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Al / ML in Space Power Systems

Fault Detection and Analysis
— Increase the correct classification of faults/failures
 Distinguish between failures with similar signatures and multiple failures
Contingency Management
— Help determine the “optimal” architecture after a failure
Maintenance
— Human Awareness and interaction
« Provide information to operator to help with repairs/maintenance/etc
— Determine when equipment is starting to deviate from nominal operation
 Avoid failures due to component degradation
Power/Energy Management
— Power system operability / coordination
« Update system set points to ensure power system stability
« Coordinate between converters, etc.
— System monitoring / Intelligent power forecasting and scheduling
« Update load power demand allocations based on actual usage instead of nominal rating (reduce margins)
— Allow additional loads to receive power by not allocating extra power to high priority loads
— Avoid the need to shed loads due to loads consuming more power than allocated



Fault Detection

« Use a support vector machine (machine learning) to:
— Characterize load behavior
— Detect abnormal behavior
— Distribute the computation of high-resolution data,
easing the computational burden on the EPS
* Feature Analysis using Clustering

— Extract large numbers of features from high-
frequency data to characterize transient and
steady-state data

— Use clustering techniques to find relationships
between features, finding patterns in the data,
producing a list of regular load performance
characteristics

— Identify events outside of regular clusters,
indicating abnormal/faulted device behavior

— Optionally include a system expert in the loop to
validate machine learning results and strengthen
accuracy



Transient Fault Detection Using SVM
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« Use a support vector machine (machine learning) to:
— Characterize load behavior
— Detect abnormal behavior
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— Distribute the computation of high-resolution data, easing the computational burden on the EPS

[1] Y. Zhou, R. Arghandeh, and C. J. Spanos, “Partial Knowledge Data-driven Event Detection for Power Distribution

Networks,” IEEE Trans. Smart Grid, pp. 1-1, 2017.




Feature Analysis Using Clustering
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Autonomous Network Reconfiguration

 After a fault, this service sets the electrical network based on a modified Dijkstra's shortest path algorithm
— Computes quickly (<100ms) to minimize load outages
— Finds a near optimal topology based on the given fault information
— Current path weights are decided off-line and sometimes leads to higher priority loads not getting power
« AIl/ML could be applied to update path weights in real-time based on anticipated future needs or past priorities/needs




Autonomous Load Scheduling

« Autonomous power systems must e B
generate periodic load schedules over a 5 b ] 10y o
given planning interval (e.g., 5 minutes) o ' ‘ s

Load number

Load 09 - Priority #05 | 480 W

Load 08 - Priority #03 | 270 W

Load 07 - Priority #01 | 325 W

» Approach: Cast problem as mixed integer
linear programming

— Constraints

Load 06 - Priority #08 | 260 W

Load 05 - Priority #08 | 260 W
Load 04 - Priority #04 | 290 W

Load 03 - Priority #02 | 270 W

Load 02 - Priority #06 | 480 W

Load 01 - Priority #05 | 480 W

* Deliver up to max power available
» Enforce periodicity of schedules
— Objective
« Maximize power delivered to loads STTR Phase 2 - Intelligent EPS Scheduling
weighted by priority » Stottler Henke Associates, Inc and Montana State University
— Lessons Learned: * Creates Al reasoning modules for planning, scheduling,
« If problem too expensive to solve, characterization, machine learning, and fault
break into smaller subproblems detection/diagnosis/reconfiguration in core flight software (CFS)

* Leverages Stottler Henke Associates Aurora software that has
been applied for Unites Space Alliance Space Shuttle Orbiter, Air
Force Satellite Control Network (AFSCN) and other government
applications.

* Result: Successfully can create locally
optimal load profiles for 16 load demo
system within planning interval



NASA Aeronautics Technology Development ﬁi};ﬁ

Revolutionary Vertical Lift Technologies
Hybrid-Electric Aircraft / Aircraft Electrification Urban Air Mobility




Al / ML in Aeronautics Power and Energy Technology

* Fault Detection and Analysis
— Increase the correct classification of faults/failures
 Distinguish between failures with similar signatures and multiple failures
 Digital Twins
— Used for performance monitoring, life/degradation, and fault detection
— Al/ML used to update model and increase accuracy
« Power/Energy Management
— Power forecasting
» Vehicle performance based on state of charge, fuel, etc.
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Aeronautics - Batteries

The NASA GRC Photovoltaics and Electrochemical Vehicle

Systems Branch is working towards the advancement of Integration
battery safety and performance for hybrid and all- “
electric air vehicles

Module to Pack

Al/ML will be used as a predictive tool, using prior Micrfilstructure Design
. . to Cell Design

performance, safety and design data to help predict ® ? e s’ [

future materials and designs to meet future needs. A y1 | YoM "'é

Chemical and |
Battery Pack Level Material Cell Level

Design, Demonstration and Vehicle Integration Design Materials, Design and Safety

BORING - Optimize performance, safety and thermal control at the pack SABERS —Solid state cell chemistry and design to improve
level. performance and safety

X-57—Flight Demonstrator for distributed electric propulsion technology =~ SPARRCI - Improved battery safety and performance via sensor

development, cell integration and modelling for early detection
SUSAN - Subsonic Single Aft Engine Electrofan concept for hybrid/electric  and prevention of cell level failures.
propulsion

EPFD —Demonstration of practical vehicle-level integration of MW-class
electrified aircraft propulsion systems



NASA Sustainability Base




NASA Sustainability Base

* Located at Ames Research Center (Bldg. N232, Collaborative Support Facility) is working with Verdigris
Technologies via an Non-Reimbursable Space Act Agreement (NRSAA).

Technologies offer 3 unique capabilities:
« An intelligent electrical metering network
— AI/ML improves the data quality of each system

— Verdigris validates load signatures and ensures consistency of end-use load categorization for each building or
at scale for a portfolio of buildings.

* Intelligent HVAC optimization

— Al learns building patterns and combines real-time, high-frequency meter data with local weather, utility pricing,
and building management system (BMS) data to develop forecasts.

— Continuously optimize baseline efficiency for the HVAC equipment, and automatically shed or shift loads for
demand management.

« Sensors that can produce 8 kHz signatures which can be used for fault detection and diagnostics of motor
signatures.

13



Lessons Learned & Opportunities

» Obstacles
— Consistent funding for Al/ML in power applications
— ldentifying the correct project, focus, and personnel

* Opportunities for Interagency Collaboration
— Lunar Surface
« Microgrid development
— Power system fault management, power management, reconfiguration
— Aeronautics
 UAM / Electrification
— Power system fault management, digital twins
— Battery development
» Determining battery designs and materials to meet future needs
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