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* Welcome to Space Systems Anomalies and Failures Workshop 2022!

 Why are we using the acronym “SCAF” for the Space Systems Anomalies and Failures (SSAF) Workshop?

— SCAF is the legacy acronym from the Spacecraft Anomalies and Failures Workshop series which is the
predecessor to this workshop

— The name was changed in 2021 from “Spacecraft” to “Space Systems” so anomalies and failures in ground
systems and launch vehicles can be included along with spacecraft: consider the complete system required to
deploy and operate a space system

— The organizers continued to use “SCAF” for a while since it is recognized by workshop participants, but we will
move to the “SSAF” acronym with SSAF 2023
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* Welcome to Space Systems Anomalies and Failures Workshop 2022!

 Why are we using the acronym “SCAF” for the Space Systems Anomalies and Failures (SSAF) Workshop?
— SCAF is the legacy acronym from the Spacecraft Anomalies and Failures Workshop series which is the
predecessor to this workshop

— The name was changed in 2021 from “Spacecraft” to “Space Systems” so anomalies and failures in ground
systems and launch vehicles can be included along with spacecraft: consider the complete system required to
deploy and operate a space system

— The organizers continued to use “SCAF” for a while since it is recognized by workshop participants, but we will
move to the “SSAF” acronym with SSAF 2023

* The organizers are very pleased at the turnout and ongoing support for the virtual workshop this week,
we hope to meet in person for SSAF 2023



@ SCAF 2022 Logistics

* Microphones and cameras are disabled to minimize background noise and bandwidth

* Type questions in chat or request we unmute your microphone

* Day 1 presentations will be posted on a NASA website for participant download (pending approval
by speakers). Information will be sent out after the workshop.



Impact of Space Environments on Space Systems
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ISS from SpaceX Crew Dragon Endeavour during 8 November 2021 fly
around

https://www.nasa.gov/image-feature/the-station-pictured-from-the-spacex-
crew-dragon-0



nternational Space Station (155) [ I

Zarya Module (FGB) Russia 11/1998
Unity Module (Node 1) us 12/1998 23+
* Initial ISS module deployed in 1998 with on orbit Zvezda Module (Service Module) Russia 07/2000 21+
assembly over a period of 20+ years 71 Truss us 10/2000 21+
P6 Truss — US solar array 1 us 12/2000 20+
* Many space exposed materials have been on-orbit estiny Laboratory Module > 02/2001 20
for 15 to 20 years SO Truss us 04/2002 19+
P1 Truss, S1 Truss us 10/2002, 11/2002 19+,19+
P3/P4 — US solar array 2, us 09/2006, 06/2007 15+,14+
* White House directs NASA to extend ISS operations 33/54 Truss = US solanarray 3
th rough 2030 (Decem ber 2021) P5 Truss, S5 Truss us 12/2006, 08/2007 15+,14+
Harmony Module (Node 2) us 10/2007 14+

— By 2030, space exposed materials and hardware
currently on orbit will have experienced LEO space P6 Truss — US solar array 1 us n/a 20+

environment exposures ranging from 9 to 32 years! (relocation)
— lonizing radiation, UV/EUV, atomic oxygen, MMOD Celtimbusiaclityhocile A el 1
_ https://blogs.nasa.gov/spacestation/2021/12/31/bide Kibo Japanese Experiment Module Japan 2008-2009 ~13-12
n-harris-administration-extends-space-station- 56 Truss — US solar array 4 us SElAILY 12+
operations-through-2030/ Poisk Mini-Research Module 2 Russia 11/2009 12+
Rassvet Mini-Research Module 1 Russia 05/2010 11+
* NASA is working life extension planning and Bigelow Expandable Activity us 04/2016 5+
refurbishment activities to assure materials and Module
systems exposed to space environment for decades Louke Multipurpose Laboratory Russia 07/2021 <1
Continue to meet program reqUirements Prichal Docking Module Russia 11/2021 <1

*As of December 2021


https://blogs.nasa.gov/spacestation/2021/12/31/biden-harris-administration-extends-space-station-operations-through-2030/

@ Material Contamination, Degradation, and Atomic Oxygen

+Z side of Functional Cargo Block (

Figure 5: Flaking of the FGB MM/OD shield paint Figure 6: Flaking of the FGB MM/OD shield paint
(2A, STS088-E5051) (4A, STS 97-304-001)

Soares et al., 2002

> 0\ /)
imagefscicnceft¥inalysis Group
NASA £ STSOSE-7 o0l

Figure 14: Observed contamination patterns surrounding Service Module zenith side thruster block
(5A, STS098-706-011)

Soares et al., 2002

Figure 3.—Atomic oxygen undercutting degradation of the P6 Truss solar array wing blanket box cover on the ISS after
only 1 year of space exposure.!®
de Groh and Banks, 2019

Soares et al. 2002: https://doi.org/10.1117/12.481654
K. de Groh and B. Banks, 20019: https://ntrs.nasa.gov/api/citations/20190025445/downloads/20190025445.pdf



https://doi.org/10.1117/12.481654
https://ntrs.nasa.gov/api/citations/20190025445/downloads/20190025445.pdf

https://www.nasa.gov/image-feature/the-station-pictured-from-the-spacex-
crew-dragon-0



* First pair of ISS solar arrays have been operating on orbit for 20+ years and are showing signs of radiation degradation

* NASA s installing deployable ISS Roll-Out Solar Array (iROSA) to assure adequate power through ISS end of life

https://www.nasa.gov/feature/new-solar-arrays-to- power-nasa-s-international-
space-station-research

https://www.nasa.gov/image-feature/the-station-pictured-from-the-spacex- https://www.nasa.gov/image-feature/the-new-iss-roll-out-solar-array-irosa-is-
crew-dragon-0 deployed



Hardware Exp. Insp. MMOD

# Database Table Name Class Days Date Impacts Samples
| SS M I\/I O D I m p a CtS 1 | Node I port CBM hatch cover blanket/shield | 3.182 | Oct-07 16 16
2 | PMA 1 MDM Sunshade blanket/shield 2.984 Mar-08 15 1
3 Airlock shield panel 01-04B blanket/shield 3.195 Feb-11 24 4
4 | Aurlock shield panel 02-04B blanket/shield 3,195 Feb-11 34 6
5 PMA 2 cover blanket/shield 596 Mar-16 26 6
6 | EVA Safety Tether Housing EVA 733 Feb-01 5 2
M M M M 7 | Node 3 Avionics Ba EVA 579 Mar-16 30 0
* Meteoroid and orbital debris (MMOD) impacts are a L | oot Avionics Boe e R 0
. . . . . . 9 | MPLM FM] Flight 2 Logistics 620 | Aug-01 3 1
continuing issue for spacecraft in LEO including the ISS 10 | MPLM FM2 Flight Topstics | 605 [ Decoi | 5 | s
11 | MPLM FM1 Flight 3 Logistics 6.08 Jun-02 12 12
12 | MPLM FM2 Flight 3 Logistics 7.20 Aug-05 22 2
) . 13 | MPLM FM1 Flight 4 Logistics 7.20 Jul-06 24 24
* NASA’s Hypervelocity Impact Technology (NVIT) group 14 [ MPLM M1 Flight Logisics | 938 [ Dec0S | 133 | o7
15 | MPLM FM1 Flight 6 Logistics 722 | Sep-09 64 25
1 1 1 16 | MPLM FM1 Flight 7 Logistics 742 | Apr-10 75 11
maintains an ISS impact database e Lopatcs 702 Lhorto ] 7 1 1
— 1 1 18 | SpaceX Demo 2 Logistics 582 Jun-12 18 18
Current database contains over 1400 records of impact damage e e e .
— Data obtained from ground-based surveys of space-exposed 20 | SpaceX CRS-2 Logistics | 2302 | Apr13 [ 14 7
21 | SpaceX CRS-3 Logistics 28.09 | May-14 17 4
hardware returned to Earth 22 | SpaceX CRS-4 Logistics 3213 | Oct-14 20 0
23 | SpaceX CRS-5 Logistics 2935 Feb-15 13 2
24 | SpaceX CRS-6 Logistics 3401 | May-15 25 2
_ 25 | SpaceX CRS-8 Logistics 31.08 | May-16 20 2
26 | SpaceX CRS-9 Logistics 3697 Sep-16 17 1
27 | SpaceX CRS-10 Logistics 2394 Mar-17 14 6
28 | SpaceX CRS-11 Logistics 2770 Jul-17 15 3
g 29 | SpaceX CRS-12 Logistics 3188 | Sep-17 12 2
30 | SpaceX CRS-13 Logistics 26.96 Jan-18 11 3
: v 31 | SpaceX CRS-14 Logistics 31.11 May-18 9 3
') 32 | SpaceX CRS-15 Logistics 3224 | Aug-18 18 4
i 33 | SpaceX CRS-16 Logistics 3647 | Jan-19 20 4
£ 34 | SpaceX CRS-17 Logistics 2792 | Jun-19 9 1
|
6 35 | TUS-2 housing and cable ORU 1.561 | Oct-07 13 13
| <A 36 | S-band Ant. Support Assy (SASA) E-box ORU 1,842 Jan-08 43 12
! R A 37 | P1 Nitrogen Tank Assembly (NTA) ORU 1.906 | Mar-08 26 17
| < ¥ o 38 | SASA mast ORU 1.842 Mar-08 24 18
<2 » 39 | S1 Nitrogen Tank Assembly (NTA) ORU 2239 | Jan-09 24 13
. ] ] . 40 [ P6 bartery ORU 3149 | Aug-09 92 18
|mpaCt on ISS handrail Impact in aluminum MPLM shield 41 | P1 Ammonia Tank Assembly (ATA) ORU 2474 | Oct09 51 5
42 | S1 Ammonia Tank Assembly (ATA) ORU 2736 | Apr-10 49 4
43 | P6 battery ORU 3447 Jun-10 34 3
44 | P6 battery ORU 3447 Jun-10 29 2
45 | P6 battery ORU 3447 Jun-10 16 0
46 | P6 battery ORU 3447 Jun-10 21 2
. 47 | P6 battery ORU 3447 Jun-10 20 1
Hyde et al., Observations of MMOD Impact Damage to the ISS, 2019 48 | P6 bartery ORU 3447 | nuli0 | 21 2
https://www.hou.usra.edu/meetings/orbitaldebris2019/orbital2019paper/pdf/6001.pdf = ;fni“mjﬂzmbh — = fj;ll‘: - -
51 | Large Adapter Plate Assembly (LAPA) ORU 3.196 | Aug-11 19 2
52 | BCDU ORU 4.631 Jul-19 64 0

Totals




Spatial Density in Low Earth Orbit (LEO) of Debris only, derived from the LeoLabs Catalog
I

Constrained TLE Fits 2021-11-16 8 x | | I | |
Note: Debris includes fragments, mission-related debris, abandoned rocket bodies, and nonoperational payload;
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ISS MDM DRAM Single Event Upsets (SEU)

Geographic distribution of SEUs in ISS Command
and Data Handling System Multiplexer de-
Multiplexers (MDM).

ISS operates nearly 50 standard MDMs on the
vehicle (as of 2016) that provide system wide,
subsystem, and numerous sensor and effector
controls

Events attributed to
o Galactic cosmic rays
o Inner radiation belt in South Atlantic Anomaly

DRAM SEU events with time and location
information are reported in ISS telemetry

From Koontz et al., 2020

0 30°E B0 E 90 E 120° E 150 E 180 E 210 E 240°E 270 E 300 E 330 E 360 E

https://ntrs.nasa.gov/api/citations/20200001591/downloads/20200001591.pdf
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Floating Potential Measurement Unit (FPMU) e g

 FPMU is a suite of four plasma instruments originally deployed on the ISS in
August of 2006, new instrument deployed September 2021

150 cm
o Narrow Langmuir Probe (NLP) 1 Hz Ne, Te, Ni, Vf, Vp
o Wide Langmuir Probe (WLP) 1Hz Ne, Te, Ni, Vf, Vp
o Floating Potential Probe (FPP) 128 Hz Vf h o~
o Plasma Impedance Probe (PIP) 1Hz Ne “ \\
: : : < pip
* Primary use: ISS engineering g
o Characterize US high-voltage (160 V) solar array interactions with plasma § Elcctronics Box
environment. Television Camera Interface . <SSES¥
o Evaluate extravehicular activity plasma hazard environments and vehicle Converter (TVCIC) Swenson et al., 2003;

Barjatya et al., 2009

charging.
o Validate the Plasma Interaction Model used to compute ISS frame potentials.

o Anomaly investigations. Image: NASA

e Secondary use: ionospheric science applications

o Collaborations with ISS science payloads, other spacecraft, and ground-based
ionosphere observations.

o Support studies of the topside ionosphere near electron density peak.

o Data provided to science community through Goddard Space Flight Center’s
(GSFC’s) Space Physics Data Facility (SPDF).

o Auroral charging and ISS space weather interactions.

o Characterize geophysical events and spacecraft plasma interactions.




Floating Potential Measurement Unit (FPMU) e g

 FPMU is a suite of four plasma instruments originally deployed on the ISS in
August of 2006, new instrument deployed September 2021

< pp

150 cm
o Narrow Langmuir Probe (NLP) 1 Hz Ne, Te, Ni, Vf, Vp
o Wide Langmuir Probe (WLP) 1Hz Ne, Te, Ni, Vf, Vp
o Floating Potential Probe (FPP) 128 Hz  Vf ' h ) ~|
o Plasma Impedance Probe (PIP) 1 Hz Ne ir \\‘

* Primary use: ISS engineering

o Characterize US high-voltage (160 V) solar array interactions with plasma B Electronics Box

environment. Television Camera Interface I
. . . . . Swengon et al., 2003;
o Evaluate extravehicular activity plasma hazard environments and vehicle Converter (TVCIC) ;
hargi Barjatya et al., 2009
charging.

o Validate the Plasma Interaction Model used to compute ISS frame potentials.

o Anomaly investigations. Image: NASA

e Secondary use: ionospheric science applications

o Collaborations with ISS science payloads, other spacecraft, and ground-based
ionosphere observations.

o Support studies of the topside ionosphere near electron density peak.

o Data provided to science community through Goddard Space Flight Center’s
(GSFC’s) Space Physics Data Facility (SPDF).

o Auroral charging and ISS space weather interactions.

o Characterize geophysical events and spacecraft plasma interactions.

S123E008424



N@sﬁ Example FPMU Records, 7 December 2014

* 5 orbits

* Variation in floating potential (FP) at FPMU
location is due to the combined effects of

— Current collection by US solar arrays
(dominates after eclipse exit)

— Inductive (v x B).L potential (~0.4 V/m)

* Equatorial plasma density peak (equatorial or
Appleton “anomaly”)
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ISS Negative Charging
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ISS Negative Charging
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ISS Negative Charging
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N(Esf; Sunlight Shunt/Unshunt Experiments
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N(Esﬁ Sunlight Shunt/Unshunt Experiments
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“Positive Charging” Events

 Transient “positive” potential changes at ISS/FPMU 2014/12/08 (2014/332
ISS eclipse exit measured by the FPMU 20 |
during Command Shunt/Unshunt — <+<—— noise
experiments E ob—---- P
o =
___‘.:.'_l-__ . s — P
 All arrays are fully shunted at the time of | & _20  “Positive” cha rging events at
the “positive” events 1= — : : :
P 2 - eclipse exitwith arrays shunted
o
-40 —
* Label: E’i B
o S/US #14: 14 shunt/unshunt operation E — S/US #14
o 0PCU’s: PCU’s are not operating o -60 0 PCU :s
.. -80 | . |
* For many years the origin of these -
“positive” charging signals were not L 20:-07:00 20:08:00 20:0

understood

Minow et al., 2018
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@ Arcing on Damaged, Open-Circuit Strings

<

* |SS string potentials are nominally regulatedto 160V *

:;;; oV +160 V

Unshunted (active) string — collects current

oV oV

Shunted string — no current collection

Minow et al., 2018
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A;f; Arcing on Damaged, Open-Circuit Strings

~

N

* |SS string potentials are nominally regulatedto 160V ¥ <

* However, open circuit string voltages when the arrays ;;; oV +160 V

are cold coming out of eclipse can run as high as 320V,
twice the nominal operating voltage Unshunted (active) string — collects current

o Voltages on damaged, open-circuit strings can exceed -
300 V when the strings are shunted

o ISS structure is grounded to the positive end of an
open-circuit, shunted string

oV oV

Shunted string — no current collection

oV ’ oV

+1V.~ -300V

Damaged shunted string — collects current and arcing is

Minow et al., 2018 possible due to large open circuit voltage
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N‘Esja Arcing on Damaged, Open-Circuit Strings

* |SS string potentials are nominally regulatedto 160V~ 7 <
o - <y — -
* However, open circuit string voltages when the arrays oV +160 V
are cold coming out of eclipse can run as high as 320V,
twice the nominal operating voltage Unshunted (active) string — collects current
o Voltages on damaged, open-circuit strings can exceed -
300 V when the strings are shunted
o ISS structure is grounded to the positive end of an
open-circuit, shunted string -
oV oV
* Arcing thresholds of ISS strings have been measured to Shunted string — no current collection
range from -210 V to -457 V depending on the plasma
density [Nahra et al., 1990]
* Under these conditions the local potential on the D B B
damaged string can easily exceed arcing thresholds at OV / ov
the low end of the -210 V to -457 V range for ISS PVAs +1V. -300V

Damaged shunted string — collects current and arcing is
Minow et al., 2018 possible due to large open circuit voltage



N‘Esja Arcing on Damaged, Open-Circuit Strings

* |SS string potentials are nominally regulatedto 160V~ 7 <
o - <y — -

* However, open circuit string voltages when the arrays oV +160 V
are cold coming out of eclipse can run as high as 320V,
twice the nominal voltage Unshunted (active) string — collects current

o Voltages on damaged, open-circuit strings can exceed -
300 V when the strings are shunted
o ISS structure is grounded to the positive end of an
open-circuit, shunted string -
oV oV

* Arcing thresholds of ISS strings have been measured to Shunted string — no current collection
range from -210 V to -457 V depending on the plasma
density [Nahra et al., 1990]

* Under these conditions the local potential on the D B B
damaged string can easily exceed arcing thresholds at OV / ov
the low end of the -210 V to -457 V range for ISS PVAs +1V. -300V

_ : Damaged shunted string — collects current and arcing is
Arcmg can occur on damaged StrmgS! possible due to large open circuit voltage

Minow et al., 2018



N(Esja Arcing on Damaged, Open-Circuit Strings

. . s/c plasma s/c plasma

* Arcing to space on the array will remove some

fraction of the net negative charge on the ISS +160 V - 160V — ¢piasma

¢pla.sma Solar OV

* Transient variations in the frame potential are +160 V 160V — ¢ iasma A0

expected during the electrostatic discharge =e

eve ntS ¢pfa.sma Solar O V

Array

* |SS potentials for a shunted string with an open- =I* = Potasma

circuit fault near the beginning of the string on

eclipse exit

Left panel: before arc
Right panel: during arc

. . —300V — @plasma
* Potential of ISS structure becomes less negative

even become positive

Minow et al., 2018



Example: 10 February 2013
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Insight into ISS PVA interaction with
plasma environment only possible
because of high quality FPMU data...

Minow et al., 2018
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Insight into ISS PVA interaction with
plasma environment only possible

because of high quality FPMU data...

...in-situ space environment sensors
are very useful for diagnosing
interaction of space environment
with spacecraft

Minow et al., 2018
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Questions?




