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Abstract Recent reports have highlighted the need for improved observations10

of the boundary layer. In this study, we explore the combination of ground-11

based active and passive remote sensors deployed for thermodynamic profiling12

to analyze various boundary-layer observation strategies. Optimal-estimation13

retrievals of thermodynamic profiles from Atmospheric Emitted Radiance In-14

terferometer (AERI) observed spectral radiance are compared with and with-15

out the addition of active sensor observations from a May–June 2017 obser-16

vation period at the Atmospheric Radiation Measurement–Southern Great17

Plains Site. In all, three separate thermodynamic retrievals are considered18

here: retrievals including AERI data only, retrievals including AERI data and19

Vaisala water vapour di↵erential absorption lidar data, and retrievals includ-20

ing AERI data and Raman lidar data. First, the three retrievals are compared21

to each other and to reference radiosonde data over the full observation period22

to get a bulk understanding of their di↵erences and characterize the impact23

of clouds on these retrieved profiles. These analyses show that the most sig-24

nificant di↵erences are in the water vapour field, where the active sensors are25

better able to represent the moisture gradient in the entrainment zone near26

boundary layer top. We also explore how di↵erences in retrievals may impact27

results of applied analyses including land–atmosphere coupling, convection in-28

dices, and severe storm environmental characterization. Overall, adding active29

sensors to the optimal-estimation retrieval showed some added information,30
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particularly in the moisture field. Given the costs of such platforms, the value31

of that added information must be weighed for the application at hand.32

Keywords Boundary-layer observation · Remote sensing · Thermodynamic33

retrievals34

1 Introduction35

Widely deployed operational observation networks in the United States rou-36

tinely monitor near-surface conditions (e.g., automated surface observing sys-37

tem, or ASOS, networks and mesonets) and conditions a kilometre above the38

surface and further aloft (e.g., weather radar and satellite observations). In39

the intervening layer from the surface to a few kilometres above it—in other40

words, the boundary layer—routine observations are few and far between. One41

common observation dataset collected in this portion of the atmosphere comes42

from balloon-borne packages, or radiosondes. However, operational radiosonde43

stations are located 500-km apart and only launched twice a day (Melnikov44

et al. 2011). Another dataset is the aircraft meteorological data relay, or AM-45

DAR, data, however these are primarily temperature and wind with few water46

vapour observations—only about 10% of aircraft have water vapour observa-47

tion capabilities (Moninger et al. 2010; Zhang et al. 2019). These profiles are48

not collected at all airports, and are ‘flights of opportunity’, resulting in poor49

diurnal sampling even at these airports. An obvious gap exists.50

In recent decades, the need for improved observations of the boundary51

layer to serve the growing needs of society has become apparent. Over the52

past ten years, the National Research Council has published multiple Na-53

tional Academies of Science reports that partially attribute limits of current54

knowledge of lower-atmospheric phenomena to limitations in observing capa-55

bilities and call for improved observations of temperature, humidity, wind, and56

cloud characteristics in and near the boundary layer. In particular, these re-57

ports call for a new ground-based network of these boundary-layer observations58

(National Research Council 2009, 2010). Wulfmeyer et al. (2015) made similar59

recommendations in a review of remote sensing of the lower-troposphere. More60

recently, the 2017–2027 Decadal Survey (National Academies of Sciences, En-61

gineering, and Medicine 2018) has instigated interest in possible space-based62

solutions for observing the planetary boundary layer (PBL). Although such63

a solution currently has many physical and financial limitations (e.g., cloud64

cover, large satellite footprints, low signal-to-noise, expense), a space-based ob-65

serving system would be informed and complemented by ground-based assets.66

The wide variety of solutions being pursued suggests that thorough knowl-67

edge of instrument synergy will be necessary to consider when investing in68

any PBL-oriented observing systems.69

The literature suggests that platforms combining thermodynamic and wind70

observation capabilities may be most useful for many applications (e.g., Har-71

tung et al. 2011; Otkin et al. 2011). Several such platforms have been operating72

in the U.S. for many years. These include fixed-site observatories such as the73
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Table 1 Mobile multi-instrument boundary layer profiling systems.

Platform Citation

National Center for Atmospheric Research
Integrated Sounding System Parsons et al. (1994)
NCAR ISS
University of Alabama in Huntsville
Mobile Integrated Profiling System and Karan and Knupp (2006)
Mobile Doppler Lidar System Knupp et al. (2009)
MIPS; MoDLS Wingo and Knupp (2015)
University of Wisconsin
SSEC Portable Atmospheric Research Center Wagner et al. (2019)
SPARC
University of Oklahoma/NOAA – NSSL
Collaborative Lower Atmospheric Mobile Profiling Systems Wagner et al. (2019)
CLAMPS-1/CLAMPS-2

Department of Energy Atmospheric Radiation Measurement Southern Great74

Plains site (Sisterson et al. 2016), as well as mobile platforms such as those75

listed in Table 1. Such boundary-layer profiling systems provide observations76

of thermodynamic and kinematic variables every few minutes that can inform77

understanding of boundary-layer structure, convection initiation, severe storm78

environments, and land–atmosphere interactions, which are all sensitive to pro-79

files of wind, temperature, and moisture in the boundary layer and above. For80

example, standard CLAMPS (see Table 1) operating modes provide 5-minute81

resolution for temperature and moisture observations and 2-minute resolution82

for wind observations.83

In recent years, weather sensing uncrewed aircraft systems (WxUAS) have84

emerged as a potential observation platform to study the boundary layer (e.g.,85

Koch et al. 2018; Kral et al. 2020; de Boer et al. 2020; Segales et al. 2020).86

WxUAS have been shown to perform just as well or better than ground-based87

remote sensors in some scenarios, though improvements could still be made88

(Bell et al. 2020). Regulatory challenges hinder incorporation of autonomous89

systems into the National Airspace System. Ground-based profilers can pro-90

vide long-term continuous observations both in harsh or remote environments91

(where maintenance of the WxUAS could be di�cult) and highly populated92

areas (where operating WxUAS over people poses liability). Additionally, most93

ground-based profilers can already operate autonomously, which is at this94

point only a burgeoning capability of WxUAS in the United States. Even95

as WxUAS technology development continues, an e↵ective solution to filling96

the boundary-layer data gap likely includes both WxUAS and ground-based97

profiling platforms.98

In pursuing an observation framework upon which a national network could99

be designed, it is important to consider how various instruments may be able100

to work synergistically to maximize benefits while minimizing cost. This strat-101

egy was first explored in an observation simulation system experiment (OSSE)102

framework (Löhnert et al. 2009; Otkin et al. 2011; Hartung et al. 2011). Re-103

cently, improvements to convective-scale forecasts have been found from as-104
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similating small network-style deployments of ground-based thermodynamic105

and kinematic profilers into mesoscale numerical weather prediction models106

(Degelia et al. 2019; Hu et al. 2019; Coniglio et al. 2019). Given an emerg-107

ing market of active remote sensors to perform thermodynamic profiling, an108

important avenue to explore is multi-instrument retrievals. Variational-based109

physical retrievals, such as the AERIoe algorithm (Turner and Löhnert 2014),110

can integrate a variety of instruments with various strengths and weaknesses111

to produce a better retrieved atmospheric profile than one instrument alone112

(Turner and Blumberg 2019).113

In this work, we explore the combination of active and passive remote114

sensors deployed for thermodynamic profiling with the intent of adding to a115

growing body of scientific literature analyzing various boundary-layer observa-116

tion strategies. By adding active remote sensor observations into a framework117

commonly applied for passive profiling, we aim to understand how the result-118

ing profiles change and what impacts those changes have. To explore these119

impacts, we conduct a variety of scientific analyses using these retrieved data120

to determine if changed profiles change results.121

2 Data122

This study utilizes data collected during an evaluation experiment at the De-123

partment of Energy’s Atmospheric Radiation Measurement (ARM) Southern124

Great Plains (SGP), which is a long-operational site located in north-central125

Oklahoma, surrounded by mainly flat open pasture and rangeland (Sisterson126

et al. 2016; 36.605oN, 97.486oW). In addition to instrumentation typically127

located at the site, a di↵erential absorption lidar (DIAL) was deployed for128

evaluation against ARM-SGP instrumentation from 15 May to 12 June 2017.129

A summary of this evaluation e↵ort can be found in Newsom et al. (2020).130

Here, we evaluate the utility of each thermodynamic profiler used in a com-131

bined manner to produce more confident atmospheric profile retrievals.132

2.1 Atmospheric Emitted Radiance Interferometer133

The Atmospheric Emitted Radiance Interferometer (AERI) is a passive remote134

sensor similar to a microwave radiometer, except it observes downwelling radia-135

tion in the mid-infrared portion of the spectrum that is sensitive to the vertical136

thermodynamic structure of the atmosphere. The AERI measures downwelling137

infrared radiation every 20 s from 3.3 to 19 µm in wavelength (Knuteson et al.138

2004). After applying a noise filter (Turner et al. 2006) and averaging the139

radiances to 2-min intervals, the spectral radiances are processed through an140

optimal-estimation-based retrieval algorithm, discussed below. Blumberg et al.141

(2017a) showed that the high temporal resolution of the system is useful in142

detecting rapid changes in stability (in Great Plains environments).143



Title Suppressed Due to Excessive Length 5

2.2 Raman Lidar144

Since 1996, an automated Raman lidar (RLID) has been operated by the ARM145

program profiling atmospheric water vapour, aerosols, and clouds (Turner et al.146

2016). RLID is an active remote sensor which transmits a 300 mJ pulse of147

laser energy (355 nm) vertically, and detects backscatter at the transmitted148

wavelength and at wavelengths associated with Raman scattering from water149

vapour (408 nm) and nitrogen (387 nm). Profiles of backscatter are collected150

with 7.5 m vertical resolution every 10 seconds (Goldsmith et al. 1998; New-151

som et al. 2009). After some quality assurance measures are applied, the ratio152

of the water vapour to nitrogen signals is computed, which is expected to be153

proportional to the water vapour mixing ratio (Turner and Goldsmith 1999).154

This relationship and some calibration steps (employing collocated radiosonde155

launches) are used to produce value-added products containing atmospheric156

thermodynamic profiles. For the analyses herein, RLID data with 10 min tem-157

poral and 75 m vertical resolution are used1.158

2.3 Water Vapour Di↵erential Absorption Lidar159

Ground-based DIAL water vapour observations were made as early as the160

1990s (Wulfmeyer 1999). In recent years, turnkey DIAL platforms have been161

developed for the purpose of ground-based profiling of boundary-layer ther-162

modynamics, specifically water vapour. This development work has included163

e↵orts by Montana State University and the National Center of Atmospheric164

Research (Spuler et al. 2016; Weckwerth et al. 2016), Tokyo Metropolitan Uni-165

versity (Le Hoai et al. 2016), and Vaisala (Roininen and Münkel 2016; Newsom166

et al. 2020). DIAL instruments provide measurements of the vertical profile167

of a trace gas concentration by transmitting two or more wavelengths of laser168

energy. Changes in molecular absorption at these di↵erent wavelengths (due to169

the spectroscopic properties of the gas) result in di↵erences in attenuation at170

di↵erent laser frequencies. These laser wavelengths are typically chosen to be171

very near each other spectrally, so that other possible atmospheric properties172

that could lead to di↵erences in the observed attenuated backscatter signal173

(e.g., aerosol optical properties) are assumed to be similar enough that they174

can be ignored. Narrowband DIAL systems wherein the output laser energy175

is monochromatic at each of the desired wavelengths, such as the Spuler et al.176

(2016) systems, are able to directly provide calibrated profiles of that trace177

gas (e.g., water vapour) without the need for external calibration. However,178

broadband DIAL systems, such as the system built by Vaisala and described in179

Newsom et al. (2020), transmit the laser energy over a finite spectral range at180

each ‘characteristic’ frequency and thus require an external calibration source.181

This study will use the Vaisala water vapour DIAL (hereafter wvDIAL), which182

1 While the RLID can provide partial profiles of temperature (Newsom et al. 2013) those
data are not used in the AERIoe retrieval described in Sect. 2.4, since the comparison was
relative to wvDIAL.
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was calibrated using the built-in in situ humidity sensor at the surface (New-183

som et al. 2020).184

2.4 AERIoe185

As mentioned above, spectral radiances observed by the AERI (after noise186

filtering, see Turner et al. 2006, and 2-min averaging) are processed through187

an optimal-estimation-based retrieval algorithm called AERIoe, which is de-188

scribed in Turner and Löhnert (2014). AERIoe obtains estimates of the vertical189

profile of temperature, T , and water vapour mixing ratio, WVMR, as well as190

the cloud liquid water path and mean cloud e↵ective radius in the column.191

The retrieval is constrained in the middle to upper troposphere by a first192

guess based on climatological mean conditions for the region derived from ra-193

diosonde archived data, but the final retrievals are thought to be insensitive to194

the particular first-guess profile that is used (Turner and Löhnert 2014). Alone,195

AERI spectra processed through AERIoe produce retrieved profiles that lose196

vertical resolution rapidly with height and contain far fewer independent pieces197

of information than what can be obtained from in situ methods such as ra-198

diosondes (see Turner and Löhnert 2014 Fig. 7d, f). However, the information199

content in the AERI observations, which may have 4–8 independent pieces200

of information depending on the environment, is much higher than for other201

platforms such as microwave radiometers with only 2–4 independent pieces of202

information (Löhnert et al. 2009; Turner and Löhnert 2014; Blumberg et al.203

2015).204

The retrieval itself is an ill-posed problem; many di↵erent thermodynamic205

solutions can produce the radiance observations that were measured. Recent206

improvements to AERIoe have allowed more types of observations to be pro-207

vided as input to the retrieval, as long as there is a forward model that can208

convert between the state space—which describes the atmospheric state—and209

observation space–which is what the platform observes; in the case of the210

AERI, spectral radiances (Turner and Blumberg 2019; Turner and Löhnert211

2020). In essence, this forces the retrieval to find a solution that not only212

agrees with the radiance observations, but is also within the uncertainty of213

the additional observations. Due to the rapid drop o↵ of independent data214

points in the middle troposphere when only using AERI spectra in the re-215

trieval, NOAA Rapid Refresh model analysis (Benjamin et al. 2016) profiles216

are used to constrain the retrieval above 4 km, given their hourly availability.217

Other numerical model output could be used here since generally we expect—218

due to modern data assimilation methods and less horizontal variability—219

reasonable accuracy in mid-troposphere model analyses. Since ground-based220

sensors have little sensitivity above the boundary layer, we rely on these anal-221

yses to improve the quality of the retrieved profile for integrated or otherwise222

profile-estimated quantities. Additionally, in situ surface observations are used223

to constrain the near surface part of the retrieval. When available, microwave224

radiometer brightness temperatures or other remote sensor observations can be225
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included in the retrieval. This capability to include additional remote sensors226

is leveraged in this study.227

Here we include additional observations from active thermodynamic re-228

mote sensors, or more specifically lidar water vapour profilers, as constraints229

in the AERIoe retrieval in order to evaluate changes in retrieved thermody-230

namic profiles and the resulting impacts on subsequent products and analyses.231

Improving the accuracy of the retrieved water vapour profile by adding lidar232

water vapour profiles as input into the retrieval algorithm allows the algo-233

rithm to use the temperature sensitivity of the water vapor bands to improve234

the temperature profile (Turner and Löhnert 2020). Observations were pro-235

cessed through the AERIoe algorithm for the entire period with AERI data236

only (hereafter noted as AERIonly), AERI data constrained by RLID observa-237

tions (hereafter noted as AERIrLID), and AERI data constrained by wvDIAL238

(hereafter noted as AERIvDIAL). In each instance, the AERIoe retrieval was239

performed with the same settings. These retrievals have 5-min resolution, use240

a prior estimate based on a 30-year climatology of radiosondes released from241

the SGP site, and include NOAA Rapid Refresh temperature and humidity242

profiles as a constraint from 4–10km. The retrievals are also constrained by243

including nearby microwave radiometer brightness temperature observations,244

surface meteorology observations, and observed cloud base heights. The im-245

provements to retrievals that include such data in the observation vector are246

detailed in Turner and Blumberg (2019).247

2.5 Radiosondes248

Balloon-borne radiosondes have been launched from the ARM-SGP site since249

1992, providing in situ measurements along vertical profiles of both the ther-250

modynamic state of the atmosphere, and the wind speed and direction. At251

present, radiosondes are typically launched from this location four times daily252

valid at 0600, 1200, 1800, and 0000 UTC with occasional additional releases253

during intensive field campaigns. During the period of interest for this work,254

109 Vaisala RS41 model radiosondes were launched at the SGP site between255

0532 UTC on 16 May 2017 and 1726 UTC on 12 June 2017. Assuming a256

nominal 5 m s�1 ascent rate of the balloon and noting that the radiosonde257

takes a measurement every 2 s, data should have a vertical resolution of ap-258

proximately 10 m. WVMR values are calculated from dew point temperature259

and pressure reported by the post-processed radiosonde observations using260

the empirical approximation for saturation vapour pressure in Bolton (1980).261

Radiosonde temperature and WVMR in the range of 0–4 km a.g.l. are then262

linearly interpolated in the vertical to match the same altitude bins as the263

AERIoe retrievals. To ensure direct comparisons, the time stamp of each ra-264

diosonde altitude bin is iteratively matched with the nearest AERIoe profile265

time stamp. This is necessary as the post-processed AERIoe profiles are e↵ec-266

tively instantaneous with 5 min time resolution, whereas the radiosonde can267
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take anywhere from 10–15 min to traverse the same altitudes observed by the268

ground-based remote sensors.269

3 Bulk Analysis270

In order to understand what impacts the inclusion of active sensors may have271

on the retrieved thermodynamic profiles, we present a few sets of analyses272

considering the full 15 May to 12 June 2017 period. First, retrievals including273

di↵erent sensors will be compared to one another to understand when and274

where di↵erences may be apparent. Next, all retrievals are evaluated against275

radiosondes as a common standard. Finally, retrieval-radiosonde comparisons276

are considered in cloudy and cloud-free conditions to evaluate if sensitivity to277

clouds becomes more or less significant with various sensors included.278

3.1 Retrieval Intercomparisons279

3.1.1 Relative Di↵erences280

In order to establish the overall impact of adding the RLID and wvDIAL to281

the retrieval, we will first examine the relative di↵erences in T and WVMR of282

retrievals including active sensors compared to the base passive-only retrieval.283

Figures 1 and 2 show the mean di↵erences between the AERIonly retrieval and284

the AERIrLID and AERIvDIAL retrievals, respectively, for the full analysis285

period. Both active-inclusive retrievals result in small impacts on the T profile286

in a mean sense, with average di↵erences at all levels being less than 0.5 �C287

(Figs. 1 and 2). The standard deviation of the di↵erences grows with height288

up to 1.5 km, which is expected since the AERI still su↵ers from a lack of289

information at higher altitudes. Above 1.5 km, the standard deviation of the290

di↵erences (especially in the water vapour field) is approximately constant.291

This is also expected due to the lack of AERI information at higher altitudes.292

However, there are some interesting features that can be seen between 100293

and 300 m in the individual points (grey markers) in both the AERIrLID and294

AERIvDIAL temperature retrievals. Both show some sort of ‘inflection’ point295

at 200 m. The di↵erences associated with the AERIrLID retrieval trend warm296

below this inflection point and cool above it, but no such trends are apparent297

in the AERIvDIAL retrieval. The source of these features is quite unclear and298

will require more detailed analysis in future work.299

The largest di↵erences in WVMR occur from 1–1.5 km a.g.l. (Fig. 1 and300

2). Given this is a fairly typical boundary-layer height (see, for example, the301

Krishnamurthy et al. 2020 analysis of SGP boundary-layer heights), this could302

suggest that the RLID and wvDIAL help the retrieval better capture the303

moisture gradient in or near the entrainment zone. The AERIrLID retrieval304

di↵ers more from AERIonly retrieval than the AERIvDIAL retrieval, with305

mean di↵erences of up to 0.75 g kg�1 occurring in the 1–1.5 km layer. In306
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Fig. 1 This shows the profile of the di↵erences between the AERIrLID retrieval and AERI-
only retrievals for T (a) and WVMR (b) at each retrieved level. The red points show the
mean di↵erence while the grey points are the individual di↵erences. The errorbars indicate
the standard deviation of the di↵erences

comparison, the AERIvDIAL only di↵ered in the mean by up to 0.25 g kg�1.307

This makes some sense as the wvDIAL data were commonly limited to 1308

km (Newsom et al. 2020; see Figs. 7 and 8). This absence of wvDIAL data309

means that AERIonly and AERIvDIAL are often using e↵ectively identical310

information in that layer. The AERIrLID retrieval also tends to be drier below311

1 km and above 2 km.312

3.1.2 Time–Height Di↵erences313

Given the variable structure of the boundary layer through the diurnal cycle,314

it is important to evaluate how the di↵erences change as a function of time.315

Figure 3 shows the mean di↵erence of T and WVMR in a time–height cross-316

section. While there is little signal in the T field (Fig. 3a, c), there is a clear317
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Fig. 2 As in Fig. 1, but for the AERIvDIAL retrieval

pattern to the di↵erences in the WVMR fields, especially in the AERIrLID318

retrieval. This pattern appears to follow the typical pattern of a growing atmo-319

spheric boundary layer (e.g., Stull 2012) during the 1400–2000 UTC period.320

Sunrise during the measurement period occurs at approximately 1100 UTC,321

while sunset occurs around 0100 UTC. Starting at 0900 UTC, both the AERIr-322

LID and AERIvDIAL retrievals have a period where they are more moist than323

the AERIonly retrieval near the surface. This could be the moisture surge324

which has been documented in the early morning hours (e.g., Blumberg et al.325

2017a; Chilson et al. 2019). As seen in the Sect. 3.1.1, later in the day the326

AERIrLID and AERIvDIAL retrievals are more moist in the layer from 0.5 km327

to 1.5 km, before becoming drier than the base retrieval above this layer. The328

overall shape is reminiscent of the classical idealized boundary-layer growth329

model, with the boundary layer growing with time after the sun rises. This330

further supports the suggestion that the AERIrLID and AERIvDIAL runs are331

representing the moisture gradient in the entrainment zone di↵erently than332
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Fig. 3 Mean di↵erence of T and WVMR shown in a time-height cross-section comparing
the AERIonly retrieval to AERIrLID (upper panels) and AERIvDIAL (middle panels). The
mean potential temperature and WVMR from the same period are shown on the bottom
panels. The composites use data from 15 May 2017 to 12 June 2017. The vertical dashed
lines show the approximate sunset and sunrise times
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the AERIonly version. It could be that the active sensors are better able to333

capture moisture gradients (since there is less smoothing due to the lack of334

information at higher altitudes) and this results in better represented moisture335

gradients in the retrieval.336

3.1.3 Correlation Matrix Di↵erences337

While evaluating the derived T and WVMR profiles is useful from a more338

operational standpoint, it is also beneficial to take advantage of the retrieval’s339

posterior covariance matrix. The ideal posterior covariance matrix is one where340

all the o↵-diagonal components are zero. This implies that the retrieval has341

enough information in the observations for each level such that it does not have342

to rely on the prior covariance matrix to determine a solution (Turner and343

Blumberg 2019). The posterior covariance matrices from a selected retrieval344

time were converted to correlation matrices and are shown in Fig. 4.345

The AERIoe-retrieved posterior correlation matrices of the AERIrLID and346

AERIvDIAL both exhibit improvements, namely by reducing the magnitude347

of the o↵-diagonal correlation values, over the AERIonly retrievals, most no-348

tably in the water vapour field. The addition of water vapour data from the349

lidar shows little impact on the temperature field in terms of the level-to-level350

covariance. Regarding the correlated error in the water vapour retrievals, the351

AERIrLID has the most improvement, with data below 2 km being mostly352

independent. The level-to-level correlations above 2 km are similar in shape353

to those in Turner and Blumberg (2019), though slightly larger in magnitude.354

While not as drastic as the AERIrLID retrieval, the AERIvDIAL retrieval also355

shows improvement in the posterior correlations, especially below 1 km.356

In Sect. 3.1, we examined the relative di↵erences between the three re-357

trievals in di↵erent ways: the bulk di↵erences with height (Sect. 3.1.1), the358

di↵erences in time and height (Sect. 3.1.2), and the relative di↵erences in the359

posterior correlation matrices (Sect. 3.1.3). These sections show that adding360

other measurement types into the retrieval does produce di↵erences that may361

be related to physical phenomena. However, these di↵erences do not provide362

information about ‘truth’ or accuracy.363

3.2 Comparison with Radiosondes364

To evaluate the performance of the AERIoe retrievals relative to a common365

standard, we consider all 109 SGP radiosonde profiles described in Sect. 2.5 as366

a baseline. Comparisons include data below 4 km a.g.l., with statistics sum-367

marized in Table 22. In general, there is robust statistical agreement between368

the radiosonde observations and AERIoe retrieval profiles for both T (Fig. 5a–369

c; Pearson correlation coe�cient R
2
> 0.98 for all) and WVMR (Fig. 5d–e;370

R
2
> 0.92 for all). The AERIrLID retrieval (Fig. 5b) performed the closest to371

2 Cloudy scenes were not controlled for in this analysis as those comparisons are reserved
for Sect. 3.3.
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Fig. 4 Representative posterior correlation matrices for the AERIrLID (a–b),
AERIvDIAL(c–d), and AERIonly (e–f) retrievals. The first column (a, c, e) contains cor-
relation matrices for T while the second column (b, d, f) contains correlation matrices for
WVMR. These matrices are from 31 May 2017 at 0245 UTC
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Fig. 5 Two-dimensional histograms comparing AERIonly (a and d), AERIrLID (b and e),
and AERIvDIAL (c and f) temperature (a, b, c) and water vapour mixing ratio (d, e, f)
retrievals to collocated radiosonde observations at levels below 4 km a.g.l. Temperature and
WVMR are binned by 0.5�C and 0.5 g kg�1, respectively. Also included on each panel are
the root mean square di↵erences (RMSD; in respective units) and Pearson correlation co-
e�cient (R2) between each observational technique. These values are reproduced in Table 2
for clarity

Table 2 Root mean square di↵erences (RMSD; in respective units) and Pearson correlation
coe�cient (R2) for each retrieval relative to contemporaneous radiosonde observations in
the 0–4 km a.g.l. layer.

Retrieval Temperature WVMR

RMSD (�C) R
2

RMSD (g kg�1) R
2

AERIrLID 1.45 0.9824 1.03 0.9640
AERIvDIAL 1.48 0.9817 1.27 0.9439
AERIonly 1.52 0.9807 1.45 0.9272

the radiosonde temperature observations with a root mean squared di↵erence372

(RMSD) of 1.45�C and correlation coe�cient of 0.9824 being the lowest and373

highest, respectively, of the three set-ups. The AERIvDIAL and AERIonly re-374

trievals (Fig. 5a, c) follow closely behind. Comparisons for WVMR follow the375

same order of similarity as for T : AERIrLID (Fig. 5e) performed the closest,376

with RMSD of 1.03 g kg�1 and correlation coe�cient of 0.9640. AERIvDIAL377

(Fig. 5f). AERIvDIAL and AERIonly followed in that order, with increasing378

RMSD and decreasing R
2 as shown in Table 2.379

Since the spread in the bulk comparison statistics for the three retrievals in380

both T and WVMR is relatively small, it is insightful to examine performance381

as a function of height (Fig. 6). For example, the spread in T (Fig. 6a) as382

indicated by the interquartile range (IQR) is relatively large for all retrievals383
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Fig. 6 Median di↵erences from the radiosonde observations in T (a) and WVMR (b)
versus altitude a.g.l. for the three di↵erent retrievals (the legend in (a) is valid for all four
panels). The interquartile ranges of T (c) and WVMR (d) are also included to emphasize
the variability in each retrieval

close to the ground, reaches a minimum around 500 m, and generally increases384

with height, again reaching a maximum around 3000 m. While the median385

di↵erences for all three retrievals track closely with altitude, it is apparent386

that the AERIrLID specifically compares the best above 2250 m, which is387

likely the basis for its leading performance in a bulk sense. Radiosonde-retrieval388

comparisons binned by radiosonde launch time (not shown) suggest relative389

maxima in median di↵erences and IQR near the surface may be related to390

nocturnal boundary layers (0060 UTC and 0012 UTC median di↵erences are391

largest near the surface). However, given radiosondes can also be imperfect392

sensors and require surface input data, it is hard to draw conclusions from393

this dataset alone.394

The comparisons versus height for WVMR (Fig. 6b) are more pronounced395

than those for T . There is again a pronounced spread between the di↵erences396

for each retrieval as compared to the radiosondes in the lowest 300 m that397

decreases vertically until around 500 m. In this surface to 500 m layer, the398

median di↵erences for all three retrievals are within 0.25 g kg�1 in magnitude.399

Between 500 and 2000 m, the AERIonly and AERIvDIAL retrievals increase400

in median di↵erence and IQR spread with height, whereas the AERIrLID401

remains relatively small for both. This layer is likely the predominant cause402
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for the AERIrLID performing the strongest in the bulk analysis (Fig. 5e). This403

makes sense as the 10-min RLID WVMR product has very good signal-to-404

noise ratio in this layer. Above 2500 m, all three retrievals maintain a roughly405

constant WVMR bias with height compared to the radiosondes, although the406

IQR tends to decrease.407

3.3 Sensitivity to Clouds408

The presence of clouds has impacts on thermodynamic and radiative prop-409

erties in the boundary layer and in the atmosphere more generally. While410

sensitivities to clouds may be understood for each individual measurement411

platform considered in this work, it is additionally important to understand412

how cloudiness might impact retrievals combining active and passive sensors.413

It is important to note that here we are referring to clouds near the top of414

the boundary layer or above. Since most clouds are opaque to these instru-415

ments, low cloud would prevent observation over the depth of the boundary416

layer. Lidars, such as vDIAL or RLID, are able to profile into a cloud until417

about an optical depth of 1; thus, it is possible to get a partial profile into a418

cloud. However, for liquid water clouds this vertical distance is usually pretty419

small — O(10 m), which is about 1 range gate — thus we tend to ignore it.420

The AERIoe-retrieved values start to get a↵ected by the cloud presence at a421

height equal to cloud-base height minus one half of the vertical resolution of422

the retrieval at cloud base (see Turner and Blumberg 2019, Fig. 13). If addi-423

tional information (e.g., lidar profiles) are added to the AERI retrieval, then424

the vertical resolution improves, and the region not impacted by the cloud gets425

closer to the cloud base.426

This analysis follows a similar method to the analysis presented in Sect.427

3.2, but in this case, data are classified into either overcast or clear periods.428

Using cloud-base height detected by RLID, this classification uses a two-hour429

rolling window to classify the period as overcast (continuous cloud-base height430

detected during the period) or clear (no cloud-base height detected during the431

period). Both rectangular and Gaussian rolling windows were tested for appli-432

cation in this method, but results were quite similar. Periods with inconsistent433

detection of cloud-base height were classified as unclear and not considered in434

this work. Overcast periods include 35 samples, while clear periods include 45435

samples.436

Comparisons of each retrieval under overcast and clear conditions are437

shown in Fig. 7. Generally, these mean profiles and spreads, as indicated by438

the IQR, show similar results, as shown in Fig. 6, as expected. In some in-439

stances, the mean retrieved profiles of T and WVMR have slightly larger440

di↵erences from radiosonde profiles under overcast conditions for each con-441

sidered retrieval. These results are consistent with those shown in Wulfmeyer442

et al. (2015), where AERIonly retrievals were compared in a similar way. To443

understand if any of these di↵erences between overcast and clear conditions444

are statistically significant, a student t-test is used (Fig. 8). In this case, larger445
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a)

b)

c)

Fig. 7 Median di↵erences from the radiosonde observations in T (left) and WVMR (right)
versus altitude a.g.l. for AERIvDIAL (a–b), AERIonly (c–d), and AERIrlid (e–f). Blue
curves represent clear conditions, while orange curves represent overcast conditions. Also
included are the 25th and 75th percentile di↵erences (dotted lines) to emphasize the vari-
ability in each retrieval
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magnitude t-values would indicate that di↵erences between mean retrieval446

profiles under overcast and clear conditions are large. Statistical significance447

is not found at any level for any retrieved temperature profile, suggesting448

while slight di↵erences are present in the profiles, T retrieval performance is449

not significantly sensitive to overcast conditions. Similarly, statistical signifi-450

cance is not found at any level for AERIvDIAL WVMR retrieval. Di↵erences451

between mean WVMR retrieval profiles under overcast and clear conditions452

are significant at 300 m a.g.l. for AERIonly and just below 500 m a.g.l. for453

AERIrLID.454

It should be noted that such thin layers of significance may not hold much455

meaning given the vertical resolution of the retrieved profiles. This may be456

especially true since the reference data (i.e., radiosondes) were not convolved457

with the averaging kernel provided in the retrieval (Löhnert et al. 2009) to458

match the e↵ective vertical resolution of the retrieved profiles, which varies459

based on the atmospheric conditions3. Still, these levels correspond with in-460

teresting features in the di↵erence profiles (Fig. 7). Under clear conditions,461

AERIonly WVMR retrievals tend to depict drier profiles at 300 m than un-462

der overcast conditions (see Fig. 7d). This level shows diverging or mirrored463

di↵erence profile shapes, which is unlike elsewhere in the profile where dif-464

ferences are largely related to a shifted profile with similar shape. A similarly465

drier clear profile with a diverging or mirrored shape compared to the overcast466

profile is apparent near 500 m in the AERIrLID comparisons (see Fig. 7d). It467

is not clear why this is the case in either retrieval. It is worth noting that 300468

m is the level above which the thermodynamic retrieval prevents lapse rates469

from becoming steeper than superadiabatic4. However, the 500m level bears470

no particular significance to the retrieval or any of the constraints applied to471

it, so perhaps the di↵erences at 300 m are simply coincidental.472

4 Applied Analysis473

In addition to the bulk analyses presented in Sect. 3, we also evaluated these474

data in more applied settings to showcase how these retrieved observations475

might be useful in various applications, and how added information in the re-476

trievals may thus be important. First, we evaluate how various versions of the477

retrieval impact land–atmosphere coupling metrics important to understand-478

3 In these applications, convolving the radiosonde data with the averaging kernel would act
to minimize the vertical representativeness error in the comparison of the AERIoe retrievals
and the radiosonde profiles. The authors purposefully chose not to take this step. In this
sort of analysis we feel it is important to evaluate the data as most users would encounter
it. This does mean that our results may make the retrieval appear to fare less well than it
may if the reference data were convolved with the averaging kernel. See Turner and Löhnert
(2014).

4 This is one of two physical constraints added to the retrieval, and the level below which
it is applied is configurable by the user. The other constraint requires relative humidity be
less than 100% (Turner and Blumberg 2019). Metadata about these settings can always be
found in retrieval output.
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a) b)

T   WVMR   

Fig. 8 Profiles of student t-test values (values are shown as magnitudes) from the com-
parison of each retrieval’s median profile under overcast and clear conditions are shown for
a) T and b) WVMR. Red triangles mark levels where p > 0.1, indicating confidence that
di↵erences are significant

ing how the underlying land surface interacts with and modifies the atmo-479

sphere. Next, the derivation of common convection indices and the impacts of480

including data from active sensors on them is explored. Finally, we introduce481

a case of severe convection near the observation site to evaluate how retrieved482

boundary-layer information may be valuable on short time scales preceding483

severe weather.484

4.1 Land–Atmosphere Coupling Metrics485

Land–atmosphere coupling metrics describe the degree of covariability between486

the land surface and atmosphere. In the absence of larger scale atmospheric487

forcing, soil-moisture driven changes to surface flux partitioning can influence488

the development of clouds and precipitation. The degree of atmospheric sensi-489

tivity to these changes varies based on climate; however, semi-arid regions such490

as the Southern Great Plains have been shown to display greater sensitivity to491

changes in evapotranspiration (Trenberth 1999; Guo et al. 2006; Koster et al.492

2011; Wei et al. 2016). The Convective Triggering Potential and Low-level Hu-493

midity Index (CTP � HIlow) framework (Findell and Eltahir 2003a,b) uses494
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vertical profiles of temperature and moisture taken in the early morning before495

the convective boundary layer begins to develop — 1200 UTC in the U.S. — to496

diagnose the atmosphere’s preconditioning toward land–atmosphere coupling.497

In other words, the framework determines whether locally triggered convec-498

tion is more likely over dry or wet soils based upon atmospheric instability499

and moisture within the lower troposphere. CTP is computed by integrating500

the area between the temperature profile and the moist adiabat drawn upward501

from the temperature observed 100 mb above the surface to a point 300 mb502

above the surface, while HIlow is defined as the sum of dew point depressions503

(the di↵erence between temperature and dew point) at 50 and 100 mb above504

the surface. Traditionally, observational applications of the framework rely on505

vertical profiles derived from radiosondes, which leads to undersampling of the506

boundary layer in time and in horizontal space. Ground-based remote sens-507

ing techniques can provide boundary-layer profiles where radiosonde data is508

sparse, and at a much finer temporal resolution. As such, estimates of land–509

atmosphere coupling from metrics such as the CTP � HIlow framework can510

be obtained for multiple profiles in time and space using ground-based remote511

sensors.512

Using the CTP�HIlow (hereafter CTP�HI) framework, we classified each513

day during the observation period using AERIonly, AERIrLID, and AERIv-514

DIAL thermodynamic retrievals within the hour corresponding to the time of515

the 1200 UTC radiosonde observation, which may be as early as 1100 UTC.516

First, we identified days in which the retrieval CTP and HI values produced517

the same classification for atmospheric pre-conditioning as was identified by518

radiosonde profiles. All three retrievals were able to produce the same classi-519

fication as the radiosonde over 75% of the time (Fig. 9).520

The rigid nature of the categorical thresholds to characterize atmospheric521

preconditioning can result in two platforms having nearly identical CTP and522

HI values, but di↵erent classifications. Small di↵erences in CTP or HI values523

may be within the observational range of uncertainty. Therefore, we produced524

CTP �HI classifications for all CTP �HI combinations within a 1-standard-525

deviation range of uncertainty. If a combination within this uncertainty range526

produced the same classification as the radiosonde data, then it was counted as527

matching only within the range of uncertainty. Introducing the range of uncer-528

tainty resulted in an additional 10% of AERIrLID and AERIvDIAL days that529

matched radiosonde classifications while for AERIonly data this percentage530

was slightly lower. Consequently, when we included a range of uncertainty all531

three retrievals were able to produce the same classification as that obtained532

from radiosonde data, nearly 90% of the time (Fig. 9). AERIrLID retrievals533

performed best at producing the same classification, followed by AERIvDIAL534

and AERIonly.535

When CTP and HI obtained from each retrieval were compared to ra-536

diosonde values (Table 3), covariability between radiosonde and retrieval ob-537

servations of these quantities was strong. All three retrievals displayed similar538

R
2 values at or above 0.65 for CTP . AERIvDIAL produced the smallest me-539

dian di↵erence and IQR in CTP di↵erences, while AERIonly had the largest540
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% match % match within range of uncertainty % not match 

AERIrLID AERIvDIAL AERIonly

Fig. 9 Percentage of days in which CTP and HI obtained from retrievals produce the
same classification of atmospheric conditions as CTP and HI obtained from radiosondes
(teal). Grey shading indicates the days in which retrieval CTP and HI only produce the
same classification as radiosonde data within a window corresponding to the retrieval range
of uncertainty (within one standard deviation). Red shading corresponds to days in which
neither the observed CTP and HI values or values within a range of uncertainty produced
the same classification as radiosonde CTP and HI

Table 3 Median di↵erence, di↵erence IQR and R
2 statistics for retrieval minus radiosonde

CTP and HI values. Bold values denote most favourable values (smallest di↵erences or
highest R

2)

CTP median di↵erence di↵erence IQR R
2

AERIrLID–sonde -27.18 109.78 0.70
AERIvDIAL–sonde -19.39 86.69 0.70
AERIonly–sonde -34.43 148.45 0.65

HI median di↵erence di↵erence IQR R
2

AERIrLID–sonde 0.11 3.22 0.92
AERIvDIAL–sonde 0.32 5.38 0.82
AERIonly–sonde -0.95 5.33 0.68

median di↵erence, the greatest IQR and the lowest R2 values. AERIrLID had541

the highest R2 value (0.92) for HI as well as the lowest median di↵erence and542

di↵erence IQR. Median di↵erence was greatest in magnitude for AERIonly,543

but di↵erence IQR was nearly the same for AERIonly and AERIvDIAL. All544

three retrievals, however, had R
2 values above 0.65 indicating good agreement545

between retrieval and radiosonde HI values.546

Introducing active sensors into the AERI retrievals does appear to improve547

estimation of the two quantities used in this land–atmosphere coupling metric.548

The most pronounced benefit, as demonstrated by the best linear relationship549

between retrieval- and sonde-derived values, was realized in the AERIrLID550

observations of HI (Fig. 10a), though AERIvDIAL(Fig. 10b) also performs551

noticeably better when compared to AERIonly observations (Fig. 10c).552

Improvements were less obvious for CTP (Fig. 10d–f). CTP is an inte-553

grated metric, and AERI observations of integrated quantities such as convec-554

tive available potential energy (CAPE) have been shown to have greater uncer-555
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Fig. 10 Scatter plots of retrieval observations (x-axis) versus radiosonde observations (y-
axis) of HI (a–c) and CTP (d–f)

tainty than non-integrated quantities (Blumberg et al. 2017a). Also, CTP is556

obtained at higher levels (within a 20-mb deep layer from 100 mb AGL to 300557

mb AGL) in the atmosphere than HI (levels 50 to 150 mb above the surface).558

As vertical resolution decreases with height in the AERI retrievals, there is559

inherently greater uncertainty associated with the CTP observations at higher560

levels. The impact of vertical resolution (see footnote 3) is explored in Wake-561

field et al. (2021), where comparing CTP and HI obtained from radiosonde562

profiles with the same vertical resolution as AERI retrievals does show some563

improvement to the agreement between platforms. Even so, the limitations564

associated with using AERI are minor, and are outweighed by the ability to565

observe these and other coupling metrics at a high temporal resolution and566

outside of the commonly available radiosonde observation times and locations.567

This particular utility of the AERI retrievals is further addressed in Wakefield568

et al. (2021).569

4.2 Retrieved Convection Indices570

Because the retrieval provides a full covariance matrix for each retrieved solu-571

tion, the uncertainties of convection indices from that profile can be derived.572
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Fig. 11 Scatter plots showing comparisons for CAPE (a) and CIN (b) indices derived
from the di↵erent clear-sky AERIoe retrievals and radiosonde observations. Marker styles
indicate the parcel type used, where circles are the most-unstable parcel, x is the surface-
based parcel, and triangles are the 100-mb mixed-layer parcel. Marker colours denote the
di↵erent AERIoe retrievals

Following Blumberg et al. (2017a), Monte Carlo sampling is performed to gen-573

erate 500 profiles for each retrieval and radiosonde profile. For each profile out574

of the 500, a set of convection indices (e.g., convection available potential en-575

ergy, or CAPE, and convection inhibition, or CIN, etc.) are generated. For each576

index, an estimate of that index’s uncertainty is derived using non-Gaussian577

statistics (median, interquartile range) since Gaussian statistics sometimes do578

not well describe the distribution of variables with bounds. Convection in-579

dices are derived using the Sounding and Hodograph Analysis and Research580

Program in Python (SHARPpy; Blumberg et al. 2017b). By comparing the581

convection indices derived from the di↵erent retrievals to the radiosondes, the582

influence of the active sensors in the AERIoe retrieval relative to the AERIonly583

retrievals can be understood.584

The CAPE indices derived from the di↵erent AERIoe retrievals and ra-585

diosondes were first compared. Figure 11 shows scatter plots from these com-586

parisons for di↵erent parcel types (surface-based, most unstable, 100-mb mixed587

layer). For CAPE, the scatter plot displays a very strong relationship be-588

tween the CAPE values measured between the two techniques (radiosonde589

and AERIoe) with no noticeable di↵erences between the di↵erent AERIoe590
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Table 4 Comparison statistics between di↵erent clear-sky AERIoe retrieval configurations
and radiosondes for the CAPE index using the surface-based (SB), 100 mb mixed-layer
(ML), and most-unstable (MU) parcels. Statistics shown are the number of cases (n), the
bias, the 1-sigma standard deviation of the errors (Std.Dev), and the correlation coe�cient
(r). The median values from the computed convection index distribution are used in this
comparison

SBCAPE Retrieval n Bias Std. Dev. r

AERIrLID 74 99.4 275.9 0.98
AERIvDIAL 71 103.4 315.1 0.97
AERIonly 71 95.3 294.9 0.97

MLCAPE Retrieval n Bias Std. Dev. r

AERIrLID 74 42.7 196.9 0.97
AERIvDIAL 71 53.1 294.8 0.92
AERIonly 71 50.4 299.8 0.92

MUCAPE Retrieval n Bias Std. Dev. r

AERIrLID 74 110.1 331.1 0.96
AERIvDIAL 71 93.2 498.9 0.90
AERIonly 71 102.1 472.2 0.91

configurations (Fig. 11a). Table 4 further echoes this result, as for all parcel591

and retrieval types, the correlation coe�cient is above or equal to 0.9. One592

noticeable di↵erence is that the AERIrLID retrievals display the lowest stan-593

dard deviation of the errors for all parcels relative to the other retrievals. This594

result is likely a consequence of the improved signal-to-noise ratio of the RLID595

instrument being used in the retrieval. All of the AERIoe retrievals also ex-596

hibit a slight positive bias for CAPE. This bias is small, with an average value597

of less than 84 J kg�1. This is certainly within the uncertainty range of the598

retrieval, and di↵erent CAPE calculation methods can result in even larger599

di↵erences, so this bias is likely not all that meaningful.600

It appears that unlike CAPE, CIN derived from the retrievals using active601

sensors does not compare better to those observed by the radiosonde. Figure602

11b indicates that although there is noticeable scatter along the 1-to-1 line,603

there still is a visible relationship between the CIN values of the two mea-604

surements. One such reason for this is that the extra information provided by605

the wvDIAL and RLID instruments describes the structure of water vapour,606

whereas the CIN calculation is strongly dependent upon the retrieval’s ability607

to resolve temperature inversions above the parcel source height. Although608

the a priori dataset in the retrieval does describe cross-correlations between609

temperature and humidity, it does not appear that information provided by610

the active sensors is su�cient to reliably depict the inversion at the top of the611

PBL. These poor CIN comparisons were also seen in Blumberg et al. (2017a),612

and better comparisons may require modifications to the retrieval to leverage613

other information from active sensors (e.g., vertical backscatter gradients to614

identify the PBL top) to help resolve the elevated inversions better.615
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Fig. 12 18 May 2017 a) severe storm reports sourced from the NWS Storm Data report, b)
Vance Air Force Base (KVNX) WSR-88D radar reflectivity at 2134 UTC, c) 1800 UTC sur-
face temperature (�C, colour fill), dew point temperature (�C, contour), and winds (barbs),
and d) 1800 UTC surface based CAPE. Surface variables and CAPE come from the SPC
SFCOA dataset. The ARM-SGP site is marked on all panels

4.3 Severe Convection Case Study616

On 18 May 2017, 135 severe weather reports (severe wind, severe hail, and tor-617

nado) were documented in Oklahoma in the National Weather Service (NWS)618

Storm Data record (NCEI 2020). While there was enough certainty in the619

forecast for severe weather to lead to a high risk in the Day 1 Convective Out-620

look from the Storm Prediction Center (SPC), uncertainty remained regarding621

storm coverage and timing. Specifically, if too many cells were to initiate too622

early in the day, the full potential of the regional instability and shear would623

not be realized, which could act to limit the severity of the day’s weather. Fig-624

ure 12 summarizes this event, depicting the day’s storm reports and snapshots625

of convection morphology and environmental conditions.626

In cases like this one, it is important to understand how the atmosphere627

evolves after the 1200 UTC operational radiosonde observation is collected—a628

benefit ground-based sensors can provide. At present, numerical tools are often629

relied on to provide some understanding of lower-atmospheric evolution. One630

such example is the SPC SurFaCe Objective Analysis (SFCOA; Bothwell et al.631

2002), which is a comprehensive surface objective analysis scheme designed to632

assimilate the various real-time observational datasets using hourly mesoscale633

model output as first-guess fields. Since this event occurred near the ARM634

SGP site during the special observation period, we have a unique opportunity635
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to compare environmental convective parameters as derived from boundary-636

layer profiler thermodynamic retrievals, available radiosondes, and the SF-637

COA. This enables intercomparison between each retrieval and exploration638

of potential benefits associated with high temporal resolution boundary-layer639

profiling for environmental characterization. Additionally, the high temporal640

resolution thermodynamic retrievals o↵er a dataset against which the SFCOA641

can be compared as conditions evolve.642

After the 1200 UTC radiosonde observation, surface-based CAPE (SB-643

CAPE) represented by SFCOA and all retrievals rapidly increases with the644

onset of daytime heating (Fig. 13). Prior to approximately 1500 UTC, SB-645

CAPE in the SFCOA data is consistently larger than the SBCAPE in any646

of the retrievals. The SFCOA uses Rapid Refresh (RAP) model profiles as a647

first guess for the objective analysis. Upon comparison of RAP and retrieval648

profiles, it becomes apparent that prior to sunrise (between 1100 and 1200649

UTC) all retrieved profiles depict the warm nose near 900 mb as too weak and650

too smooth (Fig. 14), thus representing it as too deep. The AERIoe retrieval651

includes a constraint which prevents the T profile from becoming superadia-652

batic above a specified height (in this configuration 300 m a.g.l.; see footnote653

4). This results in the retrieved profile remaining too warm above the warm654

nose. This warmer temperature aloft can result in lower CAPE and increased655

CIN.656

From 1500–1800 UTC, SBCAPE values from the SFCOA and all retrievals657

remain in approximate agreement. Retreival values vary from 1615–1730 UTC,658

which was related to broken cloud (ARM Total Sky Imager (TSI) observations;659

not shown). After 1730 UTC, retrieval values become much less variable, and660

the general value of surface-based CAPE decreases by a small amount. The661

same TSI observed consistent cloud cover from 1800–1900 UTC. While clouds662

do impact the profile-to-profile variability for all retrievals (i.e., intermittent663

clouds result in more variability), there does not appear to be strong sensitivity664

of the general mean value of SBCAPE to clouds, consistent with findings in665

Sect. 3.3.666

In this case, di↵erences in between AERIonly, AERIrLID, and AERIv-667

DIAL retrieved SBCAPE time series were small and intermittent. Adding ac-668

tive sensors made little impact on these derived values. Several other common669

convective parametres were also explored (i.e., most unstable CAPE, surface-670

based and most unstable CIN, level of free convection, various boundary-layer671

lapse rates, all not shown) and results were generally similar. In the absence672

of retrieval or SFCOA data, a time series based on radiosonde-observed SB-673

CAPE may not have been very accurate in this case5. Given the uncertainty674

about timing and thus utilization of the available instability in the region in675

this case, such observations may be quite misleading. As noted in Sect. 2.5,676

the ARM-SGP site typically collects radiosonde four times per day instead of677

5 It is of note that di↵erent methods of computing convection indices, in this case SB-
CAPE, can result in widely varied results, as is apparent from comparing values derived
from radiosonde data by the University of Wyoming archive (orange dots on Fig. 13) and
by SHARPpy (blue dots and error bars on Fig 13).
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Fig. 13 Time series of SBCAPE on 18 May 2017 at the SGP site are shown for the three con-
sidered retrievals (AERIonly in green, AERIrLID in purple, and AERIvDIAL in blue). The
solid coloured lines indicate the 50th percentile value of derived surface-based CAPE, while
filled regions represent the spread between the 10th and 90th percentiles. Hourly SFCOA
surface-based CAPE values are plotted as black dots. Any available radiosonde observation
(RAOB) values from the SGP site are plotted as blue dots (processed via SHARPpy, error
bars represent 10th and 90th percentiles) and orange dots (SBCAPE value recorded in the
University of Wyoming archive). The upper panel includes data from 0900 UTC on 18 May
to 0600 UTC on 19 May. The lower panel shows a subset of those data from 1200 to 2100
UTC on 18 May

the more typical 1200 and 0000 UTC synoptic times, meaning the 1800 UTC678

observation is more data than most locations collect (note that when severe679

risks are moderate to high, NWS operations often include special soundings680

beyond synoptic times). This demonstrates the importance of tools like the681

SFCOA and the potential benefit of profile observations of boundary-layer682

characteristics. Boundary-layer profilers o↵er the added benefit of high tem-683
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Fig. 14 1200 UTC AERIvDIAL and a) RAP, b) radiosonde profiles are compared on skew-
T log-P diagrams. Retrieval profiles are depicted as dark curves with shading to represent
profile variability over a 30-minute window centred on the sounding time. The dark curve
on the right is the temperature (�C) and the dark curve on the left is the dew point (�C).
RAP and radiosonde profiles are shown in red (temperature, �C) and green (dew point,
�C). Parcel paths are labeled for each sounding. For clarity only one retrieval is shown, but
results were consistent between the AERIvDIAL, AERIrLID, and AERIonly retrievals

poral resolution observed profiles. Such information can be powerful in cases684

where subtle changes in boundary-layer thermodynamics are important.685

5 Summary686

Filling the observational gap in the boundary layer is a challenge. As various687

technologies are evaluated and continue to emerge, it seems increasingly likely688

that viable observation solutions will include multiple instrument platforms. In689

such configurations, an additional challenge emerges: bringing multiple plat-690

forms and datastreams together to provide high quality observations and value691

added products. To address this challenge, we explored the combination of ac-692

tive and passive remote sensors deployed for thermodynamic profiling.693

An experiment conducted at the ARM-SGP site in May–June 2017 (New-694

som et al. 2020) provided several weeks of data for this comparison and evalu-695

ation e↵ort. From 15 May to 12 June 2017, an AERI, wvDIAL, and RLID all696

operated continuously. From these data, thermodynamic profiles were retrieved697

via the AERIoe algorithm (Turner and Blumberg 2019; Turner and Löhnert698

2020). Three sets of retrieved profiles were considered in this work: retrievals699

including AERI observations, retrievals including both AERI and wvDIAL700

observations, and retrievals including both AERI and RLID observations. The701

first set of analyses in this work focused on comparison and evaluation of the702

entire dataset in a bulk sense. The second set of analyses focused instead on703
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some specific applications of retrieved thermodynamic profiles. We specifically704

aimed to highlight the di↵erences that resulted from including active sensors705

in this retrieval framework, and explore the impact those di↵erences might706

have in scientific applications.707

The three versions of the retrieval were first compared with one another.708

Results showed that active-inclusive retrievals (i.e., AERIrLID and AERIv-709

DIAL) were not very di↵erent than the passive-only (i.e., AERIonly) retrieval710

in terms of T (average di↵erences less than 0.5 �C). On the other hand, active-711

inclusive retrievals did show mean di↵erences in WVMR of 0.25 to 0.75 g kg�1,712

especially in the layer between 1 and 1.5 km a.g.l.. Di↵erences in this layer713

and further evaluation of these di↵erences as a function of time suggest that714

the active sensors help the retrieval to represent the moisture gradient across715

the entrainment zone near the top of the boundary layer.716

Generally all retrievals agreed fairly well with a common standard—ARM-717

SGP radiosondes—with Pearson correlation coe�cient R2
> 0.98 for all T718

retrievals, and R2
> 0.92 for all WVMR retrievals. For both T and WVMR,719

AERIrLID performed closest to radiosonde observations. AERIoly and AERIv-720

DIAL were quite similar in terms of T performance, but AERIvDIAL out-721

performed AERIonly in the WVMR retrieval. Additionally, active-inclusive722

retrievals showed less overall spread in di↵erences between retrieved and ra-723

diosonde observed WVMR profiles. This reduced spread implies that including724

active sensors produces more consistently accurate profiles, at least in terms725

of WVMR.726

The last set of bulk analyses compared overcast and clear periods to evalu-727

ate the impact of broad cloudiness on retrievals combining active and passive728

sensors. This set of retrieval-radiosonde comparisons showed similar results729

to the analogous comparison for the full dataset. There were some instances730

where retrieval-radiosonde di↵erences were larger under overcast conditions.731

However, these di↵erences were generally not found to be significant.732

Land–atmosphere coupling metrics were the first application of the re-733

trievals explored in this work. Retrieved thermodynamic profiles were used in734

the CTP �HIlow framework, which determines whether locally triggered con-735

vection is more likely over dry or wet soils based upon atmospheric instability736

and moisture within the lower troposphere. The use of thermodynamic re-737

trievals in this application can extend the framework to periods and locations738

where soundings, which are the typical input observations, are not regularly739

available. On days that were not atmospherically controlled, all three retrievals740

result in the same classification over 75% of the time; when they di↵ered, the741

di↵erences in CTP and HI often fell within the one standard deviation uncer-742

tainty range of the retrieval. Adding active sensors as constraints in AERIoe743

does have appear to have a positive impact on the estimation of HI. Improve-744

ments in CTP estimates were less clear. In any case, active sensors improve745

estimation of land–atmosphere coupling in this framework, but AERIonly re-746

trievals can still produce desirable and applicable results.747

We also evaluated the di↵erent retrievals by comparing derived convec-748

tion indices against radiosonde values. As the retrievals provide a full error749
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covariance matrix for each retrieved profile, we used Monte Carlo sampling of750

this matrix to provide uncertainty estimates for the convection indices. CAPE751

computed from radiosondes and all retrieval configurations agreed quite well752

with correlations of 0.9 or better. The AERIrLID retrieval did show the small-753

est standard deviation of errors among the configurations, likely a result of the754

improved signal-to-noise ratio of the RLID instrument. CIN computed from755

all retrieval configurations did not compare as well to CIN computed from756

radiosondes, consistent with prior findings (Blumberg et al. 2017a).757

Lastly, the retrieved profiles were evaluated in the context of a severe con-758

vection case to understand what information is or is not currently available to759

forecasters in real time. We compared environmental convective parametres in760

Oklahoma on 18 May 2017 as derived from boundary-layer profiler thermo-761

dynamic retrievals, available radiosondes, and the SFCOA. Generally SFCOA762

and retrievals showed similar environments, though this comparison did high-763

light a propensity of the retrieval algorithm to depict overly smoothed, weak764

warm nose profiles. Di↵erences between the three considered retrievals were765

small and intermittent, suggesting that the addition of active-sensors make766

small enough adjustments to the profiles to not result in large di↵erences in767

derived indices. Though not shown, several other common convective param-768

eters were also explored, and results were generally similar.769

Overall, we find the addition of active sensors as a constraint in AERI-based770

retrievals do not make large impacts to the resulting thermodynamic profiles771

or indices derived from them. The same may not be true in other retrieval772

frameworks. There are perhaps specific applications for which gaining infor-773

mation about moisture at the boundary-layer top would be crucial, in which774

case the small changes seen in the AERIrLID and AERIvDIAL retrievals may775

be helpful. This suggests that for many applications, passive infrared remote776

sensor (e.g., AERI) profiling may provide su�cient information on the thermo-777

dynamic profile. This is an important finding given the costs associated with778

operating and maintaining multiple sensors. However, one important applica-779

tion that was not explored here is data assimilation, where quantification of780

information content and observation error is critical. As noted in Sect. 1, pos-781

itive impacts have been noted in several studies for convection-scale forecasts782

when assimilating AERI-retrieved thermodynamic profiles (e.g., Degelia et al.783

2019; Hu et al. 2019; Coniglio et al. 2019; Chipilski et al. 2020). More evalua-784

tion is needed to understand how to best use these observations; however, the785

benefits associated with the reduction in uncertainty and added information786

content when including active sensors cannot be overlooked in the context787

of data assimilation (e.g., Sect. 4.2, Turner and Löhnert 2020). While this788

work demonstrates that a one-size-fits-all optimal ground-based solution for789

boundary-layer profiling does not exist at present, we do show that active re-790

mote sensors are not necessarily a requirement for suitable thermodynamic791

profiles in all scenarios when passive sensors are available.792
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