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A B S T R A C T   

To derive shallow water bathymetry for coastal areas, a common approach is to deploy a scanning airborne 
bathymetric light detection and ranging (LiDAR) system or a shipborne echosounder for ground surveys. 
However, recent advancements in satellite remote sensing, including the Ice, Cloud and land Elevation Satellite-2 
(ICESat-2) offer new tools for generating satellite derived bathymetry (SDB). The key payload onboard ICESat-2 
is the Advanced Topographic Laser Altimeter System (ATLAS), a micro-pulse, photon-counting LiDAR system, 
simultaneously emitting six separate 532 nm beams at 10 kHz pulse rate. However, despite its high resolution, 
the major limitation for bathymetry is that ICESat-2 only provides along-track height profiles, leaving obser
vation gaps between the parallel ground tracks. Merging ICESat-2 observations with optical multispectral im
agery, as demonstrated herein, provides an effective solution for deriving a full scene of water depth in light of 
the spectral attenuation behavior. 

This study aims to combine ICESat-2 and Sentinel-2 optical data to derive shallow water bathymetry (depth 
<20 m) at six islands and reefs in the South China Sea. ICESat-2 ATL03 point clouds of georeferenced photons are 
first filtered to determine the seafloor elevation along the ground track. Results indicate a root-mean-square error 
(RMSE) of 0.26–0.61 m as compared with independent observations from an airborne LiDAR campaign. Next, 
three semi-empirical functions, namely the Modified Linear/Polynomial/Exponential Ratio Models with its 
kernel formed by the log ratio between Sentinel-2′s green and blue bands, are used to fit the spectral data with 
ICESat-2 height profiles. After water depth mapping using the trained model, independent ICESat-2 point clouds 
are used to validate the Sentinel-2 derived bathymetry. The RMSE values of the three models using the weighted 
average of multiple images for these six islands are within 0.50–0.90 m in 0–15 m deep. We also demonstrate 
that a synthesis of satellite laser altimetry and optical remote sensing can produce SDB results that potentially 
meet the requirement of category C in Zones of Confidence (ZOC) of the Electronic Navigational Chart (ENC) in 
0–8 m deep. It is foreseen that ICESat-2 will be a helpful tool for mapping coastal and shallow waters around the 
world especially where bathymetric data are unavailable.   

1. Introduction 

Shallow water bathymetry is crucial for coastal construction, navi
gation safety, resources exploration, and studies about ecosystems along 

the nearshore and intertidal zones (Dahlgren et al, 2014; McCombs et al, 
2014). However, it is a costly and challenging task to use conventional 
surveying procedures, such as depth profiling by a single/multiple beam 
echo-sounder or by an airborne light detection and ranging (LiDAR) 
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campaign (Pike et al., 2019). Moreover, it is precarious and uneco
nomical for vessels to navigate into shallow waters (<20 m from sea 
surface) for profiling the seafloor with a limited field of view. To over
come limitations in mobility and instrumentation, satellite remote 
sensing technologies have been increasingly utilized for bathymetric 
mapping. Satellite-derived bathymetry (SDB) is known as a technique to 
recover water depth on multiple scales by various satellite observables, 
such as gravity anomalies (Sandwell et al., 2014), photogrammetry 
(Hodúl et al., 2018), optical imageries (Caballero and Stumpf, 2020), 
etc. Some commonly seen SDB products by optical imageries include the 
Landsat series in 30 m (Pacheco et al, 2015; Knudby et al., 2016; Chénier 
et al., 2018), Sentinel-2 in 10 m (Traganos et al., 2018), or high- 

resolution Worldview/RapidEye/Pleiades imagers with sub-meter 
ground sampling distance (GSD) (Chénier et al., 2018; Cahalane et al., 
2019). The principle of SDB by optical images takes advantage of the 
Beer-Lambert law, relating the exponential attenuation of light with the 
path length it traveled (Lyzenga 1978, 1981). For those shallow waters 
without direct observations of water depth, the physical-based inversion 
is needed to solve water quality indicators (e.g., chlorophyll and 
gelbstoff concentration) and water depth altogether through the opti
mization of forward modeling (Adler-Golden et al., 2005; Eugenio et al., 
2015; Lee et al., 1998, 1999, 2012). However, this approach is preferred 
for hyperspectral data that provide the detailed inter-band information 
(Kerr and Purkis, 2018). Also, the calculation of water column thickness 

Fig. 1. (a) Main map of the South China Sea and the geolocations of six testing sites. (b–g) Natural color composite of Sentinel-2 images in (b) Dongsha Island, (c) 
Scarborough Reef, (d) Alison Reef, (e) Bombay Reef, (f) Barque Canada Reef, and (g) Investigator Shoal. White line sectors in each panel (b–g) indicate the ground 
tracks of ICESat-2 six beams with usable surface reflections in 2018/10–2019/08. 
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is sensitive to several inherent issues for passive remote sensing, e.g., 
mixed pixels from different substrates types and inconsistent water 
attenuation coefficients. It is also sensitive, although not strictly limited, 
to ocean surface conditions (e.g., waves, sun glint, and solar angle). In 
contrast, for those areas which have scattered in-situ measurements 
from airborne LiDAR or sonar, the empirical method is used to calibrate 
the relationship between reflectance and depth (Kerr and Purkis, 2018; 
Geyman and Maloof, 2019). The major restriction of this approach in 
many remote islands is the availably and quality of in-situ data. Hence, it 
is worthwhile to examine the possibility of using the Ice, Cloud and land 
Elevation Satellite-2 (ICESat-2) laser altimetry as necessary training data 
in the empirical model, especially to fill the gap of missing ground truths 
in remote islands in the South China Sea (Fig. 1). 

ICESat-2 launched in September 2018, features a state-of-the-art 
spaceborne LiDAR system aiming to measure surface elevations (Mar
kus et al., 2017). As a successor to ICESat that operated from 2003 to 
2009, ICESat-2 is equipped with the high resolution Advanced Topo
graphic Laser Altimeter System (ATLAS). ATLAS estimates ranges be
tween the telescope and targets near ground by utilizing a photon 
counting technique (Neumann et al., 2019b; Martino et al., 2019). The 
elevations of each photon from a LiDAR pulse that are backscattered to 
the detector (a tiny fraction of all emitted photons) are georeferenced 
based on the timing of its round-trip. Although the primary goal of 
ICESat-2 is to observe elevations of land ice, sea ice, cloud tops, canopy 
tops, terrain and water surfaces, it has been reported that the sub
aqueous mapping of shallow water is possible thanks to the water 
penetration capability of green laser. Forfinski-Sarkozi and Parrish 

(2016) and Jasinski et al. (2016) demonstrated the potential for 
employing satellite LiDAR to detect bathymetry in depths of up to 10 m, 
using the Multiple Altimeter Beam Experimental LiDAR (MABEL), 
NASA’s high altitude airborne ICESat-2 simulator. Li et al. (2019) 
combined airborne MABEL data and Landsat-based water classifications 
to derive near-shore bathymetry for Lake Mead. A comparison between 
MABEL-derived elevation and in-situ data showed that the discrepancy, 
in terms of the root-mean-square error (RMSE), is at 1.18–2.36 m level 
along four transects. Parrish et al. (2019) evaluated ATLAS’s bathy
metric mapping performance over St. Thomas of U.S. Virgin Islands. 
After correcting the refractivity between air–water interface and the 
reduced speed of light in water, the RMSE, as validated by the Experi
mental Advanced Airborne Research Lidar-B (EAARL-B) collected by the 
U.S. Geological Survey (USGS), achieved 0.43–0.60 m for four laser 
tracks. However, ICESat-2 only provides point measurements along the 
ground track of six laser beams, which is still insufficient to produce a 
contour map of seafloor for practical applications, such as the Electronic 
Navigation Chart (ENC). 

The goal of this study is thus to introduce a solution scheme to derive 
bathymetry in remote islands whose water quality and substrate types 
may vary and the ground truth data are previously absent. To achieve 
this goal, an empirical-based approach integrating accurate point mea
surements of height from ICESat-2 and the multispectral information 
from Sentinel-2 are used. The novelty of this scheme includes the merge 
of multiple Sentinel-2 images to reduce random errors resulted from 
atmospheric or water quality disturbances in any single image. In the 
following sections, Section 2 introduces the study area and the workflow 

Fig. 1. (continued). 
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for filtering the ICESat-2 point cloud. Section 3 describes the processing 
steps of satellite data and the formation of three models to derive the 
Sentinel-2 bathymetric map. Section 4 examines sea surface heights 
measured by ICESat-2 and SDB derived from Sentinel-2. The RMSE of 
SDB derived from a single image and the prediction of accuracy by the 
goodness-of-fit (GoF) are demonstrated. The weighted-average SDB is 
further inspected at different water depths to evaluate the qualification 
in confidence categories. In Section 5, the error budget and the potential 
ways to reduce it are discussed. Finally, the conclusions and limitations 
are summarized in Section 6. 

2. Study area and workflow 

2.1. Study area 

Dongsha Islands (also known as Pratas Island, Fig. 1b) in the 
northern South China Sea consist of three atolls including Dongsha Atoll 
and North/South Vereker Atolls. Dongsha Island, located approximately 
400 km southwest of Kaohsiung, its administrative city in Taiwan, ex
tends 2.5× 0.8 km2 and is the only coral island above sea level in this 
region. The atoll is a ring-shaped coral reef with depths ~ 20 m in the 
lagoon. Dongsha Atoll was named a national park of Taiwan in 2007, 
owing to its natural landscapes and rich biodiversity. A complete 
airborne LiDAR campaign had been carried out in September 2010 
under the support of the Ministry of the Interior, Taiwan (Shih et al., 

2011). Therefore, a bathymetry raster at 5 m resolution interpolated 
from dense point clouds is available to serve as a validation dataset. As 
shown in Fig. 1b, a number of submerged reefs exist in the lagoon, 
making it challenging to map the bathymetry using traditional methods. 

Scarborough Reef (Fig. 1c) is situated 296 km east of Zhongsha 
Islands and 198 km west of Subic Bay, the Philippines. It has an isosceles 
right triangle shape with an area of 130 km2 and depths at 10 to 20 m 
inside the lagoon. It is formed by coral reefs and coral rocks that emerge 
at high tide, and thus plays a key role in the strategic position in the SCS. 
Besides, the reef and its surrounding ocean are popular fishing grounds 
that result in severe sovereignty issues between the neighboring coun
tries. Alison Reef (Fig. 1d) is an ellipse-shaped coral atoll located in the 
Spratly Islands, south of SCS. It is the second largest atoll in the Spratly 
Islands, with a width of 7.4 km, an area of 72.5 km2, and a peripheral 
length of 20 km. 

Bombay Reef (also known as Langhua Jiao, Fig. 1e) is the ellipse- 
shaped atoll located in Paracel Islands. The size of Bombay Reef is 
around 17 km long and 5 km wide with an area of 70 km2. It consists of 
sandbars and coral reefs. Barque Canada Reef (Fig. 1f) with a long 
fusiform shape and with a lagoon inside is the largest island (66.4 km2) 
in the Spratly Islands. The length of the island is 28 km in northeasterly 
direction and 1 to 4 km in east–west direction. Barque Canada Reef has 
sufficient area for construction, and hence several manmade in
frastructures and buildings can be identified in the high-resolution sat
ellite images. Finally, Investigator Shoal (Fig. 1g) is an intermittent coral 
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Fig. 2. The framework for generating shallow water bathymetry maps by integrating ICESat-2 ATL03 and Sentinel-2 images.  
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Fig. 3. An example of point cloud filtering by ICESat-2 beam 3L on 2019/01/29 in Dongsha area. (a) Original point cloud (red) and the μ1±3σ1 range of the detected 
sea surface (blue shade). (b) Ocean floor fitting after sea surface removal. Blue shade indicates the 2σ buffer zone of the first round of median filtering. (c) Blue shade 
indicates the 2σ buffer zone of the second round of median filtering. (d) Blue shade indicates the 2σ buffer zone of the third round of median filtering. (e) Refraction 
correction based on the sea surface (blue line) in panel (a) is applied to adjust the overestimated water depth. Red points are before correction and gray points are 
after correction. Black line is the running mean of 30 m segment. (f) Transformation of datum from ellipsoidal height to water depth relative to the mean sea surface. 
Green dots display the ground truth. Panel (g–j) is a sample histogram of its left panel at 20.68◦ in latitude. Photon distribution (red) is aggregated in ±1,000 m 
(Panel g) or ±200 m (Panel h–j) with 0.1 m vertical bin size. (g) Blue curve is the two-degree Gaussian fitting. (h–j) Blue line is the median and blue dashed line is the 
2σ buffer zone. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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reef of the Spratly Islands, which consists of Erjiao Jiao, Langkou Jiao 
and Juantou Jiao. The length of Investigator Shoal is 34 km long with 14 
km wide. The lagoon depth inside Investigator Shoal is about 5.4–18.2 
m. 

For each site, a mask is generated by visual delineation of the 
outmost (furthest) underwater features in satellite images. An extra 200 
m buffer towards the seaside is used to automatically select ICESat-2 
candidate points within the study site. 

2.2. Workflow 

The present work first extracts precise ICESat-2 measurements of 
water depth in coastal areas, and then uses these limited height profiles 
to train Sentinel-2 multispectral image for a full coverage of water 
depth. A detailed workflow for operational purposes is shown in Fig. 2. 
For each target island, the ICESat-2 point cloud and Sentinel-2 images 
are spatially searched. It is assumed that the islands mostly formed by 
coral reefs would have exhibited very slow morphology (Masselink 
et al., 2020) and thus the vertical change is ignorable within the study 
period (2018–2019). ICESat-2 georeferenced photon heights from the 
ATL03 data product (Neumann et al., 2020) are processed with a multi- 
peak Gaussian fitting procedure to filter out ocean surface, followed by 
three iterations of a median filter to locate the bottom surface from the 
photon cloud. If the quality of photon height points along each of laser 
beams was free of identified issues stated in the technical documents, 
these points would be randomly split into training (90%) and validation 
(10%) datasets. For Sentinel-2, the Multispectral Instrument (MSI) im
ages (Drusch et al., 2012; Gascon et al., 2017) are preprocessed by the 
Second Simulation of a Satellite Signal in the Solar Spectrum (6S) 
radiative transfer code (Vermote et al., 1997). Sentinel-2 images are 
spatially interpolated by ICESat-2 points to develop three empirical 
models, namely the Modified Linear/Polynomial/Exponential Ratio 
Models (MLR, MPR, MER), with their kernel variables formed by the log- 
ratio between the green and blue bands (Stumpf et al., 2003). Once the 
goodness-of-fit (GoF) is qualified by a predefined threshold (i.e., 2 m), 
the entire image is utilized to calculate water depth by using the model 
solved from the training stage. Sorted candidates of Sentinel-2 images 
would enter the last step to calculate the weighted average of gridded 
SDB product. Finally, an independent dataset from either ICESat-2 or 
other in-situ data with higher accuracy is used for validation. 

3. Data and methods 

3.1. ICESat-2 ATL03 data 

ICESat-2 measures the range to the surface at 10 kHz repetition 
frequency (~70 cm sampling distance) with three pairs of 532 nm green 
laser beams (90 m between a dual set and 3.3 km between pairs). The 
Global Geolocated Photon Data (ATL03) Version 2 (Neumann et al., 
2019a; Neumann et al., 2019c; Neumann et al., 2020) provides neces
sary geophysical corrections, including solid earth tides, ocean loading, 
solid earth pole tide, ocean pole tide, and total column atmospheric 
correction. As of October 2019, there were 8 overpasses available near 
Dongsha area. However, it is noted that several issues affecting the 
quality of ATL03 surface measurement were identified, such as the 
presence of clouds, multiple telemetry bands, and apparent multiple 
surface returns (Neumann et al., 2019b). By taking a preview of these 
files, only two (2019/01/29 and 2019/04/30) out of 8 files contained 
useable height profiles without cloud-cover issue. For each file, the 
longitude, latitude, and height of each data point from all six beams are 
extracted. 

To find the ocean surface and the seafloor from point clouds, we 
apply the following filters with different spatial windows to remove 
photon events reflected from the surface, within water, or other noises 
apparently present below the seafloor. Using one of the beams collected 
on 2019/01/29 as an example, Fig. 3 visualizes the results from each of 

these steps. 
(Step 1) Ocean Surface Detection 
An aggregation distance of ±1,000 m (W0) along the satellite flight 

path is first applied to collect photons from ATL03 point clouds with a 
70-cm progressive step (Fig. 3a). This is to form a histogram of elevation 
distribution to find the ocean surface. The vertical bin size v in the 
histogram is chosen according to the Sturges’ formula (Sturges, 1926): 

v =
D

1 + log2n
(1) 

where D is the vertical range and n is the number of samples. 
Since the vertical range of variation within the aggregation window, 

either for sea surface points or the following ocean floor points, is about 
1 m, the bin size v for ~ 500 aggregated points in this spatial window is 
0.1 m. Next, a two-degree Gaussian distribution is applied to fit the 
histogram (Fig. 3g). Assuming the combined variation of surface waves 
and surface gradient is gradual (submeter level) within the moving 
window, the surface points would form a clear Gaussian peak in the 
height histogram (see Fig. 3g as exemplified by a moving window near 
20.68◦ in latitude). Thus, a considerable number of photons within the 
spatial segment could form a double-peak histogram, with a primary 
crest near the sea surface and a secondary crest near the seafloor. The 
two-degree Gaussian model h is as follows (Eq. (2)): 

h = α1e

(

−
(x− μ1)

2

σ1 2

)

+ α2e

(

−
(x− μ2)

2

σ2 2

)

(2) 

where α1 and α2 are the amplitudes, μ1 and μ1 are the expectations, 
and σ1 and σ2 are the standard deviation of each crest, respectively. 

The first peak is assumed to be the ocean surface. A demonstration of 
μ1±3σ1is displayed by the blue shade in Fig. 3a. Photon events falling 
within this window are considered as surface returns and removed in 
this stage. The photons located higher than this height band are also 
eliminated. It is noted that this surface will be later used as the pene
tration surface for refraction correction in Step 3. 

(Step 2) Seafloor Detection 
Since the reflected photons experiencing volume scattering exhibit a 

high-amplitude fluctuation in contrast to the relatively smooth bottom 
terrain, an iterative moving window can detect the seafloor where most 
photons are reflected. For the photon events preserved from Step 1, a 
new aggregation distance of ±200 m (W1) is used to remove photon 
events randomly scattered in volume and apparently deviating from the 
“long-wavelength” formation of seafloor. In this step, a median filter is 
adopted instead of a mean filter because of the skewed distribution of 
height histogram. The photons appear mostly in the lower part of height 
histogram under the low turbidity condition. The surface found by this 
step is shown in Fig. 3b with a buffer zone of 2σ. The points outside this 
height band are then removed. The same median filter (W1) iterates two 
more time to remove photons deviated from the main group, as shown in 
Fig. 3c–d. Finally, a moving average spanning ±30 m (W2) is applied to 
compute the height of each remaining photon, which is later referred as 
“photon height”. To ensure height estimates are determined by suffi
ciently dense and repeated samples, only the windows containing at 
least 20% of its original point density, or > 6 points in each 30 m sector 
in equivalent, are used. 

(Step 3) Refraction and tidal corrections 
ICESat-2 photons heights in ATL03 are calculated based on the speed 

of light in the air. Since the speed of light reduces from 2.997× 108 m 
s− 1 in the air to 2.235× 108 m s− 1 in seawater (Mobley, 1995; Parrish 
et al., 2019), a refraction correction is needed to adjust the over
estimated water depth. The corresponding refractive indices in Eq. (3) 
are 1.00029 and 1.34116 for air (na) and seawater (nw), respectively. 
Here, we define the original depth ZO as the difference between the 
photon height estimated in Step 2 and the corresponding sea surface 
height fitted in Step 1. After the refraction correction shown in Eq. (3) 
(Green et al., 2000; Parrish et al., 2019), the new water depth Zn would 
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be shallower than the original water depth (see gray dots in Fig. 3e). 

Zn = ZO∗
(

na

nw

)

(3) 

where Zn is the new depth, ZO is the original depth, and na and nw are 
the refractive index in air and in seawater, respectively. 

Theoretically, the incidence angle of ICESat-2 beams would cause a 
bending of light in water and associated geolocation changes. However, 
because of a very small off-nadir angle limited to 1.8◦ (Neuenschwander 
et al., 2019) during the entire mission (up to 0.46◦ in Dongsha’s beam 3L 
on 2019/01/29), the emitted beams induce as large as 9 cm of horizontal 
offset at a depth of 30 m due to refraction (Parrish et al., 2019). 
Compared to the laser footprint (10.9 m ± 2.1 m) (Prof. L. Magruder, 
personal communication, Oct 20, 2020), the pointing accuracy (~6.5 
m), and the Sentinel-2′s GSD (10 m), the horizontal shift due to the 
refraction of seawater is small enough to be ignored in the computation. 
Finally, the tidal correction referred to DTU16 (Technical University of 
Denmark tide model) is applied to transfer the datum from an elevation- 
oriented WGS84 to the depth-oriented DTU16 mean sea surface (MSS) 
(Fig. 3f). 

3.2. Sentinel-2 MSI level 1 data 

Sentinel-2A and 2B were launched in June 2015 and March 2017, 
respectively. Each of them carries the Multispectral Instrument (MSI) 
that offers 10 m resolution images in every 10 days. (Drusch et al., 
2012). All Level-1C orthorectified Top-of-Atmosphere (TOA) granules 
covering target islands with cloud-coverage<10% are downloaded 
through the Copernicus Open Access Hub (https://scihub.copernicus. 
eu). The images over Dongsha are firstly tested by two kinds of atmo
spheric correction to examine the individual performance, including the 
sen2cor (Dongsha Islands only) and 6S algorithms (all islands). The 
sen2cor module in the Sentinel Application Platform (SNAP) software 
utilizes a library inherited from the Atmospheric and Topographic 
Correction (ATCOR) of the German Aerospace Center (DLR) and a set of 
look-up tables generated via the Library for Radiative Transfer 
(LibRadtran) for calculating solar and thermal radiation in the Earth’s 
atmosphere (Louis et al., 2016). On the other hand, the Python interface 
to the 6S Radiative Transfer Model outlined by Wilson (2013) is also 
tested to correct gaseous absorption and the scattering of molecules and 
aerosols along the light path. The absorption effects due to water vapor 
and merged ozone are referred to the Total Ozone Mapping Spectrom
eter (TOMS) and the Ozone Monitoring Instrument (OMI) observations, 
provided by the National Centers for Environmental Prediction (NCEP) 
and the National Center for Atmospheric Research (NCAR) (Kalnay 
et al., 1996). In addition, the scattering term such as the aerosol optical 
thickness at 550 nm adopts the Moderate Resolution Imaging Spec
troradiometer (MODIS) Atmosphere Monthly Global product 
(MOD08_M3.006). Since ATCOR algorithm is a land-oriented atmo
spheric correction method (Gao et al., 2009), 6S had been confirmed to 
outperform ATCOR over water surfaces (Nazeer et al., 2014). In fact, 6S 
is more consistent over various of surface types (López-Serrano et al., 
2016). As discussed later in Table 3, the SDB using images corrected by 
6S also outperforms the ones corrected by sen2cor. Hence, 6S is adopted 
in the processing chain for the rest of five islands. 

Following that, a simple union of spectral criteria is designed to 
remove the remaining scattered clouds from the image. Taking advan
tage of the spectral feature of Red and Infrared bands over clouds, these 
two bands display higher reflectance as compared with land, ocean, reef, 
sea grass, etc. After experimental iterations over all islands, a multi-band 
threshold is concluded that when a pixel whose Infrared band > 0.09 
and Red band > 0.07 is flagged as a cloud pixel and filled by a null value. 
All images collected herein are corrected by the 6S model and become 
candidates in the following training stage. 

3.3. Semi-empirical model training 

ICESat-2 depth points and the collocated Sentinel-2 pixels are 
spatially paired up for training the spectral model with an exponential 
decay signature (Albright and Glennie, 2020). In the model introduced 
by Stumpf et al. (2003), a log ratio between the Blue and Green bands 
(Eq. (4)) is linearly correlated with water depth. The ratio trans
formation model (Eq. (4)) thus serves as the kernel of our modified 
version of fitting functions. It is noted that other optical band combi
nations could form a multiple linear regression model (Geyman and 
Maloof, 2019), which could provide extra ratio-attenuation information 
over various substrate types. 

R =
ln(n*B1)
ln(n*B2)

(4) 

where R is the band ratio, B1 and B2 are the reflectance of Blue and 
Green bands, respectively, and n is a constant (1500 in this case) to 
ensure the positive ratio after natural logarithm transformation. 

Because the linearity between R and depth only maintains in a 
certain shallow water interval and becomes non-linear afterwards 
(Cahalane et al., 2019), two other empirical functions are examined in 
this paper to fit the relationship between R and depth provided by 
ICESat-2. These three models are named the Modified Linear/Poly
nomial/Exponential Ratio Models, or simply MLR, MPR, and MER. The 
functions are shown in Table 1, in which a, b, and c are the parameters 
derived from a least-squares regression. Here, 90% of refraction- 
corrected ICESat-2 bathymetric points in each 1-meter vertical interval 
are randomly selected for training (hereafter K90). The remaining 10% 
of points (hereafter K10) are reserved as reference data in the validation 
stage. 

4. Results 

4.1. Validation of ICESat-2 sea surface height 

Since the instant sea surface height (SSH) measured by ICESat-2 is a 
key parameter for refraction correction, it is necessary to verify the 
validity of SSH observation. The DTU18 MSS model (Andersen et al., 
2018) released by the National Space Institute in University of Denmark 
(DTU space) is a global map in 1′ spatial resolution detailing the 
displacement of sea surface that approximates the formation of geoid 
(www.space.dtu.dk). DTU18 MSS is a successor of the previous version 
of MSS that purely incorporated satellite altimetry missions (e.g., 
Topex/Poseidon and Jason-1/-2) in the last two decades. It is improved 
with an inclusion of the latest synthetic aperture radar (SAR) altimetry 
missions, such as Cryosat-2 and Sentinel-3 (Andersen et al., 2018). One 
assumption made here is that the dynamic topography and currents only 
induce a constant vertical shift along this short latitudinal sector. Hence, 
the ICESat-2 derived sea surface (Fig. 3a), after tidal correction, can be 
compared with the bilinearly interpolated DTU18 at the coordinate of 
each photon identified as ocean surface layer and check their relative 
discrepancies. 

In our results, ICESat-2 SSH matches well with DTU18, with a good 
agreement of R2 = 0.92 and a low standard deviation of difference at 3.5 
cm. The discrepancy is primarily attributed to the wind-driven and 
shoaling waves. The error budget is close to 2 cm as reported by a recent 
study of ICESat-2 over 30 lakes and reservoirs in China (Yuan et al., 

Table 1 
Summary of the empirical models used in this study. Z is the depth and R is the 
ratio from Eq. (4). a, b, and c are the parameters to be determined.  

Model 
name 

Modified Linear 
Ratio Model 
(MLR) 

Modified Polynomial 
Ratio Model (MPR) 

Modified Exponential 
Ratio Model (MER) 

Functions Z = aR + b  Z = aR2 + bR + c  Z = aebR + c   
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2020). The comparison is illustrated in Fig. 4, where different colors 
depict the SSH in WGS84 ellipsoidal height derived by six beams of 
ICESat-2 near Dongsha Island on 2019/1/29. However, it is noted that a 
bias of ~ 0.9 m exists in every height profile after a necessary correction 
for the instant tidal height of − 0.13 m. The cause of this systematic error 
still remains elusive. We note that the DTU13 geoid given in ATL03 at 
the center of this segment is 12.2 m, 12.05 m, and 11.9 m for 1L, 2L, and 
3L, respectively, which has also a bias of ~ 0.7 m. Nevertheless, it 
confirms that we could use the surface fitted from ATL03 profile instead 
of a flat-surface simplification to calculate refraction correction, to avoid 
errors in a few tens of centimeters. 

4.2. Validation of ICESat-2 bathymetry with airborne LiDAR 

ICESat-2 derived water depth is first compared with airborne LiDAR 
data in Dongsha Island (Shih et al., 2011). The comparison of each beam 
on two dates is summarized in Table 2, in which the number of photons 
is the number of photon heights calculated by a 30-m running mean at 
each photon, such as the last part in Step 2 of Section 3.1. The quality 
indicators include RMSE, STD (standard deviation of the difference,), 
and R2 as compared against airborne data. The average interval is 
computed from the length of the transect within the island mask divided 
by the number of photons, as an indicator of the “sampling distance” 
under the mixed environmental conditions. 

The RMSE between two datasets ranges from 0.26 m to 0.61 m, while 
the STD values range from 0.13 m to 0.33 m and R2 values range be
tween 0.86 and 0.99 for all 10 beams on both dates. The difference 
between RMSE and STD is presumably due to the errors in tides and 
datum transformation. STD, which is about a half of RMSE, is subjected 
to the error in aggregation segment (W1), geolocation error, and surface 
fitting/modeling (W2) error. Generally, strong beams perform better 
than weak beams in terms of RMSE (4 out of 5 pairs) and R2 (5 out of 5 
pairs). Strong beams also have a shorter average interval (except for GT1 
L/R on 2019/01/29) owing to their greater penetration capability. The 
relative RMSE (RRMSE) in Table 2 is defined as RMSE divided by the 
average depth in the transect, indicating the percentage of error as 
normalized by the depth those photons could reach. Nevertheless, all the 
beams achieve an unprecedented accuracy to measure shallow water 
depth that can serve as training and validation datasets for other 
spaceborne sensors. 

4.3. ICESat-2 trained Sentinel-2 SDB 

Since the quality of bottom-of-atmosphere (BOA) reflectance cor
rected by SNAP sen2cor or 6S may not be completely reliable due to the 
unfavored surface conditions such as cloud shadow, sun glint, and 
waves, it is difficult to select a single image to derive water depth. 
Moreover, the unknown water quality and the diffusive coefficient for 

Table 3 
Comparisons of GoF during the training stage and the RMSE in validation stage, by using the 9–1 split of ICESat-2 depth points in Dongsha Island. The format is GoF/ 
Validation (in terms of RMSE) in meter. The RMSE better than 1 m is highlighted to show the outperformance of 6S corrected images.  

Sentinel-2 
Date 

MER MLR MPR 

sen2cor 6S sen2cor 6S sen2cor 6S RRMSE 

2018/03/05 1.26/1.16 0.87/0.82 1.43/1.24 0.87/0.82 1.23/1.15 0.86/0.82 15% 
2018/04/04 1.17/1.10 0.85/0.81 1.21/1.10 0.89/0.83 1.17/1.10 0.85/0.81 15% 
2018/04/14 1.46/1.37 1.11/1.05 1.50/1.38 1.08/1.03 1.45/1.38 1.08/1.03 19% 
2018/05/05 1.72/1.61 1.41/1.35 1.73/1.60 1.39/1.33 1.69/1.57 1.37/1.30 24% 
2018/07/08 1.28/1.10 1.19/1.03 1.30/1.10 1.14/1.00 1.21/1.02 1.09/0.95 18% 
2018/07/28 1.13/1.02 1.04/0.95 1.18/1.05 1.01/0.93 1.13/1.02 1.01/0.92 17% 
2018/09/06 0.91/0.88 0.86/0.84 0.94/0.88 0.84/0.83 0.90/0.87 0.84/0.83 16% 
2018/09/26 1.38/1.27 1.32/1.17 1.41/1.27 1.25/1.13 1.38/1.27 1.25/1.13 21% 
2018/10/06 0.75/0.69 0.69/0.64 0.88/0.76 0.70/0.64 0.75/0.69 0.69/0.64 12% 
2018/10/26 1.35/1.26 1.21/1.13 1.39/1.28 1.18/1.11 1.35/1.25 1.17/1.10 21% 
2019/02/03 0.95/0.89 0.78/0.77 1.04/0.91 0.76/0.74 0.93/0.89 0.76/0.73 14% 
2019/02/23 1.39/1.32 1.29/1.21 1.40/1.34 1.26/1.20 1.38/1.32 1.26/1.20 23%  

Fig. 4. Comparison between ICESat-2 derived sea surface height (SSH) and 
DTU18 mean sea surface (MSS) along the six beams measured on 2019/1/29. 
The heights are referenced to the WGS84 ellipsoid. 

Table 2 
Validation of ICESat-2 derived water depth in Dongsha Island from 6 ground 
tracks (GT).  

Date Index Ground Track 

1L 1R 2L 2R 3L 3R 

2019 
01/ 
29 

Number of 
photons 

4813 825 5383 935 10,538 1324 

RMSE [m] 0.40 0.35 0.54 0.61 0.50 0.54 
RRMSE [%] 12% 22% 9% 12% 9% 11% 
STD [m] 0.27 0.13 0.18 0.14 0.17 0.13 
R2 0.99 0.91 0.99 0.99 0.99 0.99 
Average 
interval [m] 

3.86 21.92 3.04 14.95 1.18 8.32 

2019 
04/ 
30 

Number of 
photons 

5587 361 4034 487 – – 

RMSE [m] 0.26 0.32 0.36 0.49 – – 
RRMSE [%] 4% 6% 6% 8%   
STD [m] 0.17 0.24 0.23 0.33   
R2 0.97 0.94 0.99 0.97 – – 
Average 
interval [m] 

3.19 45.38 3.26 19.06 – –  
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each particular island at certain time are difficult to estimate. Thanks to 
the 5-days revisit of Sentinel-2A/B, a number of images can be selected 
during the study period. In Dongsha Island, a total of 12 image candi
dates with < 10% cloud collected between March 2018 and February 
2019 is demonstrated in Fig. 5. This set of true-color images is comprised 
of different solar, atmospheric, and ocean surface conditions. Therefore, 
the image selection procedure is important to ensure the quality of SDB 
products. 

Without applying more sophisticated image correction procedures, a 
simplified approach is introduced here by using the fitting model to 
determine the quality and applicability of an image based on the sta
tistical performance. The fitting results are demonstrated in Fig. 6, and 
the coefficients a, b, and c in Table 1 are derived from the least-squares 
regression. 

The trend of scattered points, although visually linear in the depth of 
4–10 m, starts to diverge between fitting models when the water depth is 
outside this range. As observed in Fig. 6, the higher order terms in MPR 

are sensitive to the distribution of scattered training points over 10 m, 
and make the fitting curve drastically down-turned especially for those 
images with complex atmospheric and surface conditions. However, it 
should be emphasized that the following validation is only conducted 
within 20 m by using airborne LiDAR data in Dongsha, or within 15 m by 
10% of ICESat-2 data split (K10) in all six islands. Some extremely large 
errors in deep water can be expected from those models with large 
fitting errors but not shown in this study. 

The fitted model is then applied to all pixels in the same Sentinel-2 
image. The pixel would be assigned a null value when the modeled 
depth is negative (above ocean surface). A set of bathymetry maps from 
MER, which is quite similar to the other two models, is demonstrated in 
Fig. 7. The water depths derived from different images seem to be 
similar in the shallow water (<5 m) part. The major uncertainty across 
these 12 images appears in the lagoon, with apparent variation from 8 m 
to>20 m deep. This is because MER, and other models, have larger 
uncertainty for deep water (>10 m) as compared to shallow water 

Fig. 5. True color images composed from Sentinel-2 images (R/G/B: Band 4/3/2).  
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(Fig. 6). The scattered points in deep water can be attributed to different 
ocean surface conditions, the residual of atmospheric contamination, 
various attenuation coefficients, and/or the maximum light penetration. 
Without knowing the quality of an image in this way, it is difficult to 
assess the quality of the derived bathymetry. It can be found in a nar
rower spread of scatter points in the fitting procedure (Fig. 6), such as 
images on 2018/03/05, 2018/04/04, 2018/09/06, 2018/10/06, and 
2019/02/03, the SDB presents a better quality and a clearer gradient 
pattern, especially in the deep region (>10 m). Therefore, in the 
following sections we develop a fusion scheme to include useful images 
and reject images compromised by the abovementioned quality issues. 
These criteria substantially reduce the scatter in SDB, and produce a 
much narrower spread of scatter points in the fitting procedure. 

To quantify the quality of selected images in the pool for SDB pro
duction, the goodness-of-fit (GoF) parameter is an appropriate indicator 
to evaluate the model during the training stage. GoF is directly linked to 
the quality of depth estimated by an image, which is also an inference of 
image quality and a prediction of depth accuracy. The computation of 
GoF follows Eq. (5), where z(i) − ẑ(i) is the residual of depth points from 

the fit (model) to the photon height at ith location, K90 is the number of 
90% ICESat-2 points used for training, and m is the number of fitted 
coefficients. The computation of RMSE for validation follows Eq. (6), in 
which z(j) − ẑ(j) is the residual of depth points from the fit z(j) to the 10% 
of ICESat-2 points at jth location, and K10 is the number of preserved 10% 
ICESat-2 points. 

GoF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K90

i=1
(z(i) − ẑ(i))2

K90 − m

√
√
√
√
√

(5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K10

j=1
(z(j) − ẑ(j))2

K10

√
√
√
√
√

(6) 

A comparison between GoF and Validation results confirms the 
coherence over all the examined models and images, with a correlation 
of 0.99 and a standard deviation of the difference at 0.04 m for all cases. 
As summarized in Table 3, GoF and RMSE values during the training and 

Fig. 6. Fitting results of Sentinel-2 images in Fig. 5. In each panel, y-axis is ICESat-2 derived depth Z and x-axis is the ratio R of the corresponding Sentinel-2 pixel.  
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validation stage imply that the error of the SDB product is predictable 
during the model fitting stage. This is particularly important when the 
valid ICESat-2 ATL03 points are scarce for a small island, where the 
validation set has very limited number of points. Table 3 also shows that 
images corrected by 6S model outperform the same ones corrected by 
sen2cor algorithm in all validation cases. The SDB products with accu
racy better than 1 m (highlighted in bold) are more in 6S corrected 
images. Hence, we only use 6S correction for the other five islands. In 
addition, the relative RMSE (RRMSE) in the last column is calculated by 
dividing “MPR 6S Validation” with the average depth, showing the 
percentage of error is about 12%–24% of the depth. 

During the study period, the number of clear images is 12 for 
Dongsha Island, 8 for Scarborough Reef, 14 for Alison Reef, 7 for 
Bombay Reef, 2 for Barque Canada Reef, and 4 for Investigator Shoal. 
The same workflow developed from Dongsha’s case is applied to all 
other ICESat-2 beams and 47 Sentinel-2 images in an automatic manner. 
The results of the three models are exemplified by one of the images 

(Fig. 8). The uncertainty of SDB derived from different models is also, 
although not obvious as Fig. 8 shows, mainly in the deep zone (>10 m). 
The estimates in deep area depend on the higher order terms in MER and 
MPR. 

4.4. Increasing SDB quality from redundant observations 

In the same way, GoF and Validation results given by three models 
for those 47 images are obtained. However, to fully exploit the advan
tage of repeating satellite images, a combination of multiple images is 
presumably more accurate and reliable than the single one. The accu
racy should be improved with repetitive observations whilst only 
random error exists. Hence, a weighted average is applied here for the 
images and check whether the accuracy can be further improved. This 
step not only produces a new SDB product to reduce potential random 
noise existed in either of the images, but also can help to fill the null 
pixels due to cloud contaminations and/or modeling errors. The formula 

Fig. 7. Satellite Derived Bathymetry (SDB) produced by Sentinel-2 images and ICESat-2 training points.  

H.-J. Hsu et al.                                                                                                                                                                                                                                  



ISPRS Journal of Photogrammetry and Remote Sensing 178 (2021) 1–19

12

Fig. 8. Satellite Derived Bathymetry (SDB) results in 6 target islands using three semi-empirical models.  
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used to calculate the weighted-average SDB is shown in Eq. (7), where Zc 
is the composite image through weighted average, Zl is the depth map 
given by any single image in the pool, l is the number of aggregated 
images, n is the maximum number of images in that island, and σl is the 
a priori accuracy estimated from GoF values. 

Zc =

(
∑n

l=1

1
σ2

l
Zl

)

×

(
∑n

l=1

1
σ2

l

)− 1

(7) 

It should be mentioned that the images in the pool have been sorted 
in the descending order of accuracy. Hence, it can be expected that the 
weighted average from the first few images would produce a better 
result than using the entire dataset. In other words, the subsequent 
image whose GoF is slightly worse may introduce extra “outliers” in the 
earlier composite due to the poor quality of some particular pixels. 
Therefore, the maximum number of aggregated images (n̂) should be 
optimized based on the following condition: 

n̂ = argmin
n

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K10

j=1
(Zc(j) − ẑ(j))2

K10

√
√
√
√
√

⎞

⎟
⎟
⎟
⎟
⎠

(8) 

where n̂ is the optimized number of images in use, ̂z(j) is the 10% of 
ICESat-2 validation point, Zc(j) is the interpolated depth at jth location in 
composite Zc. 

Hence, the optimized composite image can be formed as Eq. (9): 

Ẑ c =

(
∑̂n

l=1

1
σ2

l
Zl

)

×

(
∑̂n

l=1

1
σ2

l

)− 1

(9) 

As shown in Eq. (7), the composite image keeps updated as the 
increasing number of images in use. In the meantime, the RMSE could be 

verified instantly by Eq. (8) and the optimal number of images in the 
composite could be determined at the minimum. It is observed that for 
most of islands, the inclusion of second and third image could generally 
reduce the error at 0.05–0.1 m level (except for a rebound of Alison 
Reef). Fig. 9 shows the variation of MPR RMSE in six islands as the 
increasing number of images in the composite. Most RMSE level starts to 
converge after 3–4 images in the composite, and the total reduction of 
RMSE at n̂ in each case is at around 0.16 m (Alison Reef) to 0.1 m 
(others). 

SDB derived from the optimized composite image in these six islands 
are verified with the independent 10% of ICESat-2 validation set. In 
contrast to the single image (best or second) whose RMSE is generally 
0.64–1.09 m, the weighted-average SDB performs better than the best 
one in all cases, regardless of the number of images available. As dis
played in Table 4, the RMSE values of the Best/Second/ n̂ Weighted- 
Average results are compared. Even though the overall performance of 
MPR is slightly better than others, the difference among the three 
models are quite marginal. The next step is to check whether the error 
budget can satisfy the requirement in ZOC and their details in different 
water depth intervals. 

4.5. Potential ZOC category of Sentinel-2 SDB 

As defined by the International Hydrographic Organization (IHO), 
the quality of nautical charts can be categorized based on the age, po
sition/depth accuracy, reliability, and seafloor coverage of surveying 
techniques (Weintrit, 2018). The Category Zone of Confidence (ZOC) 
system in ENC is a guideline for mariners to manage the level of risk 
when sailing in a certain mapped area, and to ensure a safe under-keel 
clearance in shallow water. In each of the five ZOC levels, the depth 
accuracy is a function of base error plus a percentage of error propor
tional to the depth. For example, the highest level A1 requires a vertical 
accuracy at 0.50 m + 1% of depth and a positional accuracy at 5 m + 5% 
of depth, while the lower level C requires a vertical accuracy at 2 m +
5% of depth and a positional accuracy at 500 m. Although the current 
ZOC categories are standardized based on the utilization of 
echosounder/sonar surveys, the position and depth accuracy could be 
fulfilled by SDB products from various approaches, such as the multiple 
linear regression of log-transformed bands with Cubesat (Poursanidis 
et al., 2019), machine learning with Landsat-8 (Sagawa et al., 2019), and 
a combination of an empirical linear transformation, cloud masking, 
sun-glint correction, and pseudo-invariant features with Pleiades high- 
resolution images (Pike et al., 2019). In coastal areas, the level of ZOC 
is mostly B (30%), C (20%), D (20%), and U (25%) (IHO S67, 2017). 
Therefore, this study aims to leverage high quality ICESat-2 data and 
repeating Sentinel-2 images to develop a framework of SDB production, 
which ensures the error can be evaluated in islands without reference 
data. 

We first examine the SDB derived from two single images (best and 
second in the sequence) in all six islands to discuss the accuracy of 
Sentinel-2 derived SDB in different depth intervals. In other words, the 
estimated depths from the best two images are grouped together and 
validated with ICESat-2 validation set in each interval, regardless of 
which island they belong to. The amount of validation point (including 

Table 4 
Summary of the RMSE values of all available images without considering the depth distribution. The format of each entry is Best/Second/ n̂ Weighted-Average ac
curacy (RMSE) in meter. Numbers in the bracket of each entry is the number of n̂ (left) and the relative root-mean-square error (RRMSE) (right).  

Island # images in the pool MER MLR MPR 

Dongsha Island 12 0.64/0.77/0.51 [5 , 10%] 0.64/0.74/0.50 [9 , 9%] 0.64/0.73/0.50 [9 , 9%] 
Scarborough Reef 8 0.73/0.80/0.66 [3 , 16%] 0.72/0.77/0.65 [3 , 16%] 0.71/0.77/0.65 [3 , 16%] 
Alison Reef 14 0.89/0.91/0.79 [5 , 29%] 0.82/0.89/0.76 [6 , 28%] 0.74/0.75/0.65 [14 , 24%] 
Bombay Reef 7 0.75/0.85/0.70 [4 , 24%] 0.89/0.93/0.80 [4 , 28%] 0.73/0.83/0.70 [5 , 24%] 
Barque Canada Reef 2 0.77/0.86/0.71 [2 , 40%] 0.85/0.89/0.76 [2 , 43%] 0.70/0.84/0.68 [2 , 39%] 
Investigator Shoal 4 0.93/1.09/0.90 [3 , 16%] 0.91/1.05/0.84 [4 , 15%] 0.91/1.06/0.85 [4 , 15%]  

Fig. 9. Root-mean-square error (RMSE) of the composite image as a function of 
number of images in the composite. 
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airborne LiDAR and independent ICESat-2 point cloud) in each depth of 
all 6 islands is listed in Table 5. The number of validation points from 
Dongsha’s field LiDAR data is more evenly distributed than others from 
ICESat-2 validation set. 

It should be emphasized that the error discussed here with ZOC is 
1.96× RMSE, because ZOC is defined by a 95% Confidence interval (CI). 
It is also noted that category A2 and B have the same vertical but 
different horizontal accuracy requirement. In our analysis, the shallower 
part (<8 m) of all islands has a median of RMSE stay below or around the 
upper limit of ZOC category C. For most of depth estimates over 9 m, the 
median values are generally outside category C. The accuracy is very 
difficult to satisfy category C in most cases when the depth exceeds 16 m. 
As shown in subplots of Fig. 10, a box plot is used to demonstrate the 
distribution of 1.96× RMSE with a 1-m depth interval for each of 
regression models from (a) MER, (b) MLR, (c) MPR, and (d) all the three 
models. Three reference lines depict the upper bound of category C (2 m 
+ 5% depth, gray), category A2 and B (1 m + 2%, green), and category 
A1 (0.5 m + 1%, orange) in the ZOC requirement. For the box plot in 
each 1-m interval, the blue box displays the first and third quartile of 
RMSE for six examined islands, with the median colored in red. Black 
whisker displays the best and worst case in any of six islands’ two images 
excluding any outliers. Red crosses appearing in some intervals are the 
outliers. While evaluating the models separately (panels a–c), RMSE 
values reasonably become larger with the increase of water depth in 
three models. Panel d summarizes the performance from all possible 
fitting models used in this study. 

Next, the validation is conducted for the weighted-average SDB in all 
6 islands. From both internal (ICESat-2, K10) and external (airborne 
LiDAR) checks of the accuracy, the quality of SDB in Dongsha Island 
satisfies the requirement of category C within 11 m. The RMSE of 
weighted-average SDB of 6 islands as validated with ICESat-2 point 
clouds generally fulfills the category A2 and B within 2 m depth and 
category C in 3–4 m interval. Fig. 11 illustrates the RMSE in each depth 
of 6 islands, where blue stars depict the validation by airborne LiDAR in 
Dongsha, and colored circles indicate the validation of each island by the 
10% of ICESat-2 points. The black circle demonstrates an average of all 6 
islands’ accuracy validated by ICESat-2 only. We observe that Dongsha, 
Investigator Shoal, and Scarborough Reef can satisfy category C up to 8 
m. Investigator Shoal and Scarborough Reef can even stay within cate
gory C in 13–14 m. 

In summary, our accuracy of ICESat-2 photon heights (0.26 m to 
0.61 m) is similar to Parrish et al. (2019) that showed RMSE at 

0.43–0.60 m and Ma et al., (2020) that presented < 0.5 m errors near 
Yongle Atoll, SCS. For Sentinel-2 SDB, our RMSE is around 0.64–1.09 m 
from single image approach, and the error could be further reduced to 
0.50–0.90 m with weighted-average composites. The results are 
improved from 0.85 to 1.85 m error level in Ma et al. (2020) and 1.03 m 
(95th percentile) RMSE in Albright and Glennie (2020), who also used 
Sentinel-2 images. Our results are comparable to Gabr et al. (2020) that 
obtain an accuracy at 0.38–0.43 (depth up to 8.37 m) by Planetscope 
and Landsat-8 images near the Northern coast of Egypt. 

5. Discussion of error budget 

5.1. Spatial window for point cloud aggregation 

In Section 3.1, ICESat-2 point clouds are filtered by a series of spatial 
window to find the ocean floor. The size of window and the number of 
iterations are further tested here to discuss their sensitivity to the results. 
We compare 660 scenarios and compared the result of ICESat-2 seafloor 
profiles (10 ground tracks in two dates) against airborne LiDAR data in 
Dongsha Island. The variables in filtering process, including the aggre
gation segment (W1) for data filtering, iteration times, and the final 
window size for surface fitting (W2) are cross-combined in Fig. 12. The 
options of variables are listed in Table 6. In panels (a–c) of Fig. 12, the 
window size for iterations (W1) is chosen from ±1000 m to ±50 m (11 
intervals in total) for point cloud filtering. Different colors indicate the 
iteration times in each test run. In each W1 interval, points from left to 
right are the window size (W2) used for surface fitting, varying from 
±100 m to 0 m (12 options). 

The general trend of all test runs shows that the correlation increases 
while W1 decreases from 1000 m to around 100–400 m (panel a). This 
range implies that the seafloor features are mainly in the wavelength of a 
few to several hundreds of meters. The aggregation of points over a long 
arc would decrease the capability of outlier removal for a section of 
interest. Meanwhile, the colors show that the filtering process starts to 
converge after three times of iterations (blue). The errors, in terms of 
RMSE in panel (b), drop from around 1 m (red) to around 0.5 m (green) 
after three times of ±2σ outlier removal. However, it is not recom
mended to iterate more times because the spatial sampling distance, as 
calculated from the number of remaining points divided by the entire 
transect, decreases from around 5.5 m (blue in panel c) to>6 m 
(magenta in panel c). Therefore, to fine-tune the variable used in Step 2 
of Section 3.1, the current setting is a tradeoff between accuracy and 

Table 5 
The amount of independent ICESat-2 validation point (K10) of 6 islands in each depth. Dongsha Island has extra field data taken by airborne bathymetric LiDAR.  

Island/ validation point 
numbers 

Dongsha 
Island 

Dongsha Island 
(field data) 

Scarborough 
Reef 

Alison 
Reef 

Bombay 
Reef 

Barque Canada 
Reef 

Investigator 
Shoal 

Total amount in each 
interval 

0–1 m 69 49,539 1011 193 90 2129 44 53,075 
1–2 m 429 53,987 639 755 1332 1979 207 59,328 
2–3 m 205 27,273 686 120 1065 235 194 29,778 
3–4 m 301 11,517 1269 197 204 78 70 13,636 
4–5 m 358 13,499 90 94 66 94 81 14,282 
5–6 m 604 16,952 48 76 36 72 56 17,844 
6–7 m 748 21,365 129 76 25 51 45 22,439 
7–8 m 293 21,092 198 17 46 37 79 21,762 
8–9 m 208 22,845 241 9 60 61 118 23,542 
9–10 m 110 18,058 368 19 48 53 156 18,812 
10–11 m 53 19,511 351 22 45 60 76 20,118 
11–12 m 22 18,614 140 8 38 48 41 18,911 
12–13 m 11 18,207 15 0 35 11 25 18,304 
13–14 m 12 20,106 1 0 10 0 1 20,130 
14–15 m 4 25,221 1 0 2 0 0 25,228 
15–16 m 1 29,260 0 0 0 0 0 29,261 
16–17 m 0 21,142 0 0 0 0 0 21,142 
17–18 m 0 6990 0 0 0 0 0 6990 
18–19 m 0 2687 0 0 0 0 0 2687 
19–20 m 0 1323 0 0 0 0 0 1323 
Total amount in each 

island 
3428 419,188 5187 1586 3102 4908 1193   
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Fig. 10. Validation of accuracy of the best two single images for all six islands with a 1-m step by: (a) MER, (b) MLR, (c) MPR, (d) all three models. Gray, dark-green, 
orange dashed lines are the ZOC category C (2 m + 5% depth), category A2 and B (1 m + 2% depth), and category A1 (0.5 m + 1% depth), respectively. The depth 
results deeper than 15 m are only validated against airborne LiDAR data. Gray, green, and orange lines are the upper bound of ZOC category C (2 m + 5% depth), A2 
& B (1 m + 2%), and A1 (0.5 m + 1%), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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number of points remained in the profile. Panel (d)is a blow-up view of 
panel (b) in W1 = 200 m. We observe that the selection of 200 m for W1, 
3 times of iterations, and 30 m for W2 is a balanced combination be
tween accuracy, correlation, and the sampling interval. Actually, it is 
worth noting that the accuracy is not sensitive within this preferred 
combination window. The accuracy only varies in centimeters level 
while choosing other options of W2. 

The choice of spatial window is further supported by the wave
number analysis of terrain. The power spectral density (PSD) in two 
directions of Dongsha Island is depicted in Fig. 13. A break point of 
power near 25 m of wavelength (red dashed line) implies that the for
mation of ocean floor over a typical inner, crest, outer, and patch part of 
the reef, contains most features greater than this threshold. It also ex
plains the reverse pattern in choice of surface fitting window smaller 
than 30 m (W2, Fig. 12d). An inappropriate selection of fitting window 
could overfit the noisy point cloud. 

6. Error contributions 

In our current workflow, the optimal RMSE in ICESat-2 photon 
heights is 0.4–0.5 m in Fig. 12d and Table 2. By looking into the numbers 
in Table 2, STD is about 0.1–0.4 m smaller than RMSE, indicating that 
the RMSE contains a part of systematic error that may be associated with 
datum transformation. In other analyses using ICESat-2 validation set 
(K10) for comparison, datum transformation would not be an issue. 
Thus, the error budget of ICESat-2 photon heights estimated by our 
workflow is about 0.2–0.3 m level (STD in Table 2). Regarding to the 
GoF and RMSE provided in Table 3 and 4, different Sentinel-2 training 
models yield an error of 0.6–0.9 m for the best 1–2 images (include the 
error propagated from ICESat-2 photon heights). Even though the error 
of Sentinel-2 SDB can be further reduced to 0.5–0.8 m by the composite 
technique developed herein (Fig. 9), there is still a level of error in 

0.3–0.5 m to be mitigated. Actually, the error is associated with the 
number of training samples as indicated by Table 5, Fig. 10, and Fig. 11. 
An increase of error in 5–13 m deep in Fig. 10, corresponding to the error 
of Barque Canada and Bombay Reef in Fig. 11, is associated with a poor 
number of training samples in this range (Table 5, times 9 for the 
training points). Similarly, a sharp increase of error after 11 m in 
Dongsha’s case is related to the sudden drop of training samples in this 
range (Table 5). It is obvious that the more and the narrower spread of 
training samples in Fig. 6, the better constrained curve could be derived. 
It can also be evident in Scarborough Reef case. Even though the RMSE 
in Fig. 9 of the composite image is 0.76 m, its performance is among the 
best in Fig. 11 up to 14 m deep. A sufficient number of training points 
(Table 5), especially when the scattered points tend to diverge beyond 
10 m deep (Fig. 6), is the key to uphold a good performance for a model. 

Besides, it is worth noting the contribution of ICESat-2 geolocation 
error as it is difficult to be cancelled out due to the very limited number 
of ATL03 transects. The geolocation error could impose first order error 
in the composite images. We simulate the budget of vertical error that 
could be attributed to the geolocation error of ICESat-2 footprint 
(Fig. 14). The calculation follows σh = slope× σG, in which σh is the 
photon height error, slope is the seafloor slope derived from airborne 
LiDAR data, and σG is the geolocation error in 1–5 m. The simulation is 
conducted using the geolocation of photons listed in Table 2, and σh is 
computed in the 90th percentile of all photons in each 1-m vertical in
terval. It is interesting to see that the error distribution is similar to the 
pattern in Fig. 11 (red circle and blue star). It is because the geolocation- 
induced error tends to increase when the slope is steeper. The first bulge 
appears near 4–5 m, a typical location of buttress zone and the reef face. 
The following increase is in the lagoon (>9 m) where some reef crests 
appeared within it. The geolocation error around 0.1–0.2 m level in 1–8 
m deep could explain a part of error in STD of Table 2. Hence, a more 
complete study, which remains as our future work, is needed as this 
issue had been emphasized in many recent studies (Smith et al., 2019; 
Ma et al., 2020; Neuenschwander et al., 2020). However, the accuracy 
for over 15 m depth is mainly attributed to environmental conditions 
and the radiometric limit in Sentinel-2 images. 

7. Conclusions 

This study overcomes the limitation of traditional methods that need 
ground truth for the production and verification of SDB, by utilizing a 
combination of ICESat-2 laser altimetry and Sentinel-2 optical images. 
We develop an innovative and automatic surface detection algorithm for 
ICESat-2 ATL03 point clouds to obtain a set of depth measurements with 
an accuracy of 0.26–0.61 m as compared against airborne LiDAR data. A 
semi-empirical approach physically based on Stumpf’s ratio model 
(Stumpf et al., 2003) is adopted to develop Sentinel-2 SDB products. We 
introduce a scheme to produce the composite image that efficiently 
reduce the error potentially contributed from ICESat-2 ATL03 (both 
exact vertical accuracy and spatial modeling error), Sentinel-2 radio
metric error, and randomly changed diffuse attenuation coefficient in 
water. The accuracy of the composite SDB for the six islands ranges from 
0.50 to 0.90 m by all models. The medians of SDB derived from single 
images over the six islands could fulfill the requirement of ZOC category 
C within depth < 8 m. However, it is observed that the three empirical 
models tested in this study have similar performance in all cases. Among 
them, the Modified Polynomial Ratio model (MPR) slightly outperforms 
in the final results (Table 4). The improvement from the weighted- 
average scheme is more significant than the choice of fitting models. 

Fig. 11. Accuracy assessment of the best weighted-average SDB among three 
models for each of 6 islands. Depth estimates are validated in 1-m step with 
ICESat-2 10% validation dataset (colored circles), and with airborne LiDAR 
data in Dongsha (blue stars). An average of the RMSE in each 1-m interval is 
displayed as the black circle. Gray, green, and orange lines are the upper bound 
of ZOC category C (2 m + 5% depth), A2 & B (1 m + 2%), and A1 (0.5 m + 1%), 
respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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This paper’s main contribution is to introduce a workflow to inte
grate ICESat-2 and Sentinel-2 for bathymetry retrieval in islands that are 
poorly mapped or difficult to access. However, it is still known that 
ICESat-2 may have limited overpasses near small islands. The presence 
of clouds leads to very limited photons hitting the ground. In addition, 
Sentinel-2 also experiences surface condition issues, such as weather 
forcing (e.g., fog, rain, humid atmosphere) and clouds/shadows. SDB 
may have deteriorated qualities in those images or under unfavored 
water clarity (suspended solids, algae, pollution, etc.), even in very 
shallow waters with a few meters deep. Ground survey is suggested to 
ensure the reliability of nautical charts in these areas. 

Fig. 12. Variation of accuracy indicators as the change of photon filtering criteria. (a) Correlation changes with different W1, W2, and iterations. (b) RMSE changes 
with the same scenarios. (c) Average interval changes with the same scenarios. (d) Zoom-in view of panel (b) in W1 = 200. 

Fig. 13. Power spectral density of the seafloor derived from airborne 
LiDAR data. 

Table 6 
Variables used to examine the error budget in ICESat-2 photon height estimate.  

Variables Options 

Window size for point cloud filtering 
(W1) [m] 

1000, 900, 800, 700, 600, 500, 400, 300, 
200, 100, 50 

Iteration [times] 1, 2, 3, 4, 5 
Window size for surface fitting (W2) 

[m] 
100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 1  
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