
NAIRAS Model Improvements to Aviation Radiation Dose Predictions

Christopher J. Mertens¹, Guillaume Gronoff², Daniel Phoenix², Smriti Nandan Paul³, Piyush Mehta³, Yihua Zheng⁴ ¹NASA Langley Research Center, Hampton, VA

- ² Science Systems and Applications, Inc., Hampton VA
- ³ West Virginia University, Morgantown, WV
- ⁴ NASA Goddard Space Flight Center, Greenbelt, MD

NAIRAS Model

- Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) Model
 - Running in real-time on LaRC computer cluster since 2011, results hosted on Space Environment Technologies server/website
 - Running in real-time at NASA GSFC Community Coordinated Modeling Center (CCMC) since 2020
- Key Model Features
 - Global atmosphere ionizing radiation environment model
 - Physics-based transport (HZETRN)
 - Real-time inclusion of solar energetic particle (SEP) radiation
 - Real-time solar-magnetospheric effects on radiation (semi-physics-based cutoff model: CISM-Dartmouth-NASA)
- New/Current Model Development
 - Improved SEP dose nowcast & forecast
 - Extend to LEO environment
 - Single-Event Effects (SEE) radiation risk assessment quantities
 - Run-on-Request (RoR) @ CCMC

- NAIRAS Real-Time Interface @ CCMC (publicly available)
- NAIRAS Run-on-Request (RoR) Capability @ CCMC (coming soon)
 - \circ Model updates and improvements
 - \odot Expanded output products
 - LEO orbit example
 - Comparison to NASA RaD-X balloon flight measurements
- SEP Improved Nowcast and Forecast Developments (under development)
 - Geomagnetic cutoff rigidity
 - \circ SEP Proton Spectral Fitting
- Summary & Conclusions

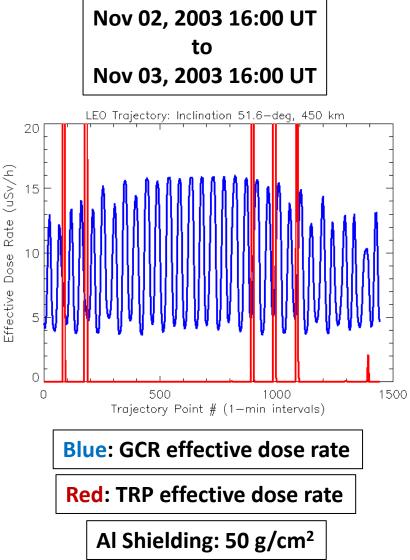
Real-Time NAIRAS @ CCMC/iSWA

NASA NAIRAS Model Improvements

- LEO radiation environment (trapped protons)
- Extend GCR model to ultra-heavy nuclei (Z=29-92,A=64-238) for SEE assessment from high-LET processes
- RoR Capability
 - Output: (1) global dosimetric quantities and (2) flight trajectory dosimetric and flux/fluence quantities
 - Differential/integral flux/fluence quantities useful for SEE assessment
 - Generic input flight trajectory capability (aircraft, balloon, spacecraft)
 - Improved atmospheric transport: off-zenith directions included
- Expanded geomagnetic cutoff rigidity model to use either TS05 (previous version) or T89 magnetospheric magnetic field models
- Improved SEP proton spectral fitting to address
 - Representing relativistic protons during GLEs
 - $\,\circ\,$ Overall algorithm robustness in real-time operation

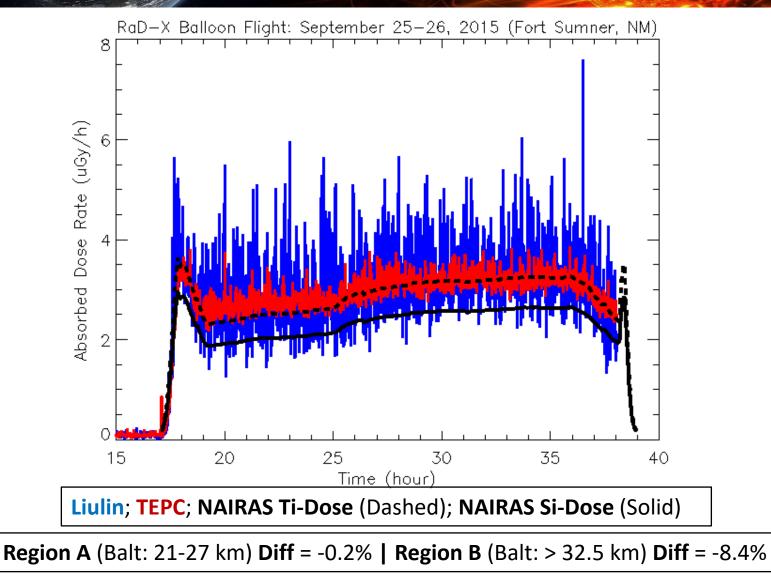
NASA NAIRAS ROR Output Products

1. Global Atmospheric Dosimetric Quantities

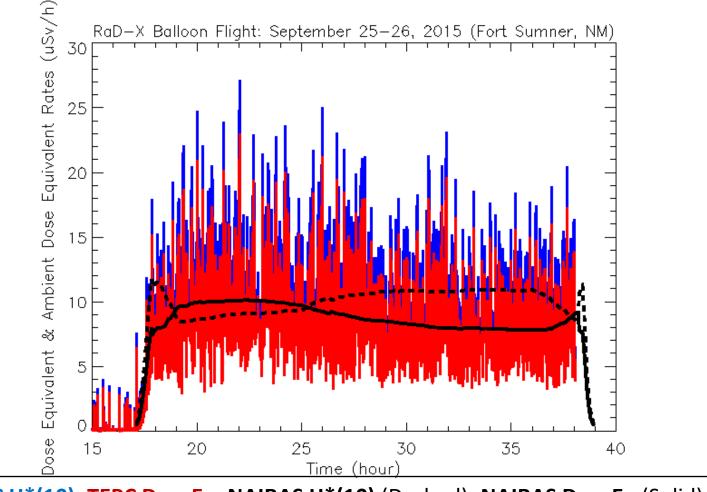

- Dose rate products: absorbed dose in silicon, absorbed dose in tissue, dose equivalent, ambient dose equivalent, and effective dose
- Model grid: 1 x 1 lat/lon, 0-90 km @ 1km increments, and 1-hour time cadence
- Input: Start/End Date-Time
- Application: global context and situational awareness of the atmospheric radiation environment; enable retrospective analysis and verification and validation of the real-time version of the NAIRAS model

NASA NAIRAS ROR Output Products

- 2. Trajectory Dosimetric, Differential and Integral Flux and Fluence Quantities
 - Dose Quantities (same as for global products)
 - Dosimetric quantities at each trajectory point
 - $\,\circ\,$ Time-integrated dosimetric quantities
 - Integral Flux and Fluence Quantities
 - GCR LET and trapped/SEP proton flux/fluence
 - Input: lower LET/energy bounds of integral quantities
 - Differential Flux and Fluence Quantities
 - GCR LET and trapped/SEP proton flux/fluence
 - Input: trajectory file, separate set of shielding depths for dosimetric and flux/fluence quantities
 - Application: detailed flight analysis and radiation environment characterization of individual microelectronic components and SEE assessment


NAME NAIRAS GCR/TRP LEO Trajectory

- NAIRAS Total Trajectory Effective Dose (per day)
 - o **GCR**: 215 uSv
 - o **TRP**: 163 uSv
 - Total: 378 uSv
- ISS Total Effective Dose (per day)
 - GCR: 233 uSv (Wu et al., 1996)
 - TRP: 166 uSv (Wu et al., 1996)
 - Total: 438 uSv (Cucinotta, 2008)

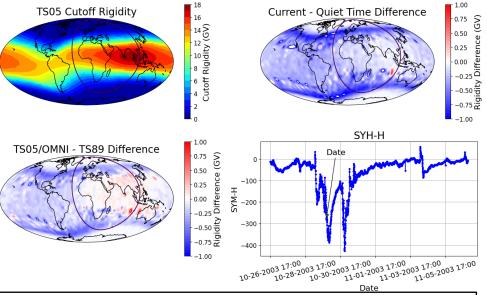


8

NASA NASA RaD-X Balloon Flight

NASA RaD-X Balloon Flight

TEPC H*(10); TEPC DoseEq; NAIRAS H*(10) (Dashed); NAIRAS DoseEq (Solid)


Region A (Balt: 21-27 km) **DEq Diff** = 3.9% | **Region B** (Balt: > 32.5 km) **DEq Diff** = 5.2%

Geomagnetic Cutoff Rigidity Model

- Based on CISM-Dartmouth model with TS05 magnetospheric B-field (Kress et al., 2010)
- Added multiple magnetospheric Bfield selection capability
 - TS05 → parameterized by solar wind quantities, IMF, SYM-H/Dst, and other derivative solar wind quantities
 - \circ **T89** \rightarrow parameterized by Kp
- The TS05 better represents magnetospheric responses to interplanetary disturbances
 - but real-time solar wind parameters available from ACE/DSCOVR 1995+
- Benefits of T89 Option
 - NAIRAS can simulate any historical solar-geomagnetic storm event
 - Extend/enhance validation capabilities
 - Provide initial step in forecasting cutoff via Kp-parameter forecast

Halloween 2003 Geomagnetic Storm

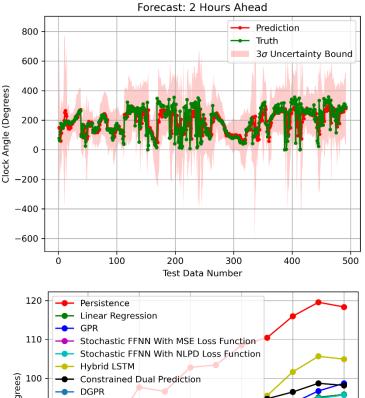
Date: 10/29/2003 2100 UT

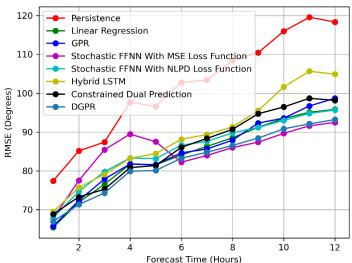
Top Right: Largest suppression of cutoff (~1 GV) (openclosed field boundary) occurs in dusk sector due to max build-up of partial ring current in TS05 (IMF Bz dependent)

Bottom Left: T89 doesn't well represent max cutoff suppression and cutoff in dusk sector

Machine Learning Kp/Dst-Forecast

Kp/Dst-Forecast Approach


- WSA-ENLIL-Cone solar wind parameters forecast
- Empirical formula to get Kp/Dst as function of solar wind speed and total IMF B-field and clock angle (Newell et al., 2007)
- However, need separate IMF clock angle forecast to improve state-of-art (@CCMC) since WSA-ENLIL-Cone has no internal CME structure

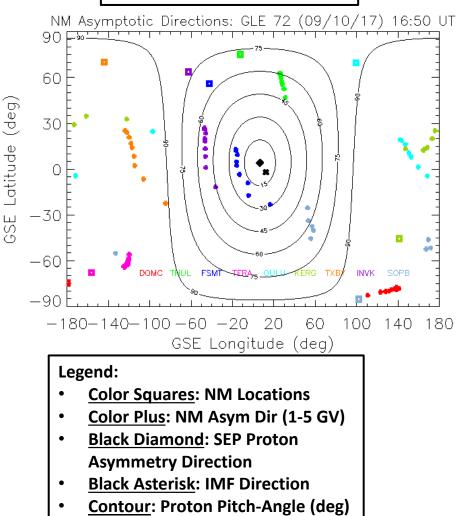

Machine Learning IMF Clock Angle

- Trained on ACE data (solar wind velocity and density, IMF B-components, derived clock angle) from large geomagnetic storms (Dst min < -100 nT) during solar cycles 23 and 24
- Developed deterministic and stochastic models
- Forecast 1-12 hours ahead

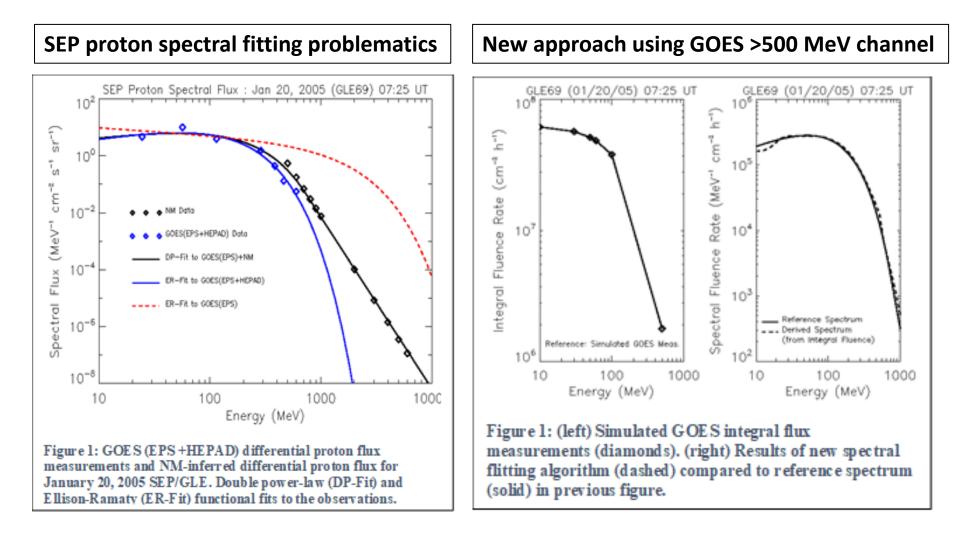
Key Results

- IMF clock angle predictions provide substantial improvement over current operational Kp/Dst models at CCMC
- The stochastic models developed provide mean 0 predictions and reliable uncertainty quantification
- The models improve upon existing techniques and can be confidently used for at least 6 hours in advance or for longer/shorter hours at the discretion of the user 01/24/2022

Real-Time SEP Spectral Fitting


Current Approach

- Fit four functional forms to GOES differential proton flux
- Choose solution with minimum chi-square
- **Issue**: solution can be unreliable/unphysical during weak events and event onset


Improvements

- Option to fit functional forms to either differential or integral GOES proton flux
- Interpolated/extrapolate on differential GOES proton flux based on absolute chisquare criterion
- New: promising technique that uses >500 MeV proton flux from GOES-R+ series without the use of functional forms (next slide)
- SEP/GLE relativistic proton spectrum and pitch-angle distribution fitting algorithm for benchmarking real-time model
 - Inferred from neutron monitor data (Mishev et al., 2013, 2014)
 - Testing and validating nowcast/forecast SEP spectral fitting approaches

September 2017 GLE 72

New SEP Spectral Fitting Algorithm

NASA Summary & Conclusions

- Major NAIRAS Code Deliverables to CCMC/iSWA
 - NAIRAS Real-Time Global Dosimetric Quantities (Publicly Available Now)
 - NAIRAS RoR Capability (Publicly Accessible in Spring 2022)
 - NAIRAS Improved SEP Proton Spectral Fitting Algorithm (Operational in Fall 2022)
- Significant Improvements to NAIRAS Model Developed, Implemented and Tested
- SEP Dose Forecast Development
 - Geomagnetic Cutoff Rigidity Forecast Model (Under Development)
 - SEP Proton Spectrum Forecast (Begin this Year)

NAIRAS Transition to CCMC and Example Output See Gronoff et al. Session 11.5 on Wednesday

Acknowledgements

- NASA SMD Space Weather Operations to Research (ROSES Solicitation NNH19ZDA001N-SWO2R)
 - SEP dose nowcast improvements and forecast development
- NASA Engineering and Safety Center (NESC) Commercial Crew Program Post-Flight Reference Radiation Environments
 - RoR capability and model improvements and development for SEE radiation risk assessment