NASA Welcome and Space Environment Interactions with ISS

Joseph Minow NASA Engineering and Safety Center, Langley Research Center Space System Anomalies and Failures (SCAF) Workshop 2022 11-12 January 2022, virtual joseph.minow@nasa.gov

• Welcome to Space Systems Anomalies and Failures Workshop 2022!

- Welcome to Space Systems Anomalies and Failures Workshop 2022!
- Why are we using the acronym "SCAF" for the Space Systems Anomalies and Failures (SSAF) Workshop?
 - SCAF is the legacy acronym from the Spacecraft Anomalies and Failures Workshop series which is the predecessor to this workshop
 - The name was changed in 2021 from "Spacecraft" to "Space Systems" so anomalies and failures in ground systems and launch vehicles can be included along with spacecraft: consider the complete system required to deploy and operate a space system
 - The organizers continued to use "SCAF" for a while since it is recognized by workshop participants, but we will move to the "SSAF" acronym with SSAF 2023

- Welcome to Space Systems Anomalies and Failures Workshop 2022!
- Why are we using the acronym "SCAF" for the Space Systems Anomalies and Failures (SSAF) Workshop?
 - SCAF is the legacy acronym from the Spacecraft Anomalies and Failures Workshop series which is the predecessor to this workshop
 - The name was changed in 2021 from "Spacecraft" to "Space Systems" so anomalies and failures in ground systems and launch vehicles can be included along with spacecraft: consider the complete system required to deploy and operate a space system
 - The organizers continued to use "SCAF" for a while since it is recognized by workshop participants, but we will move to the "SSAF" acronym with SSAF 2023
- The organizers are very pleased at the turnout and ongoing support for the virtual workshop this week, we hope to meet in person for SSAF 2023!

- Microphones and cameras are disabled to minimize background noise and bandwidth
- Type questions in chat or request we unmute your microphone
- Day 1 presentations will be posted on a NASA website for participant download (pending approval by speakers). Information will be sent out after the workshop.

Impact of Space Environments on Space Systems

Mechanism	Effect	Source
Surface Charging	Biasing of instrument readingsPower drainsPhysical damage	Dense, cold plasmaHot plasma
Deep Dielectric Charging	 Biasing of instrument readings Electrical discharges causing physical damage 	High-energy electrons
Structure Impacts	Structural damageDecompression	MicrometeoroidsOrbital debris
Drag	TorquesOrbital decay	Neutral thermosphere
Total lonizing Dose (TID)	Degradation of microelectronics	 Trapped protons Trapped electrons Solar protons
Displacement Damage Dose (DDD)	 Degradation of optical components and some electronics Degradation of solar cells 	 Trapped protons & electrons Solar protons Neutrons
Single-Event Effects (SEE)	 Data corruption Noise on images System shutdowns Electronic component damage 	 GCR heavy ions Solar protons and heavy ions Trapped protons Neutrons
Surface Erosion	 Degradation of thermal, electrical, optical properties Degradation of structural integrity 	 Particle radiation Ultraviolet Atomic oxygen Micrometeoroids Contamination

ISS from SpaceX Crew Dragon Endeavour during 8 November 2021 fly around

https://www.nasa.gov/image-feature/the-station-pictured-from-the-spacexcrew-dragon-0

International Space Station (ISS)

- Initial ISS module deployed in 1998 with on orbit assembly over a period of 20+ years
- Many space exposed materials have been on-orbit for 15 to 20 years
- White House directs NASA to extend ISS operations through 2030 (December 2021):
 - By 2030, space exposed materials and hardware currently on orbit will have experienced LEO space environment exposures ranging from 9 to 32 years!
 - Ionizing radiation, UV/EUV, atomic oxygen, MMOD
 - <u>https://blogs.nasa.gov/spacestation/2021/12/31/bide</u> <u>n-harris-administration-extends-space-station-</u> <u>operations-through-2030/</u>
- NASA is working life extension planning and refurbishment activities to assure materials and systems exposed to space environment for decades continue to meet program requirements

Module/Component	Partner	Launch Date (mm/yyyy)	Years on Orbit*	
Zarya Module (FGB)	Russia	11/1998	23+	
Unity Module (Node 1)	US	12/1998	23+	
Zvezda Module (Service Module)	Russia	07/2000	21+	
Z1 Truss	US	10/2000	21+	
P6 Truss – US solar array 1	US	12/2000	20+	
Destiny Laboratory Module	US	02/2001	20+	
SO Truss	US	04/2002	19+	
P1 Truss, S1 Truss	US	10/2002, 11/2002	19+,19+	
P3/P4 – US solar array 2, S3/S4 Truss – US solar array 3	US	09/2006, 06/2007	15+,14+	
P5 Truss, S5 Truss	US	12/2006, 08/2007	15+,14+	
Harmony Module (Node 2)	US	10/2007	14+	
P6 Truss – US solar array 1 (relocation)	US	n/a	20+	
Columbus Facility Module	ESA	02/2008	13+	
Kibo Japanese Experiment Module	Japan	2008-2009	~13-12	
S6 Truss – US solar array 4	US	03/2009	12+	
Poisk Mini-Research Module 2	Russia	11/2009	12+	
Rassvet Mini-Research Module 1	Russia	05/2010	11+	
Bigelow Expandable Activity Module	US	04/2016	5+	
Nauka Multipurpose Laboratory Module	Russia	07/2021	<1	
Prichal Docking Module	Russia	11/2021	<1	
*As of December 2021				

8

Material Contamination, Degradation, and Atomic Oxygen

Figure 5: Flaking of the FGB MM/OD shield paint (2A, STS088-E5051)

Figure 6: Flaking of the FGB MM/OD shield paint (4A, STS 97-304-001)

Soares et al., 2002

Figure 3.—Atomic oxygen undercutting degradation of the P6 Truss solar array wing blanket box cover on the ISS after only 1 year of space exposure.¹⁰ de Groh and Banks, 2019

Figure 14: Observed contamination patterns surrounding Service Module zenith side thruster block (5A, STS098-706-011)

Soares et al., 2002

https://www.nasa.gov/image-feature/the-station-pictured-from-the-spacexcrew-dragon-0

- First pair of ISS solar arrays have been operating on orbit for 20+ years and are showing signs of radiation degradation
- NASA is installing deployable ISS Roll-Out Solar Array (iROSA) to assure adequate power through ISS end of life

https://www.nasa.gov/feature/new-solar-arrays-to- power-nasa-s-internationalspace-station-research https://www.nasa.gov/image-feature/the-new-iss-roll-out-solar-array-irosa-is-

https://www.nasa.gov/image-feature/the-station-pictured-from-the-spacex-crew-dragon-0

deployed

ISS MMOD Impacts

- Meteoroid and orbital debris (MMOD) impacts are a continuing issue for spacecraft in LEO including the ISS
- NASA's Hypervelocity Impact Technology (NVIT) group maintains an ISS impact database
 - Current database contains over 1400 records of impact damage
 - Data obtained from ground-based surveys of space-exposed hardware returned to Earth

Impact on ISS handrail

Impact in aluminum MPLM shield

Hyde et al., Observations of MMOD Impact Damage to the ISS, 2019 https://www.hou.usra.edu/meetings/orbitaldebris2019/orbital2019paper/pdf/6001.pdf

		Hardware	Exp.	Insp.	MMOD		
#	Database Table Name	Class	Days	Date	Impacts	Samples	
1	Node 1 port CBM hatch cover	blanket/shield	3,182	Oct-07	16	16	
2	PMA 1 MDM Sunshade	blanket/shield	2,984	Mar-08	15	1	
3	Airlock shield panel 01-04B	blanket/shield	3,195	Feb-11	24	4	
4	Airlock shield panel 02-04B	blanket/shield	3,195	Feb-11	34	6	
5	PMA 2 cover	blanket/shield	596	Mar-16	26	6	
6	EVA Safety Tether Housing	EVA	733	Feb-01	5	2	
7	Node 3 Avionics Bag	EVA	579	Mar-16	30	0	
8	MPLM FM1 Flight 1	Logistics	6.06	Apr-01	3	3	
9	MPLM FM1 Flight 2	Logistics	6.20	Aug-01	3	1	
10	MPLM FM2 Flight 2	Logistics	6.05	Dec-01	8	8	
11	MPLM FM1 Flight 3	Logistics	6.08	Jun-02	12	12	
12	MPLM FM2 Flight 3	Logistics	7.20	Aug-05	22	2	
13	MPLM FM1 Flight 4	Logistics	7.20	Jul-06	24	24	
14	MPLM FM1 Flight 5	Logistics	9.28	Dec-08	123	97	
15	MPLM FM1 Flight 6	Logistics	7.22	Sep-09	64	25	
16	MPLM FM1 Flight 7	Logistics	7.42	Apr-10	75	11	
17	MPLM FM2 Flight 4	Logistics	7.03	Jul-11	64	б	
18	SpaceX Demo 2	Logistics	5.82	Jun-12	18	18	
19	SpaceX CRS-1	Logistics	18.11	Nov-12	18	8	
20	SpaceX CRS-2	Logistics	23.02	Apr-13	14	7	
21	SpaceX CRS-3	Logistics	28.09	May-14	17	4	
22	SpaceX CRS-4	Logistics	32.13	Oct-14	20	0	
23	SpaceX CRS-5	Logistics	29.35	Feb-15	13	2	
24	SpaceX CRS-6	Logistics	34.01	May-15	25	2	
25	SpaceX CRS-8	Logistics	31.08	May-16	20	2	
25	SpaceX CRS-9	Logistics	36.97	Sep-16	17	1	
27	SpaceX CRS-10	Logistics	23.94	Mar-17	14	6	
28	SpaceX CRS-11	Logistics	27.70	Jul-17	15	3	
29	SpaceX CRS-12	Logistics	31.88	Sep-17	12	2	
30	SpaceX CRS-13	Logistics	26.96	Jan-18	11	3	
31	SpaceX CRS-14	Logistics	31.11	May-18	9	3	
32	SpaceX CRS-15	Logistics	32.24	Δυσ-18	18	4	
33	SpaceX CRS-16	Logistics	36.47	Ian-19	20	4	
34	SpaceX CRS-17	Logistics	27.92	Jun-10	0	1	
54	54 SpaceA GAS-17 LOgISUCS 27.92 JUII-19 9 1						
35	TUS-2 housing and cable	ORU	1,561	Oct-07	13	13	
36	S-band Ant. Support Assy (SASA) E-box	ORU	1,842	Jan-08	48	12	
37	P1 Nitrogen Tank Assembly (NTA)	ORU	1,906	Mar-08	26	17	
38	SASA mast	ORU	1,842	Mar-08	24	18	
39	S1 Nitrogen Tank Assembly (NTA)	ORU	2.239	Jan-09	24	13	
40	P6 battery	ORU	3.149	Aug-09	92	18	
41	P1 Ammonia Tank Assembly (ATA)	ORU	2,474	Oct-09	51	5	
42	S1 Ammonia Tank Assembly (ATA)	ORU	2.736	Apr-10	49	4	
43	P6 battery	ORU	3.447	Jun-10	34	3	
44	P6 battery	ORU	3,447	Jun-10	29	2	
45	P6 battery	ORU	3.447	Jun-10	16	0	
46	P6 battery	ORU	3 447	Jun-10	21	2	
47	P6 battery	ORU	3 447	Jun-10	20	1	
48	P6 battery	ORU	3 447	Jul-10	21	2	
49	4B guidewire cable	ORU	2 527	Oct-10	1		
50	Pump Module Assembly	OPU	3 106	Aug 11	37	2	
51	I arge Adapter Plate Assembly (LAPA)	ORU	3 106	Aug-11	19	2	
52	BCDU	OPU	4 621	Jul 10	64	0	
32		Totals	66 002	Jui-19	1 407	415	

Russian ASAT Test, 15 November 2021

Spatial Density in Low Earth Orbit (LEO) of Debris only, derived from the LeoLabs Catalog

https://leolabs-space.medium.com/analysis-of-the-cosmos-1408-breakup-71b32de5641f

ISS MDM DRAM Single Event Upsets (SEU)

- Geographic distribution of SEUs in ISS Command and Data Handling System Multiplexer de-Multiplexers (MDM).
- ISS operates nearly 50 standard MDMs on the vehicle (as of 2016) that provide system wide, subsystem, and numerous sensor and effector controls
- Events attributed to
 - Galactic cosmic rays
 - o Inner radiation belt in South Atlantic Anomaly
- DRAM SEU events with time and location information are reported in ISS telemetry

From Koontz et al., 2020 https://ntrs.nasa.gov/api/citations/20200001591/downloads/20200001591.pdf

Floating Potential Measurement Unit (FPMU)

- FPMU is a suite of four plasma instruments originally deployed on the ISS in August of 2006, new instrument deployed September 2021
 - Narrow Langmuir Probe (NLP)
 1 Hz
 Ne, Te, Ni, Vf, Vp
 - Wide Langmuir Probe (WLP)
 1 Hz
 Ne, Te, Ni, Vf, Vp
 - Floating Potential Probe (FPP)
 128 Hz
 Vf
 - Plasma Impedance Probe (PIP)
 1 Hz
 Ne
- Primary use: ISS engineering
 - Characterize US high-voltage (160 V) solar array interactions with plasma environment.
 - Evaluate extravehicular activity plasma hazard environments and vehicle charging.
 - Validate the Plasma Interaction Model used to compute ISS frame potentials.
 - Anomaly investigations.
- Secondary use: ionospheric science applications
 - Collaborations with ISS science payloads, other spacecraft, and ground-based ionosphere observations.
 - \circ $\;$ Support studies of the topside ionosphere near electron density peak.
 - Data provided to science community through Goddard Space Flight Center's (GSFC's) Space Physics Data Facility (SPDF).
 - Auroral charging and ISS space weather interactions.
 - \circ $\;$ Characterize geophysical events and spacecraft plasma interactions.

Floating Potential Measurement Unit (FPMU)

- FPMU is a suite of four plasma instruments originally deployed on the ISS in August of 2006, new instrument deployed September 2021
 - Narrow Langmuir Probe (NLP)
 1 Hz
 Ne, Te, Ni, Vf, Vp
 - Wide Langmuir Probe (WLP)
 1 Hz
 Ne, Te, Ni, Vf, Vp
 - Floating Potential Probe (FPP)
 128 Hz
 Vf
 - Plasma Impedance Probe (PIP)
 1 Hz
 Ne
- Primary use: ISS engineering
 - Characterize US high-voltage (160 V) solar array interactions with plasma environment.
 - Evaluate extravehicular activity plasma hazard environments and vehicle charging.
 - Validate the Plasma Interaction Model used to compute ISS frame potentials.
 - Anomaly investigations.
- Secondary use: ionospheric science applications
 - Collaborations with ISS science payloads, other spacecraft, and ground-based ionosphere observations.
 - Support studies of the topside ionosphere near electron density peak.
 - Data provided to science community through Goddard Space Flight Center's (GSFC's) Space Physics Data Facility (SPDF).
 - Auroral charging and ISS space weather interactions.
 - Characterize geophysical events and spacecraft plasma interactions.

Example FPMU Records, 7 December 2014

- 5 orbits
- Variation in floating potential (FP) at FPMU location is due to the combined effects of
 - Current collection by US solar arrays (dominates after eclipse exit)
 - Inductive (v x B).L potential (~0.4 V/m)
- Equatorial plasma density peak (equatorial or Appleton "anomaly")

Minow et al., 2018

[Minow and Willis, 2014]

Minow et al., 2018

[Minow and Willis, 2014]

"Positive Charging" Events

- Transient "positive" potential changes at ISS eclipse exit measured by the FPMU during Command Shunt/Unshunt experiments
- All arrays are fully shunted at the time of the "positive" events
- Label:
 - S/US #14: 14th shunt/unshunt operation
 0 PCU's: PCU's are not operating
- For many years the origin of these "positive" charging signals were not understood

• ISS string potentials are nominally regulated to 160 V

Unshunted (active) string – collects current

Shunted string – no current collection

- ISS string potentials are nominally regulated to 160 V
- However, open circuit string voltages when the arrays are cold coming out of eclipse can run as high as 320 V, twice the nominal operating voltage
 - Voltages on damaged, open-circuit strings can exceed -300 V when the strings are shunted
 - ISS structure is grounded to the positive end of an open-circuit, shunted string

Unshunted (active) string – collects current

Shunted string – no current collection

Damaged shunted string – collects current and arcing is possible due to large open circuit voltage

- ISS string potentials are nominally regulated to 160 V
- However, open circuit string voltages when the arrays are cold coming out of eclipse can run as high as 320 V, twice the nominal operating voltage
 - Voltages on damaged, open-circuit strings can exceed -300 V when the strings are shunted
 - ISS structure is grounded to the positive end of an open-circuit, shunted string
- Arcing thresholds of ISS strings have been measured to range from -210 V to -457 V depending on the plasma density [*Nahra et al.*, 1990]
- Under these conditions the local potential on the damaged string can easily exceed arcing thresholds at the low end of the -210 V to -457 V range for ISS PVAs

Unshunted (active) string – collects current

Shunted string – no current collection

Damaged shunted string – collects current and arcing is possible due to large open circuit voltage

- ISS string potentials are nominally regulated to 160 V
- However, open circuit string voltages when the arrays are cold coming out of eclipse can run as high as 320 V, twice the nominal voltage
 - Voltages on damaged, open-circuit strings can exceed -300 V when the strings are shunted
 - ISS structure is grounded to the positive end of an open-circuit, shunted string
- Arcing thresholds of ISS strings have been measured to range from -210 V to -457 V depending on the plasma density [*Nahra et al.*, 1990]
- Under these conditions the local potential on the damaged string can easily exceed arcing thresholds at the low end of the -210 V to -457 V range for ISS PVAs

Arcing can occur on damaged strings!

Minow et al., 2018

Unshunted (active) string – collects current

Damaged shunted string – collects current and arcing is possible due to large open circuit voltage

- Arcing to space on the array will remove some fraction of the net negative charge on the ISS
- Transient variations in the frame potential are expected during the electrostatic discharge events
- ISS potentials for a shunted string with an opencircuit fault near the beginning of the string on eclipse exit

Left panel: before arc Right panel: during arc

 Potential of ISS structure becomes less negative as charge is lost through arc event, and may even become positive

Minow et al., 2018

Insight into ISS PVA interaction with plasma environment only possible because of high quality FPMU data...

Insight into ISS PVA interaction with plasma environment only possible because of high quality FPMU data...

...in-situ space environment sensors are very useful for diagnosing interaction of space environment with spacecraft

Minow et al., 2018

Questions?