

Optimizing surfactant templating of yttriastabilized zirconia aerogels for hightemperature applications: Effect of cationic surfactant

Rebecca C. Walker¹

Jamesa L. Stokes², Frances I. Hurwitz², Haiquan Guo³, James K. Ferri¹

¹Virginia Commonwealth University, Department of Chemical & Life Sciences Engineering, Richmond, VA

²NASA Glenn Research Center, Cleveland, OH

³Universities Space Research Association, Cleveland, OH

ACSSSC - January 31st, 2022

This work was funded by NASA Fellowship 80NSSC18K1697.

Aerogel Background

Gel in which all of the liquid has been replaced with gas 95 – 99% air by volume, lightest synthetic solid in existence

Mesoporous solid made of connecting nanostructures Pores between 2 and 50 nm

Exhibit many extreme material properties

- Low bulk density
- High specific surface area
- High porosity
- Low thermal conductivity

Thermal Management

Aerogels as Thermal Insulators

Excellent insulators due low thermal conductivity (k)

- High porosity, high amounts of air (low k)
 - Large pore volume/surface area, mesoporous structure → high porosity
 - Higher porosity \rightarrow lower k
- Small pores inhibit gas movement, suppress gas convection
- Tortuous path for heat transfer through solid pore walls
- Made from insulating solids (ex: YSZ) Composite of air + YSZ, both have low k
- Low amounts of solid for conduction

Material	<i>k</i> (W/m⋅K)
Air	0.02 - 0.03
YSZ	0.50 - 2.36
Zr Aerogel	0.02 - 0.18
Si Aerogel	0.01 - 0.02

High-temperature exposure leads to sintering and densification of aerogels

- Pore collapse, surface area reduction
- Conduction increases \rightarrow Effectiveness as insulators decreases
- Must optimize the aerogel formulation to retain mesoporous structure and high surface area upon high-temperature exposure to increase effectiveness at high temperature

Temperature Increases

1000°C, 47 m²/g, 0.21 cm³/g

As-dried, 407 m²/g, 1.43 cm³/g 600°C, 181 m²/g, 0.88 cm³/g Surface Area, Pore Volume Decreases

1100°C, 21 m²/g, 0.02 cm³/g

Templating Methods

Structure directing agents can be used to control the pore structure of materials in the mesopore range

- Leads to well-ordered structures, uniform pore diameters
- Hard (porous membrane) vs. Soft (surfactant) templates
- Used to produce hollow spheres or fibers, nanotubes, mesoporous silica, gels, aerogels, etc.

Example: Formation of mesoporous silica nanotubes

Surfactant Templating

Surfactants (Surface-active-agent)

• Amphiphilic molecules, preferentially adsorbing at an interface

Hydrophobic tail

Surfactant

- Assemble at interfaces and in the bulk, forming micelles at the critical micelle concentration (CMC)
- Micelles can be used as templating agents for aerogels

Enable retention of mesoporous structure and high specific surface area, minimize shrinkage at high-temperature

Surfactant interaction with aerogel matrix could be a potential negative consequence of surfactant templating Surfactants control precursor size and crystalline growth via capping effect

Micelle

Hvdrophilic head

Surfactant Templating

Surfactants template the aerogel structure

- Added to sol prior to gelation (multiple of CMC)
- Washed out during supercritical drying and oxidized during heat treatment, leaving pores behind
- Not all pores are directly templated by surfactant

Cationic Surfactants

Prior work: Cationic surfactant

- Hydrophilic head has a positive charge
- Chosen surfactant: Cetrimonium Bromide (CTAB)

Motivation: Known to form smaller nanoparticles with higher surface area after heat-treatment compared to other surfactants

Experimental: Synthesis & characterization of YSZ aerogels with 0x, 0.5x, and 2x CTAB with various heat-treatment

Results: 0.5x CTAB synthesized aerogels with higher surface area and pore volume following exposure to 600°C and 1000°C

YSZ Aerogel Formulation

20 mol% Y \rightarrow increasing Y content increased pore size, as well as retained mesoporous structure and smaller particle size after high-temperature exposure compared with lower dopant levels (Hurwitz)

 $2x H_2O \rightarrow$ synthesized aerogels with higher surface area and pore volume at high temperature than $6x H_2O$

20% Y, 2x H ₂ O				20% Y, 6x H ₂ O					
	BET Surfa (m²	ace Area /g)	BJH Desorption Cumulative Pore Volume (cm ³ /g)			BET Surface Area (m ² /g)		BJH Desorption Cumulative Pore Volume (cm ³ /g)	
СТАВ	0.5x	2x	0.5x	2x	СТАВ	0.5x	2x	0.5x	2x
As-Dried	403	260	1.95	1.22	As-Dried	434	393	1.63	1.89
600°C	257	181	1.35	0.88	600°C	148	107	0.83	0.49
1000°C	52	47	0.36	0.21	1000°C	37	43	0.09	0.11

BJH Desorption Cumulative

	BET Surface Area (m ² /g)			Pore Volume (cm ³ /g)			
	Ox CTAB	0.5x CTAB	2x CTAB	Ox CTAB	0.5x CTAB	2x CTAB	
As-Dried	263	403	407	0.97	1.95	1.43	
600°C	149	257	181	0.77	1.35	0.88	
1000°C	37	52	47	0.2	0.36	0.21	

0.5x CTAB had the highest surface area and the highest pore volume of heattreated aerogels

Pore Structure

^{600°}C

Sintering and densification is evident, especially at 1000°C.

With the addition of CTAB, the aerogels are less dense or coarse, particularly at 1000°C.

Differences of the pore size in aerogels without CTAB and aerogels with CTAB were difficult to distinguish.

Crystalline Structure

CTAB inhibited crystallite growth at 1000°C, which may have hindered surface area and pore volume decrease, as well as shrinkage

TEM images (100k magnification) heat-treated at 600°C and 1000°C (inset)

		Average Crystallite Size (Å)					
СТАВ	Temperature (°C)	Scherrer	Monshi-Scherrer (M-S)	Williamson-Hall (W-H)	Size-Strain-Plot (SSP)	TEM Analysis	
Ox	600	55	60	68	63	61	
	1000	197	227	283	250	270	
0.5x	600	56	60	65	62	73	
	1000	195	210	225	205	217	
2x	600	55	59	64	60	76	
	1000	193	200	207	201	210	

0.5x CTAB showed the overall highest surface area and pore volume following heat-treatment, which was unexpected

Stage 1 Stage 2 Stage 3 Stage 4 Image: Stage 3 Image: Stage 3 Image: Stage 3 Image: Stage 4 Image: Stage 3 Image: Stage 3 Image: Stage 3 Image: Stage 4 Image: Stage 4 Image: Stage 3 Image: Stage 4 Image:

Result influenced by?

Gemini Surfactant EBAB Concentration

Estimation of the critical micelle concentration of CTAB

Rr'

 Adsorption could have constrained gelation, reducing the aerogel skeleton strength and increasing shrinkage

Gemini surfactant (+) adsorbed onto quartz surface (-); increasing surfactant concentration led to build-up on surface through, first, electrostatic interactions and, then, hydrophobic chain interactions¹³

Charge Effects with Precursor

Proposed work: understand interactions of surfactants with the zirconia aerogel matrix

```
H_{3}C-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-
```

Experimental: anionic and nonionic surfactants added to YSZ aerogels; QCM experiments to understand interactions

- Anionic (negative charge): Sodium dodecyl sulfate (SDS)
- Nonionic (no apparent ionic charge): Pluronic[®] P-123

Results: Is surface area & mesoporous structure retained in YSZ aerogels after heat-treatment?

Preliminary Experiments

Sample	Gel?	Aerogel?	Shrinkage (%)	Density (g/cm³)
No surfactant			17.39	0.23
SDS, Below CMC*				
SDS, Above CMC*			17.54	0.25
SDS, Above CMC**				
P-123, Below CMC*				
P-123, Above CMC*			16.79	0.27
CTAB, Above CMC*			20.38	

Project Goal Summary

Project Goal: Optimize the formulation of YSZ aerogels using surfactant templating

Synthesize surfactant-templated aerogels with high porosity

- Cationic, anionic, and nonionic surfactant templates
- Higher porosity \rightarrow lower thermal conductivity
- Increased effectiveness when used as thermal management systems

Determine surfactant selection criteria

- Use a set of experiments in a limited sub-space
- Characterize results
- How is this criteria translated to other aerogel materials?

Acknowledgements

Virginia Commonwealth University

- Dr. Massimo Bertino (TEM, SC dryer)
- Dr. Dmitry Pestov (SEM/XRD)
- Dr. Carl Mayer (XRD)
- Dr. Michael Burkholder (BET)

NASA Glenn Research Center

- Dr. Richard Rogers (XRD)
- Dr. Wayne Jennings (SEM)
- Jessica Cashman (Synthesis)

This work was funded by NASA Fellowship 80NSSC18K1697.

Supplemental Slides

Proposed work: Quartz Crystal Microbalance Experiments

- Zirconia-sputtered QCM sensors will be placed in the sol solution containing the surfactant
- The gel will form around the QCM sensor
- Using cationic, anionic, and nonionic surfactants
- Are the surfactants solely forming micelles? Or are the surfactants interacting with zirconia through adsorption onto the gel?
- Following an enhanced understanding of surfactant interaction with the zirconia matrix, selected surfactants will be used in the synthesis of zirconia aerogels

Anionic Surfactants

Proposed work: Anionic surfactants

- Hydrophilic head has a negative charge
- Chosen surfactant: Sodium dodecyl sulfate (SDS)

Motivation: maintained high surface area and pore size in silica aerogels at 600°C; also lowered density and thermal conductivity

$$H_{3}C-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-O-S-O^{-}Na^{+} (SDS)$$

 Additional surfactant: Sodium dodecylbenzene sulfonate (SDBS) Motivation: influenced the final structure of carbon aerogels

$$C_{12}H_{25}$$

Hydrophilic–lipophilic balance (HLB) reflects surfactant's partitioning behavior between polar and non-polar medium

- Agreed-upon method used to compare surfactants
- Useful index for non-ionic surfactants

HLB value = Σ (Hydrophilic groups) + Σ (Lipophilic groups) + 7

- Strongly hydrophilic surfactant, HLB \rightarrow 40
- Strongly lipophilic surfactant, HLB \rightarrow 1

HLB may be used as a predictive parameter to compare surfactant influence on aerogel properties

Nonionic Surfactants

Proposed work: Nonionic surfactants

- Surface-active portion bears no apparent ionic charge
- Chosen surfactant: Pluronic[®] P-123 (*HLB: 7 9*)

• Additional surfactant: Brij[®] 52 (HLB: 5)

• Additional surfactant: Span® 40 (HLB: 6)

Motivation: low Hydrophilic-Lipophilic Balance (HLB) value 22