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NAIRAS Model

Nowcast of Atmospheric lonizing Radiation
for Aviation Safety (NAIRAS) Model
— Running in real-time on LaRC computer

cluster since 2011, results hosted on Space
Environment Technologies server/website

— Running in real-time at NASA GSFC

Community Coordinated Modeling Center
(CCMC) since 2020

Key Model Features

— Global atmosphere ionizing radiation
environment model

— Physics-based transport (HZETRN)

— Real-time inclusion of solar energetic particle
(SEP) radiation

— Real-time solar-magnetospheric effects on
radiation (semi-physics-based cutoff model:
CISM-Dartmouth-NASA)

New/Current Model Development
— Improved SEP dose nowcast & forecast
— Extend to LEO environment

— Single-Event Effects (SEE) radiation risk
assessment quantities

— Run-on-Request (ROR) @ CCMC
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* NAIRAS Real-Time Interface @ CCMC (publicly available)

* NAIRAS Run-on-Request (RoR) Capability @ CCMC
(coming soon)
o Model updates and improvements
o Expanded output products
o LEO orbit example
o Comparison to NASA RaD-X balloon flight measurements

* SEP Improved Nowcast and Forecast Developments
(under development)

o Geomagnetic cutoff rigidity
o SEP Proton Spectral Fitting

 Summary & Conclusions
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ISWA: Integrated Space Weather Analysis System
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e LEO radiation environment (trapped protons)

e Extend GCR model to ultra-heavy nuclei (Z=29-92,A=64-
238) for SEE assessment from high-LET processes

* RoR Capability
o Output: (1) global dosimetric quantities and (2) flight trajectory
dosimetric and flux/fluence quantities

o Differential/integral flux/fluence quantities useful for SEE
assessment

o Generic input flight trajectory capability (aircraft, balloon,
spacecrafts)

o Improved atmospheric transport: off-zenith directions included

 Expanded geomagnetic cutoff rigidity model to use either
TSO05 (previous version) or T89 magnetospheric magnetic
field models

* Improved SEP proton spectral fitting to address
o Representing relativistic protons during GLEs
o Overall algorithm robustness in real-time operation
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1. Global Atmospheric Dosimetric Quantities

* Dose rate products: absorbed dose in silicon, absorbed
dose in tissue, dose equivalent, ambient dose
equivalent, and effective dose

* Model grid: 1 x 1 lat/lon, 0-90 km @ 1km increments,
and 1-hour time cadence

* Input: Start/End Date-Time

* Application: global context and situational awareness of
the atmospheric radiation environment; enable
retrospective analysis and verification and validation of
the real-time version of the NAIRAS model
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2. Trajectory Dosimetric, Differential and Integral Flux
and Fluence Quantities
* Dose Quantities (same as for global products)
o Dosimetric quantities at each trajectory point
o Time-integrated dosimetric quantities
* Integral Flux and Fluence Quantities
o GCR LET and trapped/SEP proton flux/fluence
o Input: lower LET/energy bounds of integral quantities
* Differential Flux and Fluence Quantities
o GCR LET and trapped/SEP proton flux/fluence

* Input: trajectory file, separate set of shielding depths for
dosimetric and flux/fluence quantities

* Application: detailed flight analysis and radiation
environment characterization of individual microelectronic
components and SEE assessment
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 NAIRAS Total Trajectory

Effective Dose (per day) 20T

o GCR: 215 uSv
o TRP: 163 uSv
o Total: 378 uSv

 |SS Total Effective Dose

(per day)
o GCR: 233 uSv (Wu et al.,

Effective Dose Rate (uSv/h)

1996) ol

o TRP: 166 uSv (Wu et al.,
1996)

o Total: 438 uSv (Cucinotta,
2008)
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RaD—¥X Balleon Flight: September 25-26, 2015 (Fort Sumner, NM)
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RaD—X Balloon Flight: September 25-26, 2015 (Fort Sumner, MNM
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Geomagnetic Cutoff Rigidit

y.Model

* Based on CISM-Dartmouth model
with TSO5 magnetospheric B-field
(Kress et a|_’ 2010) Date: 10/29/2003 2100 UT

Halloween 2003 Geomagnetic Storm

TSO05 Cutoff Rigidity

u>

* Added multiple maﬁnetospheric B-
field selection capability

o TS05 = parameterized by solar wind
quantities, IMF, SYM-H/Dst, and
other derivative solar wind quantities

o T89 = parameterized by Kp

ifference (GV)

-0.250

SYH-H
* The TSO5 better represents e
_rnagnetospherlc.responses to 0z 5 o7
interplanetary disturbances
o but real-time solar wind parameters % b I
available from ACE/DSCOVR 1995+ e L —
* Benefits of T89 Option
o NAIRAS can simulate any historical Top Right: Largest suppression of cutoff (~1 GV) (open-
solar-geomagnetic storm event closed field boundary) occurs in dusk sector due to max
o Extend/enhance validation build-up of partial ring current in TSO5 (IMF Bz dependent)
capabilities
o Provide initial step in forecasting Bottom Left: T89 doesn’t well represent max cutoff
cutoff via Kp-parameter forecast suppression and cutoff in dusk sector
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- Kp/Dst-Forecast Approach

o WSA-ENLIL-Cone solar wind parameters forecast

o Empirical formula to get Kp/Dst as function of solar
wind 5ﬁeed and total IMF B-field and clock angle

(Newell et al., 2007)

o However, need separate IMF clock angle forecast
to improve state-of-art (@CCMC) since WSA-ENLIL-
Cone has no internal CME structure

* Machine Learning IMF Clock Angle

o Trained on ACE data (solar wind velocity and
density, IMF B-components, derived clock angle)
from large geomagnetic storms (Dst min < -100 nT)
during solar cycles 23 and 24

o Developed deterministic and stochastic models

o Forecast 1-12 hours ahead

* Key Results

o IMF clock angle predictions provide substantial
improvement over current operational Kp/Dst

models at CCMC

o The stochastic models developed provide mean
predictions and reliable uncertainty quantification

o The models improve upon existing techniques and
can be confidently used for at least 6 hours in
advance or for longer/shorter hours at the

discretion of the user
01/24/2022
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e Current Approach

o Fit four functional forms to GOES
differential proton flux

o Choose solution with minimum chi-square

o Issue: solution can be unreliable/unphysical
during weak events and event onset

* Improvements

o Option to fit functional forms to either
differential or integral GOES proton flux

o Interpolated/extrapolate on differential
GOES proton flux based on absolute chi-
square criterion

o New: promising technique that uses >500
MeV proton flux from GOES-R+ series
V\I/_i;cjhc))ut the use of functional forms (next
slide

* SEP/GLE relativistic proton spectrum and
itch-anﬁle distribution fitting algorithm
or benchmarking real-time model

o Inferred from neutron monitor data
(Mishev et al., 2013, 2014)

o Testing and validating nowcast/forecast SEP
spectral fitting approaches

GSE Latitude (deg)
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SEP proton spectral fitting problematics

SEF Proton Spectral Flux ; Jon 20, 2005 (GLEGS) 0725 UT
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Figure 1: GOES (EPS +HEPAD) differential proton flux
measurements and NM-inferred differential proton flux for
January 20, 2005 SEP/GLE. Double power-law (DP-Fif) and
Ellison-Ramatv (ER-Fit) functional fits to the observations.

Fluance

=
i

I0=14]]

et DOES. Wi

Figure 1: (left) Simulated GOE S integral flux
measurements (diamonds). (right) Results of new spectral
flitting algorithm (dashed) compared to reference spectrum
(solid} in previous figure.
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Summary-& Conclusions=
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* Major NAIRAS Code Deliverables to CCMC/iSWA

o NAIRAS Real-Time Global Dosimetric Quantities (Publicly
Available Now)

o NAIRAS RoR Capability (Publicly Accessible in Spring 2022)
o NAIRAS Improved SEP Proton Spectral Fitting Algorithm
(Operational in Fall 2022)

* Significant Improvements to NAIRAS Model
Developed, Implemented and Tested

* SEP Dose Forecast Development

o Geomagnetic Cutoff Rigidity Forecast Model (Under
Development)

o SEP Proton Spectrum Forecast (Begin this Year)
* NAIRAS Transition to CCMC and Example Output

o See Gronoff et al. Session 11.5 on Wednesday
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