours of POD reconstruction and error for CT
as the blade rotates from an azimuth of 0◦ to 360◦. Incoming
flow is entering from the 180◦ direction while blade is rotating
counter clockwise.

The second observation is that for application of POD ROM
to rotor surface pressure modeling, a sub-space must be suf-
ficiently sampled such that the influence of design variables
on load distributions is fully captured. It is important to note
that prior knowledge of a system, particularly when applied to
UAM aircraft, may be limited. As such, prior understanding
of required sample size may not be held and an iterative ap-
proach must be taken to find sufficient sampling size required
for a POD ROM. When investigating the high thrust rotor, this
study found that 16 samples were sufficient to providing near
exact predictions for surface pressures. Yet, when consider-
ing the low thrust rotor it was identified that while efficient
reconstructions could be made through POD, more sampling
conditions were required for accurate interpolations. This was
due to an increase in design space complexity with respect to
λ .

For the case of rotor in forward flight it was found that, simi-
lar to high thrust rotors, the design space could be represented
exceptionally well with the 16 sampling cases. Yet, a deeper
analysis of POD modes demonstrates that the total number of

(a) POD Reconstruction for c5

(b) POD Error for c5

Figure 17: Contours of POD reconstruction and error for CT
as the blade rotates from an azimuth of 0◦ to 360◦. Incoming
flow is entering from the 180◦ direction while blade is rotating
counter clockwise.

CFD sampling cases required to model the rotor’s disk could
be further reduced. Results for both POD ROM predictions
and errors when using just 4 sampling cases (cases c1,c4,c13,
and c16) is shown in Figures 20 and 21. In Figure 22, vari-
ation of POD modes 1, 2, and 8 with respect to Ψ and λ are
plotted. For the first 2 POD modes, a comparable represen-
tation of mode variation can be made through both linear and
spline based interpolations. This information means that high
energy POD modes for rotor in forward flight are largely lin-
ear varying modes in this specific design space. It is not until
mode counts 8 and up that mode relationship to design vari-
ables becomes more non-linear. Yet, given disparity in energy
content between initial modes and later modes it can be shown
that through only sampling the 4 cornering locations of the
design space, thus producing only a linear mapping, a highly
accurate model can still be produced. In Figure 21, errors are
presented for all 3 validation cases once only 4 sampling con-
ditions are used. Maximum percent error for these cases is
1.5%. POD ROM evaluation of rotor surface pressures across
the entire periodic motion took 0.6 seconds on a single core.
CFD simulation required 20 hours on 440 cores.
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(a) Case v1 Prediction

(b) Case v2 Prediction

(c) Case v3 Prediction

Figure 18: Contours of POD ROM prediction using 16 sample
cases for rotor’s CT as the blade rotates from an azimuth of 0◦

to 360◦. Incoming flow is entering from the 180◦ direction
while blade is rotating counter clockwise.

(a) Case v1 Error

(b) Case v2 Error

(c) Case v3 Error

Figure 19: Contours of error in POD ROM predictions using
16 sample cases for rotor’s CT as the blade rotates from an
azimuth of 0◦ to 360◦. Incoming flow is entering from the
180◦ direction while blade is rotating counter clockwise.
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(a) Case v1 Prediction

(b) Case v2 Prediction

(c) Case v3 Prediction

Figure 20: Contours of POD ROM prediction using 4 sample
cases for rotor’s CT as the blade rotates from an azimuth of
0◦ to 360◦. Incoming flow is entering from the 180◦ direction
while blade is rotating counter clockwise.

(a) Case v1 Error

(b) Case v2 Error

(c) Case v3 Error

Figure 21: Contours of error in POD ROM predictions using
4 sample cases for rotor’s CT as the blade rotates from an az-
imuth of 0◦ to 360◦. Incoming flow is entering from the 180◦

direction while blade is rotating counter clockwise.
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(a) POD mode 1

(b) POD mode 2

(c) POD mode 8

Figure 22: Surface plots showing both linear and spline rep-
resentation of POD modes 1, 2, and 8.

CONCLUSIONS

In this study a POD ROM was applied to 3 demonstration
cases for distributed pressure load predictions. Namely, these
cases were high thrust hovering rotor, low thrust hovering ro-
tor, and rotor in forward flight. For each of these cases, blade

twist and taper ratio was varied such that 16 blade geometries
were used. OVERFLOW CFD simulation solutions of these
blades were then used to derive an interpolation based POD
ROM. All three POD ROMs were shown to produce highly
accurate predictions for surface pressure distributions. For
both high thrust rotor and forward flight ROMs, maximum
integrated load coefficient prediction error was below 1%. Er-
ror was increase for low thrust rotor ROM, but still limited to
below 4.3%. When POD ROM was implemented, computa-
tional expense was significantly decreased. For hovering ro-
tor, expense was reduced from 12 hours on 440 cores for CFD
simulation to just 10−5 seconds on a single core for ROM pre-
dictions. For forward flight rotor, expense was reduced from
20 hours on 440 cores to 0.6 seconds on a single core when
POD ROM was implemented. Expense was reduced to the
extend that a design optimization became feasible for the high
thrust and low thrust rotor cases. Results demonstrated how a
POD ROM could be efficiently derived and deployed to model
a complex design space to a high degree of fidelity and lever-
aged to quickly find optimal design points within the space.

While the present work provides strong evidence for feasible
application of POD ROMs to rotorcraft, there are still several
future steps remaining for understanding POD ROM limita-
tions in rotorcraft modeling. POD ROM modeling of more
realistic geometries should be attempted. Future steps should
also be taken to include rotors operating in multi-rotor config-
urations. Additionally, CFD simulations should be completed
using more complex operating conditions, such as pitch up
maneuvers and flight in turbulent flow patterns. By includ-
ing these two modeling choices a more broad range of length
scales will be introduced into the training data-set thus testing
POD ROMs capability for efficiently extracting meaningful
information in more complex domains.
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