
1

Benefits of using Electronic Data Sheets (EDS) with coreFlight

Systems (cFS) – A Project Example
Mathew McCaskey (HX5, NASA GRC) | Regenerative Fuel Cell (RFC) Project
Space Technology Mission Directorate Game Changing Development Program

Outline

- cFS with EDS support overview

- EdsLib tool/database

- Interfacing EdsLib with cFS (CFE_MissionLib database)

- The Regenerative Fuel Cell (RFC) Project overview

- RFC software approach

- Operational Program and Hardware Simulator

- Usage of cFS with EDS support

- Operator Interface

- EdsLib/CFE_MissionLib Python bindings

- cFS-EDS-GroundStation

- Telemetry System

- Telecommand System

- Demo

cFS With EDS Support Overview

- Spacecraft Onboard Interface Services (SOIS) EDS XML
specifications are defined by CCSDS 867.0-B-1 (Blue Book):
https://public.ccsds.org/Pubs/876x0b1.pdf

- Specifications for defining constants, data structures, interfaces,
constraints, etc. across multiple packages/files

- EdsLib: https://github.com/nasa/edslib

- Contains an implementation of a tool and runtime library for
embedded software to create and interpret data structures defined
using the XML specifications.

- Parses the information in the XML files within a given project into a
Document Object Model (DOM) tree

- Creates C header files that contain the data structures defined in
the EDS files

- Generates C database with metadata of the DOM tree

- Base names, types, structure sizes, number of sub-elements,
sub-element information, labels, constraints, etc.

- Information for packing / unpacking data structures.

- Runtime library contains API for retrieving EDS metadata and
converting between packed and native data structures

- Bindings for Python, Lua, JSON allow the manipulation of EDS
objects within scripts.

- Application agnostic

Example DOM tree

https://public.ccsds.org/Pubs/876x0b1.pdf
https://github.com/nasa/edslib

cFS With EDS Support Overview

- Additional tools and libraries were developed to interface EdsLib
with cFS

- The interface specifications of EDS are used to define the telemetry
and telecommand interfaces of the cFS Software Bus (SB)

- Topic IDs for telemetry/telecommand are managed in an EDS file

- Constraints are used to manage command codes

- Dispatch tables are generated for applications receiving messages
from the SB

- Alongside the EdsLib database, a C database containing SB
interface metadata is also generated (CFE_MissionLib)

- Interface ID, topic ID, dispatch table, associated EDS
object for the SB message

- Runtime library to get/set header information from
telemetry/telecommand messages

- Conversion between MsgID, TopicID, ApID

- Customizable for any type of desired header (the header needs to
be defined in the EDS files)

- Tool developed to read a Lua script and generate a binary
configuration file that can be read in a cFS instance at runtime

- https://github.com/jphickey/cfe-eds-framework

Example Interface Diagram

https://github.com/jphickey/cfe-eds-framework

The Regenerative Fuel Cell (RFC) Project Overview

- A Regenerative Fuel Cell is an energy
storage system that utilizes hydrogen and
oxygen gases to store energy

- Fuel Cell converts gas reactants to electricity
and product water

- Electrolyzer uses electricity (e.g., from a
photovoltaic array) to convert water back to
gaseous reactants

- Primary goal of the project is to
demonstrate an RFC system within a TVAC
chamber for several lunar day/night cycles

- At the lunar equator, both the day and night
last about 2 weeks

- For such long durations similarly powered
battery systems become prohibitively heavy

PEM
Electrolyzer

PEM
Fuel Cell

Thermal Module

Vents

H2 O2

Gas Storage

External System

P
o

w
er M

an
agem

en
t an

d

D
istrib

u
tio

n
 (P

M
A

D
)

A
vio

n
ics

Fluid Processing
and Control

Module

Thermal Envelope: Medium Temperature

Water Storage

Fluid Legend

H2 H2O Power

O2 Thermal Data/Com

RFC Software Approach

- The RFC software is responsible for handling the
monitoring and control of the RFC system

- Manages the state machine as the RFC system
transitions through different operational modes

- Turns on actuators and effectors during state
transitions and fault actions

- Monitors sensors to check if they are within
operational limits

- Caution, Warning, Alarm system is set up to
quantify the severity of a fault

- Perform predefined fault actions based on the
sensor and severity of the fault

- Calculate parameters related to the overall health
of the RFC system (e.g., overall system charge)

- Store operational data in internal data files and
send telemetry to a remote operator interface

Mode Control Legend

Operator

Computer

Interlock

Operational Modes

Normal

Unpowered

Safe

Standby

Normal

Fuel Cell Electrolyzer

RFC Software Approach

- Developing three programs:

- Operational Program (OP)

- Resides on a CubeSat Space Processor (CSP)

- Manages state machine, fault monitoring, fault
actions, telemetry, and data storage

- Hardware Simulator (HS)

- Tool developed to simulate sensor values based
on the current state of the actuators/effectors

- Allows for processor-in-the-loop (PIL) and
hardware-in-the-loop (HIL) testing scenarios

- Operator Interface (OI)

- Python based GUI that receives telemetry from
the OP, displays it in useful formats for an
operator.

- Download data files stored on the CSP board.

PIL

HIL

Using cFS with EDS Support

- Both the OP and HS will be based in core-flight with
Electronic Data Sheets (EDS) support

- cFS has a history of being successfully used on flight
projects.

- The RFC project may eventually transition to a flight
project.

- Before RFC, several GRC projects with similar
requirements used cFS w/EDS support

- Starting point for the RFC code base

- EDS files become the single source of truth

- EdsLib simplifies the data communication between
different computer architectures

- Laptop to/from CSP board

- Bindings allows using EDS objects in scripts

- Operator Interface (Python)

- Human readable scripts (Lua) to generate run time
configuration files.

- Functional testing environments (Lua)

- Community of developers to ask for help.

OP

HS

Using cFS with EDS Support

- Configuration Files

- Input/Output App

- Channel setup

- type, driver, board/
subchannel location, etc.

- Multiple files for different setups

- PIL, HIL, RFC system

- RFCEXEC App

- Fault Table

- Fault Action Table

- Output Checking Table

- Data Storage App

- Message ID management

- Message ID filtering

- File management

op_fault_table.lua

Generates the file /cf/fault_table.tbl

that contains the fault table in a packed

binary format with appropriate

CFE_FS and CFE_TBL headers

…

Using cFS with EDS Support

- Python Bindings

- Create and use EDS objects within python

- The RFC project developed additional bindings

- Iterators for containers and enumerations to
extract entry labels

- Iterators for cFS instances, topics, and
subcommands

- Methods to extract instance and topic information
from telemetry SB message

- Methods to set Publish/Subscribe parameters for
telecommand SB message

- Operator Interface

- Using the bindings we developed a python-based GUI

- Send Commands

- Receive/Decode Telemetry

- Display telemetry in useful formats for an RFC
operator

cFS-EDS-GroundStation Demo

- In the process of developing the OI we created a generic python-based GUI
that interfaces with any instance of cFS with EDS support

- Useful tool for quick command/telemetry checking

- Telemetry System:

- Automatically decodes telemetry messages, saves the raw messages in
internal arrays, and displays the information in a telemetry log

- Listening to telemetry messages can be paused and un-paused

- Telemetry messages can be saved to time stamped binary files on a
type-by-type basis or all at once

- Messages are labeled by a “Instance:Topic” identifier

- Telecommand system:

- Dropdown menus for instance, topic, and subcommand (if available)

- If any chosen topic or subcommand contains a payload, entry fields will
be created

- Dropdown menus for Enumeration labels

- Text entries otherwise

- Payload entries are checked, then the command message is packed and
sent

- Python files are configured with the mission name during the cFS build
process

- Everything is read from EdsLib/CFE_MissionLib databases

- https://github.com/nasa/cFS-EDS-GroundStation

https://github.com/nasa/cFS-EDS-GroundStation

1212

Thank you!

1313

Backup Slides

Using EDS files

- Example EDS file

- Snippet defines a container (C struct)

- Application components are referenced with a consistent naming format: “Package/Entry”

- Components defined within the same package only needs “Entry” for the type.

rfcexec.xml

Generated Header File

- Generated type definition header file: rfcexec_eds_typedefs.h

- A structure is defined containing all the sub-elements identified in the EDS file

- A buffer array is defined that can hold the packed structure

Enumerations

- Similar setup for Enumerations:

rfcexec.xml

rfcexec_eds_typedefs.h

EdsLib Database

- The EdsLib database is automatically generated from the EDS files

- Base names, types, structure sizes, number of sub-elements, sub-element information, labels, etc.

- Information for packing / unpacking data structures.

- EdsLib is a library that combines the EDS Database with API functions that read through the
datatype and display information.

rfcexec_eds_datatypedb_impl.c

rfcexec_eds_displaydb_impl.c

CFE_MissionLib

- CFE_MissionLib is a library that handles the interface between EDS and cFS (specifically
CFE_SB)

- Interface database: Telemetry/Telecommand topics with their associated message types (from EdsLib)

- Contains and API functions to read database information

- Customizable to the mission based on the CCSDS message header types used.

rfcexec.xml
rfc_eds_interfacedb_impl.c

Topic Listing

Subcommand Information

Python Bindings

- The Operator Interface CSCI needed a way to access the information in EdsLib and
CFE_MissionLib from python

- Python bindings were created for EdsLib and CFE_MissionLib to create EDS objects in python

- EdsDb: EDS Database referenced by mission name

- DbEntry: Function to create an EDS object in python

- Referenced by the same naming convention as EDS

- DbObject: EDS Object that can be used in Python

- Structs are treated as python dictionaries

New EdsLib Python Bindings

- Iterators:

- EdsDb entries for Enumerations will loop over all the label/value pairs

- Create a Python dictionary with the label/value pairs

- EdsDb entries for structures will loop over all the sub-elements

- Gives information to create each sub-element in python

CFE_MissionLib Python Bindings

- EDS/cFS interface objects that can be created within python

- Interface database object which contains a pointer to the database itself

- Interface object: CFE_SB/Telemetry and CFE_SB/Telecommand

- Topic object: RFCEXEC/Application/CMD

- The Topic ID is an accessible member of the Topic python object

Note: In order to use CFE_MissionLib

we must use EdsLib

CFE_MissionLib Python Bindings

- Iterators:

- Interface Database Object: iterates over the cFS instance names

- Interface: iterates over the topics for that interface

- Topic: iterators over the subcommands (if available)

- Gives the numeric identifier of the EDS command object (EdsId)

Interface Iterator

Database Iterator

Topic Iterator

CFE_MissionLib Python Bindings Methods

- Decode a generic telemetry message

- Each telemetry packet is based off of a CCSDS_SpacePacket_t header structure

- Partially decode just the header portion of the incoming message

- From the header information, the Topic ID can be extracted

- Call the CFE_MissionLib API functions to return the EdsId of the associated Topic ID

- This EDS Object is the full telemetry packet structure of the incoming message

- With the EDS object known the full message is decoded into a python object

- Set Publish/Subscribe Parameters for a command message

- Input the Instance ID, Topic ID, and the Python object associated with the command packet

- Calls the CFE_MissionLib API functions to take the input information and fill in the appropriate
header values in the packet

- Default: SecHeaderFlags, Apid, SubsystemID are filled in

- This is customizable based on the types of message headers used in the mission

- Once these parameters are set the command message can be packed and sent to its destination.

