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Abstract  12 

The goals of this study are to analyse the impacts of 1.5 and 2.0°C scenarios on UK winter 13 

wheat using a combination of Global Climate Models, crop models, planting dates and 14 

cultivars; to evaluate the impact of increased air temperature on winter wheat phenology and 15 

potential yield; to quantify the underlying uncertainties due to the multiple sources of 16 

variability introduced by climate scenarios, crop models, and agronomic management. The data 17 

used to calibrate and evaluate three crop models were obtained from a field experiment with 18 

two irrigation amounts and two wheat cultivars that have different phenology and growth habit. 19 

After calibration, the model was applied on fifty locations across the wheat growing area of the 20 

UK to cover all the main growing regions, with most points located in the main growing areas. 21 

Four Global Climate Models, with two cultivars and five planting dates were simulated the end 22 

of the century. Results of this study showed that the UK potential wheat yield will increase by 23 

2 to 8% under projected climate. Farmers will need to close such gap in the future because it 24 

will have implications in terms of food security. Future climatic conditions might increase such 25 
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gap. Adaptation measures (e.g. moving the optimal planting time), along with climate-ready 26 

varieties bred for future conditions and with precision agriculture techniques can help to reduce 27 

this gap and ensure that the future actual UK wheat production will be close to the potential. 28 

 29 

Key words: Climate change, crop models, climate impacts 30 

 31 

Introduction 32 

Wheat is among one of the largest cultivated crops worldwide, second, in millions of hectare 33 

only to rice (FAOSTAT 2021). In the UK, wheat is the main cultivated arable crop, sown on 34 

approx. 1.9 million hectares (UK Flour Millers 2020). Most of the UK production is in the 35 

eastern parts of England. The annual UK production averaged about 14 million tonnes over a 36 

period of 10-years (2000-2019), with a variability of 11 - 16 million tonnes (UK Flour Millers 37 

2020; FAOSTAT 2021).  38 

The current climate patterns are causing a gradual warming of Earth, with the last 5 years 39 

(2015-2019) being among the world’s warmest while 9 out of 10 warmest years that have been 40 

recorded since 2005 (NOAA 2020). The impacts of increased temperature on crop 41 

development, yield and quality has been well documented (Porter & Gawith 1999; Semenov 42 

2008; Ferrise et al. 2014; Semenov & Stratonovitch 2014; Trnka et al. 2014; Asseng et al. 2015; 43 

Asseng et al. 2019). In a study where statistical and process-based models were compared, it 44 

has been found that global wheat production will fall by 4 to 6% per °C of air temperature 45 

increase (Liu et al. 2016). However, the impacts of increased air temperature will vary over 46 

space and time (Asseng et al. 2015). 47 

The temperature trend in the UK over the past 30 years (1989-2019) has shown an 48 

unequivocal warming with the top ten warmest years recorded since 1884 happening from 2002 49 

(UK Met Office 2019). It has been found that the most recent decade (2009-2018) is about 1°C 50 
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warmer than the pre-industrial era (1850-1900) and agrees with findings observed at global 51 

scale (UK Met Office 2019). Future projections indicate that the UK temperatures will increase 52 

with an uneven warming trend in summer and winter.  53 

Global Climate Models (GCMs) have been used in many studies to quantify the impacts 54 

of projected climate for a given crop (Asseng et al. 2013; Asseng et al. 2015; Asseng et al. 55 

2019; Cammarano et al. 2019a; Müller et al. 2019; Cammarano et al. 2020; Ruane 2021; Ruane 56 

et al. 2021). Given their coarse resolution, the GCMs have been downscaled at finer scales 57 

before using them for any impact study on agricultural area. However, due to the different 58 

downscaling methods the GCMs might have biases in representing temperature extremes or 59 

rainfall patterns (Cammarano et al. 2013; Harkness et al. 2020). Such problem can be 60 

minimized by using an ensemble of GCMs, because the uncertainty associated with the climate 61 

projection can be quantified (Cammarano & Tian 2018; Harkness et al. 2020). 62 

The impacts of climate on agricultural crops can be quantified using crop growth models 63 

(CSM). Such models simulate the daily growth, development and final yield as influenced by 64 

weather, soil, crop, and agronomic management (Jones et al. 2003). Those models have been 65 

used to extrapolate the abovementioned interactions beyond a single year and a single 66 

experimental site (Basso et al. 2001; Basso et al. 2011; Cammarano et al. 2019a; Maestrini & 67 

Basso 2021). Potential yield is defined as the maximum yield that can be obtained by a crop in 68 

a given environment and determined using CSM with plausible physiological and agronomic 69 

assumption (Evans & Fischer 1999). Potential yield is mainly impacted by air temperature and 70 

atmospheric CO2 concentration and crop genetic. Therefore crop phenology, defined as the 71 

timing of life cycle events (Ritchie 1991), can be used as proxy for evaluating projected impacts 72 

of temperature changes on crop development and potential yield (Asseng et al. 2011; Asseng 73 

et al. 2015; Asseng et al. 2017; Zhao et al. 2017). 74 

Harkness et al. (2020) assessed ten weather indices using a range of GCM ensemble and 75 
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two greenhouse gas emissions (RCP 4.5 and 8.5) on winter wheat in the UK. The authors found 76 

that hotter and drier summers improve sowing and harvesting conditions. They also analysed 77 

the impact of rainfall and found that wetter winter and spring could pose waterlogging 78 

problems (Harkness et al. 2020). But, drought stresses during reproductive phase will remain 79 

low by Mid-Century. The use of multiple GCM was important for quantifying the uncertainty 80 

between their projections and they found that such variation was greater than between the two 81 

emissions scenarios (Harkness et al. 2020). In another study, twenty-seven crop models and 82 

sixteen GCMs were used to quantify the main source of uncertainty and crop models shared a 83 

greater amount of uncertainty than the GCMs (Asseng et al. 2013). Cammarano and Tian 84 

(2018) used both an ensemble of CSM and GCMs to quantify the impacts of climate projection 85 

and extremes on a wheat and maize and on two contrasting soils. The authors calculated sixteen 86 

climate indices finding that climate impacts differ depending on the soil type and the growth 87 

stage at which extreme climate events happens. The use of a multi-CSM and -GCM ensemble 88 

has been used to quantify the climate impacts on soil carbon and the source of uncertainty 89 

(Asseng et al. 2013; Martre et al. 2015; Wallach et al. 2021). 90 

Another factor that might affect the simulated impacts of projected climate on crop yield 91 

using CSM is the agronomic management. The shifting of sowing date can be considered as an 92 

agronomic adaptation measure that might help to offset the negative impact of climate change 93 

(Cammarano et al. 2019a; Rodríguez et al. 2019; Ojeda et al. 2021).  Semenov (2008) using a 94 

climate model and a CSM to assess the impacts of climate change on wheat production in 95 

England, found that heat stress around flowering might cause considerable yield losses. Recent 96 

studies highlighted how drought conditions during the growing season and around flowering 97 

cause a projected decline in wheat yield up to 20% of the potential yield levels in the UK and 98 

across Europe (Clarke et al. 2021; Putelat et al. 2021; Senapati et al. 2021). 99 

To avoid the negative and irreversible impacts from global temperatures, the Paris 100 
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Agreement of the 2015 stated that the World needs to achieve a maximum 2.0°C or an 101 

ambitious 1.5°C. Global wheat production can be significantly impacted by raising temperature 102 

(Asseng et al. 2013; Asseng et al. 2015; Asseng et al. 2019) but quantifying such impacts on 103 

regional wheat production can help to point out the local adaptation and related uncertainties.   104 

An assessment of 1.5 and 2.0°C scenarios on UK winter wheat using a combination of 105 

GCM and CSM, planting dates, and cultivars is lacking. The goal of this study is to analyse all 106 

those factors together to evaluate the impact of increased air temperature on winter wheat 107 

phenology and potential yield, and to quantifying the underlying uncertainties due to the 108 

multiple sources of variability introduced by climate scenarios, crop models, and agronomic 109 

management. Therefore, the objectives of this study are to: i) evaluate the impacts of projected 110 

temperature by the different GCMs and atmospheric CO2 concentration on winter wheat 111 

phenology and potential yield; ii) determine the main source of uncertainty among the different 112 

factors. 113 

 114 

Materials and methods 115 

 116 

Observed data 117 

The data used to calibrate and evaluate the crop models were obtained from a field experiment 118 

with two irrigation treatments and two wheat cultivars that have different phenology and 119 

growth habit (Foulkes et al. 2001; Foulkes et al. 2002). The field experiments were located at 120 

ADAS Gleadthorpe (53°13ʹN, 1°6ʹW) and were conducted during three growing seasons: 121 

1993-1996. The experimental design was a randomized block, split-plot experiment with two 122 

irrigation treatments, full irrigation and no irrigation and six cultivars. All the details of the 123 

experimental design are reported elsewhere (Foulkes et al. 2001; Foulkes et al. 2002). Two 124 

cultivars were chosen for calibration, Haven and Maris Huntsman. The former, is a late 125 
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developing, photoperiod sensitive cultivar. The latter, is an old, tall cultivar. They were chosen 126 

for the difference in their growth and phenology response to environmental conditions. Sowing 127 

dates, phenology, aboveground biomass and grain yield were provided for each growing 128 

season. The soil information available from the experimental site (e.g. soil texture) were 129 

integrated with the Land Information System soil data (Hallett et al. 2017) purchased from the 130 

soil data’s portal.  131 

The observed wheat data for wheat yield for the UK yield (1984-2009), and the database 132 

with variety trials (2002-2009) results were obtained from the Agriculture and Horticulture 133 

Development Board (AHDB) and the Department for Environment, Food & Rural Affairs 134 

(DEFRA), respectively (AHDB 2021; DEFRA 2021).  135 

To simulate the impacts of temperature changes on wheat yield fifty locations were 136 

selected across the wheat growing area of the UK to cover all the main growing regions, with 137 

most points located in the main growing areas (Fig. 1). The soil and weather information from 138 

these 50 locations across the UK were downloaded from the Land Information System soil data 139 

(Hallett et al. 2017) and NASA AgMERRA for the baseline period 1980-2010 (Ruane et al. 140 

2015), respectively. Daily incident solar radiation (MJ d-1 m-2), maximum and minimum air 141 

temperature (°C), and precipitation (mm) were used as input to the crop models. Soil texture 142 

(clay, silt, sand content), organic carbon (%), pH, lower limit, drain upper limit, and saturation 143 

were the soil input for the model.  144 

 145 

Crop modelling 146 

The crop growth models used in this study were the CSM-CERES-Wheat (Ds), the CSM-147 

Nwheat (Nw) and the WheatGrow (Wg) (Cao & Moss 1997; Hoogenboom et al. 2019) and 148 

were selected because of the different temperature response functions impacting developmental 149 

processes. These three crop growth models require a set of weather (e.g. daily air minimum 150 
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and maximum temperature, solar radiation, precipitation), soil (e.g. texture, bulk density, 151 

organic matter), and agronomic input data (e.g. planting date) for running. In addition, they 152 

require observations, such as main phenological events (flowering, maturity), grain yield to 153 

calibrate for a crop, and an independent dataset for evaluating the results of the calibration.  154 

The two cultivars, Maris Huntsman and Haven were calibrated using the irrigated 155 

experiment described in the section above (Foulkes et al. 2001; Foulkes et al. 2002). The main 156 

aim of the cultivars’ calibration was to parameterise the models’ for simulating the observed 157 

phenology and yield levels, and to adjust the growth and yield parameters for simulating 158 

aboveground biomass and grain yield.  159 

Since the main aim of this study was to simulate the impacts of rising temperature on 160 

potential yield, the models were evaluated on their ability to simulate values higher than the 161 

observed yield as recorded in the reported databases. For simulating yield potential, the models 162 

were set with optimal water and nitrogen input so that that abiotic stresses were minimized. 163 

This procedure has been used in other temperature-related modelling studies so that other 164 

agronomic management practices such as fertilization will not impact simulated yield (Asseng 165 

et al. 2015; Asseng et al. 2019). In addition, the effect of raised CO2 concentration is considered 166 

in the CSMs routines as it is an input to the models and modifies several processes. In Ds and 167 

Nw the elevated CO2 modifies the Radiation Use Efficiency (RUE) and Transpiration 168 

Efficiency (TE), while in Wg the elevated CO2 modifies leaf photosynthesis rate. 169 

These three crop models have differences in their temperature response functions for the 170 

different growth and development processes (Fig. 2). Wang et al. (2017) described in details 171 

the differences and similarities among those temperature response functions. These three 172 

models have been extensively compared against datasets comprising wheat response to varying 173 

temperature (Asseng et al. 2015). The main differences among the models is that Wg simulated 174 

photosynthesis and transpiration while Nw and Ds use the concept of RUE to simulate the 175 
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accumulation aboveground biomass as function of the intercepted radiation (Monteith 1972). 176 

Respiration is indirectly considered by using only net photosynthesis in the RUE estimation. 177 

Nw simulated the effects of heat stress on leaf senescence where the increase in maximum air 178 

temperature causes a hastening in leaf senescence (Asseng et al. 2011).  179 

 180 

Long-term simulations 181 

To set up the long-term simulations, the climate scenarios for 1.5 (CO2 concentration of 182 

423ppm) and 2.0°C (CO2 concentration of 487ppm)  above pre-industrial level was obtained 183 

from the Half a degree Additional warming, Prognosis and Projected Impacts project (HAPPI) 184 

(Mitchell et al. 2017). The time period for projected climate scenarios that were 1.5 and 2.0C 185 

warmer than the pre-industrial level was 2106–2115. The baseline CO2 concentration for the 186 

1980-2010 period was 360ppm; the CO2 concentrations correspond to centre of the 1980-2010, 187 

and the 1.5 and 2.0°C global warming level as highlighted in Ruane et al. (2018a). For each of 188 

the 50 weather stations, and for each scenario, the daily climate data were generated using the 189 

pattern-scaling approach employed and described in details in other studies (Ruane et al. 2015; 190 

Ruane et al. 2018b). Four Global Climate Models (GCMs) were used for each scenario. The 191 

GCMs selected were the CanAM4, CAM4, MIROC5, NorESM1-M. The reason for choosing 192 

those GCMs was because they were used in a previous global study on wheat to quantify the 193 

impacts of 1.5 and 2.0 C above pre-industrial warming where also the same crop models were 194 

used (Liu et al. 2019).  195 

The three crop models were run in a factorial combination, with four GCMs used 196 

(CanAM4, CAM4, MIROC5 and NorESM1); two CO2 concentration (360ppm and the 197 

respective CO2 concentration of each climate scenario as reported above); five planting dates 198 

(from Mid-Sep to Mid-Nov); and three scenarios (Baseline; 1.5 and 2.0°C). This combination 199 

was run for the 50 locations and for 30 years of daily weather data, for a total of 76,500,000 200 
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simulations. Since the target was the simulation of potential yield the models were re-set every 201 

year and no water or nitrogen stress was simulated.  202 

 203 

Data analysis 204 

The observed and simulated data were compared against two statistical indices to evaluate how 205 

well the models performed. The first index was the Root Mean Square Error (RMSE) and it 206 

was calculated as follows: 207 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖−𝑆𝑖)2

𝑖=1

𝑛
        [1] 208 

𝑂𝑖, 𝑆𝑖, 𝑛 were the observations, the simulations, and the number of comparisons, respectively. 209 

The other index was the Wilmott index of agreement (D-Index), with values ranging between 210 

0 (poor fit) and 1 (indicating a good fit). D-index values above 0.5 are to be considered 211 

acceptable. The D-Index expressed the measure of the goodness of fit and has been used as 212 

cross-comparison method between models (Wilmott 1982; Martre et al. 2015; Cammarano et 213 

al. 2019b).  214 

 𝐷 = 1 −
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (|𝑂𝑖−�̅�|+|𝑆𝑖−�̅�|)2𝑛
𝑖=1

       [2] 215 

 216 

�̅� was the mean of the observed values. The relative change in terms of yield, respect to the 217 

baseline was calculated as follows. 218 

 219 

𝑅𝐶 =  
𝑆𝑓,𝑖−𝑆𝑏,𝑖

𝑆𝑏,𝑖
∗ 100                [3] 220 

 221 

𝑆𝑓,𝑖 was the simulated (S) value as predicted by any combination of factors (f) for a given 222 

growing season i, and 𝑆𝑏,𝑖 was the baseline (b) value simulated for the growing season i.  223 

To compare uncertainty among crop and climate models the approach described in 224 

Asseng et al. (2013). The coefficient of variation (CV%) was used to represent the uncertainty 225 

between a scenario of the A2 emission from 16 GCMs and 26 CSMs. Eeach CSM simulated 226 
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the 16 GCM impacts plus a baseline scenario (1980-2010). Standard deviations were calculated 227 

for the simulated absolute yield impact for each CSM and across the GCMs. We also calculated 228 

the standard deviation across models for each GCM, across GCM for each model, and for the 229 

different factors the standard deviation was calculated across and for each model. The CV% 230 

was calculated as follows: 231 

𝐶𝑉% =  
𝜎

�̅�
∗ 100                                     [4] 232 

Where 𝜎 is the standard deviation of simulated yield for the different factors and �̅� was the 233 

mean. All the Figures were made using GGPLOT2 (Wickham 2016). 234 

 235 

Results 236 

The results of model calibration of the models are shown in Figure 3. Overall, the simulated 237 

data showed good agreement with the observed data (Fig. 3). The simulated anthesis dates had 238 

a RMSE of 10 days and a D-Index of 0.70, while maturity dates had a RMSE of 4 days and a 239 

D-Index of 0.97. Aboveground biomass and grain yield had a RMSE and D-Index of 199, and 240 

133 g DM m-2, and 0.97 and 0.96, respectively (Fig. 3); the crop parameters for each of the 241 

models are presented in Supplemental Table 1. 242 

The evaluation of potential yield simulation showed that models were simulating 243 

yield values higher than the national UK reported yields and the AHDB research trials (Fig. 4).  244 

The results of the long-term simulations are shown in Figure 5. Overall, under 245 

baseline weather data the simulated potential yield ranged from 10,000 to 14,500 kg DM ha-1 246 

with lower values in the north and higher in the south (Fig. 5a). The standard deviation of the 247 

simulations (size of the dots in Figure 5) at each point was due to the planting date, GCM, 248 

cultivar, and the crop model used (Fig. 5a) and it was about 1500 kg DM ha-1 with lower values 249 

in the south and higher in the north (Fig. 5a). At 1.5C and 2.0°C the simulations considered 250 

where the ones with the elevated CO2 concentration. Overall, the simulated potential yield 251 
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increased for all the locations with higher increase in the south, but from 1.5 to 2.0°C the 252 

variability of the simulations increased to about 2500 kg DM ha-1 (Fig. 5a).  253 

When the overall change was split among the different components of the factorial 254 

simulations, the 2.0C scenario showed the highest yield increase ranging from -1 to 10% (Fig. 255 

6). Under baseline CO2 concentrations, the future potential wheat yield is projected to decrease 256 

between -1.6 to -1% under scenario 1 and 2. However, the simulated impacts of increased CO2 257 

caused the simulated yield potential to increase 7 to 10% for scenario 1 and 2, respectively 258 

(Fig. 6). Among the planting dates, later planting dates showed the highest yield increase with 259 

late-Oct/Mid-Nov having a higher increase in potential yield. Among the different GCM used 260 

there was a similar response under scenario 1, but under scenario 2 the simulated impact on 261 

potential wheat yield diverged. However, the simulated yield increase was more divergent 262 

among the three crop models, regardless of the scenario, the simulated yield increase ranging 263 

from 1.5 to 9% (Fig. 6). 264 

Simulated potential wheat yield for both cultivars plateaued above 52°N and under 265 

baseline or future conditions. The simulated potential yield was different among the two 266 

cultivars, with Haven (C1) showing the higher simulated potential yield. The simulated 267 

anthesis dates linearly increased with the latitude, ranging from about 230 days after planting 268 

at 50°N to about 260 days after planting at 58°N (Supplemental Fig. 1). For the simulated 269 

anthesis dates, the cultivar Haven (C1) showed a slightly higher number of days from planting 270 

to anthesis because it has a higher photoperiod sensitivity with similar vernalization 271 

parameters. However, the simulated maturity date was similar among the two cultivars. 272 

The relationship between simulated potential grain yield and mean growing season 273 

temperature is shown in Figure 7. The response of the simulated yield differs greatly among 274 

crop models, with Ds showing distinct patterns for Haven and Maris Huntsman across the five 275 

planting dates. However, all the models agreed that the potential wheat yield shifts toward 276 
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upper values under Scenarios 1 and 2 (Fig. 7). 277 

The daily maximum temperature between anthesis to maturity does not reach values 278 

that will negatively hamper the grain filling period. For this study, across the 50 locations the 279 

higher values of daily maximum temperature was around 25°C and they were reached under 280 

Scenario 2 (2.0C; Fig. 8). The relationship between the anthesis date and the minimum 281 

temperature between sowing to anthesis is shown in Figure 9. The relationship between 282 

simulated anthesis date and daily minimum temperature differs slightly among the two 283 

cultivars, but there was less disagreement from the crop growth models. For later sowing dates, 284 

the Wg model tends to simulate anthesis dates that plateaued at about 3ºC.  285 

Most of the uncertainty that impacts the simulated yield comes from the three crop 286 

simulation models, which had a coefficient of variability of 8% for baseline, increasing to 11% 287 

for Scenario 2 (Fig. 10). The increase in CO2 concentration and the different cultivar was also 288 

showing higher uncertainty but much lower than the crop models. The GCM showed the least 289 

of the uncertainty with values below 1% (Fig. 10).  290 

 291 

Discussion 292 

The three models were able to represent the observed crop traits. The overestimation of anthesis 293 

date was mostly due to the Maris Huntsman cultivar while Haven showed a closer fit between 294 

observed and simulated data. However, the D-Index had values higher than 0.5 below which 295 

the results of the calibration should have been considered non-acceptable. Similar behaviour 296 

of spread between a multi-model comparison with observed phenology and yield were reported 297 

by Asseng et al. (2015). 298 

The potential yield as defined by Evans and Fischer (1999) and van Ittersum et al. 299 

(2003) can be calculated with CSMs or with a simple but robust light-based approach (Monteith 300 

1972). The CSM-CERES-Wheat model simulates the potential yield conditions by disabling 301 
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nitrogen and water simulated dynamics. In this way, the model’s simulated yield was only 302 

function of the calibrated cultivars, the environmental conditions and the atmospheric CO2. 303 

This simulated yield potential approach is similar to what is used in the modelling community 304 

(van Ittersum et al. 2003). However, the Nw model had to apply ample water and nitrogen in 305 

order to simulate potential yield which means that their results can still be affected by water 306 

and nutrient dynamics, like it could happen in field conditions. The results of the yield gap 307 

between the simulated potential and the observed UK wheat was about 25% for the DEFRA 308 

dataset and 45% for the UK census data, which is in line with the 39% reported by Senapati 309 

and Semenov (2019) in their study. Global wheat yield projection of Ruane et al. (2018a) also 310 

showed an increase of UK wheat yield but their results were based on generic wheat 311 

calibrations following the approach of Elliott et al. (2015) while in this study detailed crop 312 

physiological UK data were used to calibrate three wheat models. However, the reported wheat 313 

yield in both studies highlight an important point regarding the consistency and robustness of 314 

the obtained results.  315 

Results of the projected warming on phenology and yield agree with the findings of 316 

Asseng et al. (2013) where crop models diverged in simulating phenology and yield at higher 317 

air temperature. The simulated anthesis date for the baseline climate conditions (1980-2010) 318 

was 260 days after planting and showed higher simulated variability in the north than in the 319 

south in terms of mean air temperature. However, under 1.5 and 2.0°C the variability of the 320 

simulated anthesis decreased. This can be explained by the different temperature response 321 

functions for the vegetative stage of the different models. The temperature response function 322 

for vernalization has different shapes among models (Fig. 2), which means the number of days 323 

required to accumulate the vernalization requirement varies among models. Under baseline 324 

conditions, the air temperatures (2-5°C), especially in the northern UK, means that the 325 

accumulation of vernalization requirement varies among models because the slope and the 326 
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cardinal temperature is rather different among models (Fig. 2). Under warming scenarios, the 327 

increase in air temperature causes the reaching of optimal vernalization rates for all the crop 328 

models (Fig. 2). This explains why under future conditions the variability among models in the 329 

northern UK decreases. These results agree with the findings of Ruiz-Ramos et al. (2018) and 330 

Rodríguez et al. (2019) who found, using many crop models, how the increase in air 331 

temperature reduces the time to vernalization.  332 

Among the planting dates, later planting dates (late-Oct/Mid-Nov) showed the 333 

highest potential yield increase. In addition, the projected temperature changes are still within 334 

the optimal growth range for the winter wheat for several physiological processes. Fang et al. 335 

(2015) found that the increase of air temperature during winter period does not cause any 336 

significant decrease in yield on winter wheat in northern environments where air temperatures 337 

are well below the wheat base temperature of 0°C. In the UK the mean air temperatures during 338 

winter times tends to be, especially in the northern part, around the values of the base 339 

temperature. Therefore, any increase of air temperature will not cause significant reductions of 340 

potential grain yield. Therefore, an increase in atmospheric CO2 concentration at such latitudes 341 

boosts the potential wheat yield by an average of 3 and 6% for 1.5 and 2.0°C, respectively. 342 

Such behaviour, at northern latitudes has been experimentally confirmed in northern China in 343 

the study of Fang et al. (2015).  344 

Ruane et al. (2018a) reported a large CO2 uncertainty in the crop model projections 345 

due to climate model projection. This means that different climate models need different levels 346 

of atmospheric CO2 concentrations to reach a 2.0°C World leading to some substantial 347 

differences across the GCMs (Ruane et al. 2018a).   348 

The results of variability of the crop models in terms of phenology and yield response 349 

as function of air temperature showed that the spread is higher for the yield-temperature 350 

relationship than the phenology-temperature as also reported in Asseng et al. (2013) and 351 
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Asseng et al. (2015).  Ruane et al. (2018a) reported values of global wheat yield uncertainty 352 

analysis finding that uncertainty of climate models is smaller than the one of five crop models 353 

used and results of this study agree with the magnitude of uncertainty for crop models, GCMs, 354 

and CO2 response of that study. This has led to several improvements in model’s sub-routines, 355 

such as the temperature response to phenology as shown in Alderman et al. (2013) and Asseng 356 

et al. (2015). 357 

The overall uncertainty of the simulated system was mainly due to the multi-crop 358 

models use rather than the other factors. This same response has been observed in many multi-359 

models’ studies (Asseng et al. 2013; Martre et al. 2015; Cammarano et al. 2016; Liu et al. 2016; 360 

Ruane et al. 2016; Wang et al. 2017; Webber et al. 2017). This high uncertainty among model 361 

is generally due to the fact the crop models have many different sub-routines simulating soil-362 

plant-atmosphere interactions. In this study the three CSM have an improved temperature 363 

response function but other processes impacting growth and development simulations such as 364 

evapotranspiration partitioning, and energy balance algorithms have not been improved yet. 365 

These two important sub-routines have been shown to cause a high variability in simulated 366 

yield among crop models (Cammarano et al. 2016; Webber et al. 2016). This is because to 367 

simulate yield potential models like Nw have to apply ample water and N meaning that other 368 

factors might still affect the simulated production.  369 

Clarke et al. (2021) found that water limitation for UK wheat reduces yield 370 

depending on the timing and length of drought severity; and future projections of wheat yield 371 

losses to drought report negative impacts ranging between 5 to 20% (Putelat et al. 2021). The 372 

southeast of the UK, where most of the wheat is cultivated, showed greater uncertainties in 373 

simulated yield changes and this is in agreement with the findings of Putelat et al. (2021) in 374 

which the same region showed to be more sensitive to climate extremes. In addition, in their 375 

conclusions Putelat et al. (2021) pointed out how the negative impacts of projected climates 376 
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could also be offset by better choices of cultivar and planting dates. Those conclusions also 377 

hold in the current study which is based on the impact of temperature on potential wheat yield.  378 

However, further issues that have to be addressed are how the impacts of rainfall 379 

changes would alter reduce such potential yield; and if grain protein is going to be affected 380 

negatively by such increase. In addition, ozone damage is another factor worth exploring that 381 

could potentially undermine potential yield. The highest uncertainty of this study is due to the 382 

differences among the crop models. This is not surprising because despite the temperature 383 

response functions have been improved in the past, other sub-routines, more complicated, such 384 

as the water and energy balances have not been subject to model’s improvement. Since the 385 

simulation of yield potential, for some crop models, means that water and energy balances 386 

cannot be turned off their improvements would be needed to improve both potential and actual 387 

yield simulations.  388 

The yield gap between potential and actual yield means that farmers have the chance 389 

to adopt agronomic management decisions (e.g. planting date, fertilization amount/timing, 390 

better genotypes) that can help reduce such gap. Digital technologies such as Precision/Digital 391 

agriculture can help in this sense. However, the question remains if farmers will be able to 392 

close such gap in reality, despite the adoption of digital technologies. Adaptation and mitigation 393 

measures, along with climate-ready varieties bred for future conditions and with precision 394 

agriculture techniques can help to reduce this gap and ensure that the future actual UK wheat 395 

production will be close to the potential.  396 

 397 

Conclusion 398 

In conclusion, projected potential wheat yield in the UK will increase by 2 to 8% 399 

depending on the location and the scenario considered. This is because an increase in air 400 

temperature is still within the limits of the optimal temperatures for wheat. This has important 401 
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implications because in the UK it means that expectations for future higher potential yields are 402 

possible.   403 
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 725 

Figure 1. United Kingdom (UK) wheat growing area and points used in the simulation study. 726 
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 734 

Figure 2. Temperature response functions for different simulated processes by the CSM-735 

CERES-Wheat (Dc, red line), the CSM-Nwheat (Nw, green line), and the WheatGrow (Wg, 736 

blue line).  737 
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 753 

Figure 3. Calibration of the CSM-CERES-Wheat (Dc, dots), CSM-NWheat (Nw, diamonds), 754 

and WheatGrow (Wg, triangles) models for two wheat cultivars Haven (grey) and Maris 755 

Huntsman (white) for (a) anthesis dates; (b) maturity dates; (c) aboveground biomass; and (d) 756 

grain yield. 757 
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 766 

 767 

Figure 4. Patterns of simulations of potential wheat yield as simulated, from 1984 to 2009, by 768 

the CSM-CERES-Wheat (Dc, stars and dotted line), CSN-NWheat (Wg, cross and short dash 769 

line), and WheatGrow (Wg, plus and long dot line). In addition, observed data from the UK 770 

national statistics (grey triangles), the AHDB research trials data (grey dots) are shown.  771 
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 782 

Figure 5. Simulated results as mean among two cultivars, four GCMs, five planting dates, and 783 

three crop simulation models for (a) potential wheat yield; (b) anthesis; and (c) maturity dates 784 

for baseline, 1.5°C (Scenario 1) and 2.0°C (Scenario 2). The dots represent the standard 785 

deviation of the averaged values. For 1.5°C and 2.0°C conditions only the simulations with 786 

elevated CO2 concentrations were used. 787 
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 792 

 793 

Figure 6. Relative yield change, respect to the simulated baseline (1980-2010), for scenario 1 794 

(black dots corresponding to 1.5°C) and scenario 2 (grey dots corresponding to 2.0°C) of 795 

different planting dates (P1: Mid-Sep; P2: Late-Sep; P3: Mid-Oct; P4: Late-Oct; P5: Mid-Nov), 796 

CO2 concentrations (Ca: baseline CO2 concentration of 360ppm; C3: elevated CO2 797 

concentration of 423ppm for the climate scenario 1.5°C, and 487ppm for the climate scenario 798 

2.0°C), Global Climate Models (G1: CanAM4; G2: CAM4; G3: MIROC5; G4: NorESM1-M), 799 

wheat cultivars (C1: Haven; C2: Maris Huntsman), and different crop simulation models (Ds: 800 

CSM-CERES-Wheat; Nw: CMS-NWheat; Wg: WheatGrow). 801 
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 809 

Figure 7. Relationship between mean growing season temperature and simulated potential 810 

wheat yield for the cultivar Haven (HA, open dots) and Maris Huntsman (MS, open squares) 811 

under baseline conditions (S0, black colour), 1.5°C (S1, red colour), and 2.0°C (S2, blue 812 

colour), for 5 different planting dates (P1: Mid-Sep; P2: Late-Sep; P3: Mid-Oct; P4: Late-Oct; 813 

P5: Mid-Nov) and different crop simulation models (Ds: CSM-CERES-Wheat; Nw: CSM-814 

NWheat; Wg: WheatGrow). 815 
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 827 

Figure 8. Relationship between daily maximum temperature averaged from anthesis to 828 

maturity and simulated days from anthesis to maturity for the cultivar Haven (HA, open dots) 829 

and Maris Huntsman (MS, open squares) under baseline conditions (S0, black colour), 1.5°C 830 

(S1, red colour), and 2.0°C (S2, blue colour), for 5 different planting dates (P1: Mid-Sep; P2: 831 

Late-Sep; P3: Mid-Oct; P4: Late-Oct; P5: Mid-Nov) and different crop simulation models (Ds: 832 

CSM-CERES-Wheat; Nw: CSM-NWheat; Wg: WheatGrow). 833 
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 844 

Figure 9. Relative yield change at different latitudes for scenario 1 (white dots corresponding 845 

to 1.5°C) and scenario 2 (grey dots corresponding to 2.0°C) as mean across different planting 846 

dates (P1: Mid-Sep; P2: Late-Sep; P3: Mid-Oct; P4: Late-Oct; P5: Mid-Nov), CO2 847 

concentrations (Ca: baseline CO2 concentration of 360ppm; C3: elevated CO2 concentration of 848 

423 and 487ppm for Scenario 1 and 2, respectively), Global Climate Models (G1: CanAM4; 849 

G2: CAM4; G3: MIROC5; G4: NorESM1-M), wheat cultivars (C1: Haven; C2: Maris 850 

Huntsman), and different crop simulation models (Ds: CSM-CERES-Wheat; Nw: CSM-851 

NWheat; Wg: WheatGrow). 852 
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 859 

 860 

Figure 10. Coefficient of variation of the different components (CSM: crop simulation models; 861 

CO2: atmospheric CO2 concentrations; GCM: Global Climate models used; Planting: five 862 

planting dates; Cultivar: two cultivars used; Location: fifty locations; Interannual: Thirty years) 863 

affecting the simulated potential wheat yield under baseline (white bars), 1.5°C (light grey 864 

bars), and 2.0°C (dark grey bars). 865 
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