

1 **Large-eddy simulations of marine boundary-layer clouds associated with**
2 **cold air outbreaks during the ACTIVATE campaign– part 1: Case setup and**
3 **sensitivities to large-scale forcings**

4 Xiang-Yu Li^a, Hailong Wang^a, Jingyi Chen^a, Satoshi Endo^e, Geet George^f, Brian Cairns^b,
5 Seethala Chellappan^c, Xubin Zeng^j, Simon Kirschler^g, Christiane Voigt^g, Armin Sorooshian^{i,j},
6 Ewan Crosbie^d, Gao Chen^d, Richard Anthony Ferrare^d, William I. Gustafson Jr.^a, Johnathan W
7 Hair^d, Mary M Kleb^d, Hongyu Liu^l, Richard Moore^d, David Painemal^h, Claire Robinson^h,
8 Amy Jo Scarino^d, Michael Shook^d, Taylor J Shingler^d, Kenneth Lee Thornhill^d, Florian
9 Tornow^{b,k}, Heng Xiao^a, Luke D Ziembra^d, Paquita Zuidema^c

10 ^a *Pacific Northwest National Laboratory*

11 ^b *NASA Goddard Institute for Space Studies, New York, NY, United States*

12 ^c *Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, United*
13 *States*

14 ^d *NASA Langley Research Center, Hampton, VA, United States*

15 ^e *Brookhaven National Laboratory, Upton, NY, United States*

16 ^f *Max Planck Institute for Meteorology, Hamburg, Germany*

17 ^g *Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany*

18 ^h *Science Systems and Applications, Inc. Hampton, Hampton, VA, United States*

19 ⁱ *University of Arizona, Department of Chemical and Environmental Engineering, Tucson, AZ,*
20 *United States*

21 ^j *University of Arizona, Department of Hydrology and Atmospheric Sciences, Tucson, AZ, United*
22 *States*

23 ^k *Columbia University of New York, Center for Climate Systems Research, Earth Institute, New*
24 *York, NY, United States*

25 ^l *National Institute of Aerospace, Hampton, VA, United States*

²⁶ Corresponding author: Xiang-Yu Li, xiangyu.li@pnnl.gov

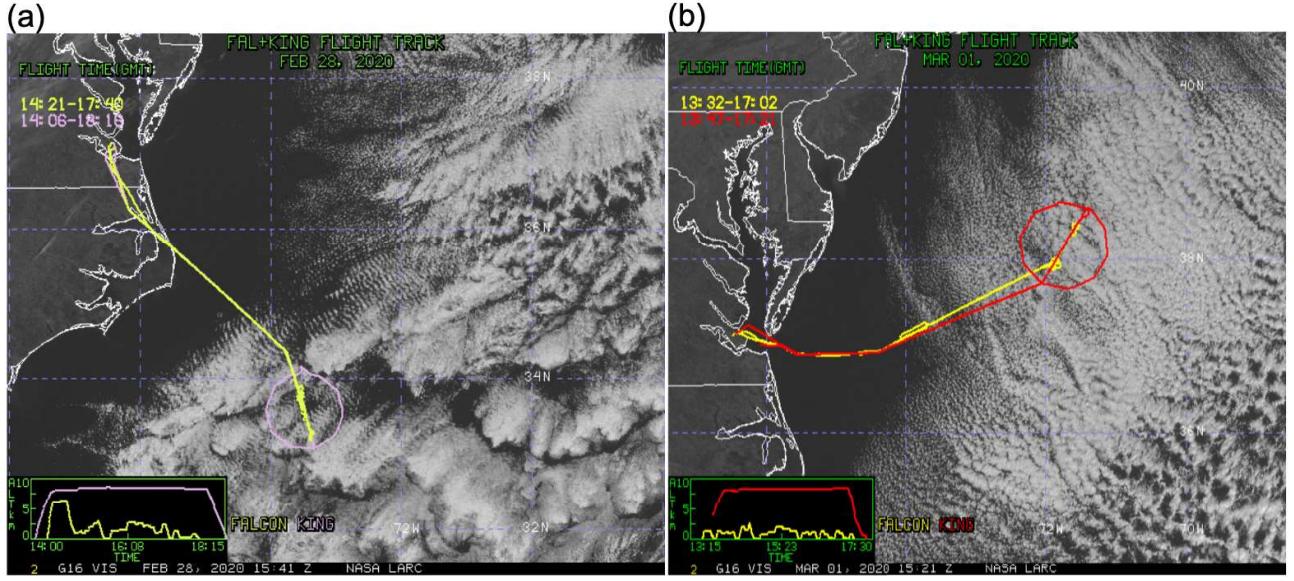
²⁷ Corresponding author: Hailong Wang, hailong.wang@pnnl.gov

28 ABSTRACT: Large-eddy simulation (LES) is able to capture key boundary-layer (BL) turbulence
29 and cloud processes. Yet, large-scale forcing and surface turbulent fluxes of sensible and latent heat
30 are often poorly prescribed for LES simulations. We derive these quantities from measurements
31 and reanalysis obtained for two cold air outbreak (CAO) events during Phase I of the Aerosol Cloud
32 meTeorology Interactions oVer the western ATLantic Experiment (ACTIVATE) in February-March
33 2020. We study the two contrasting CAO cases by performing LES and test the sensitivity of
34 BL structure and clouds to large-scale forcings and turbulent heat fluxes. Profiles of atmospheric
35 state and large-scale divergence and surface turbulent heat fluxes obtained from the reanalysis data
36 ERA5 agree reasonably well with those derived from ACTIVATE field measurements for both cases
37 at the sampling time and location. Therefore, we adopt the time evolving heat fluxes, wind and
38 advective tendencies profiles from ERA5 reanalysis data to drive the LES. We find that large-scale
39 thermodynamic advective tendencies and wind relaxations are important for the LES to capture
40 the evolving observed BL meteorological states characterized by the hourly ERA5 reanalysis data
41 and validated by the observations. We show that the divergence (or vertical velocity) is important
42 in regulating the BL growth driven by surface heat fluxes in LES simulations. The evolution of
43 liquid water path is largely affected by the evolution of surface heat fluxes. The liquid water path
44 simulated in LES agrees reasonably well with the ACTIVATE measurements. This study paves
45 the path to investigate aerosol-cloud-meteorology interactions using LES informed and evaluated
46 by ACTIVATE field measurements.

47 **1. Introduction**

48 When viewed from space, about 70% of Earth's surface is covered by clouds (Schneider et al.
49 2017). Clouds, the regulator of the radiative heating and cooling of the planet (Ramanathan et al.
50 1989), represent a major complication in the current modeling of the climate system (Schneider
51 et al. 2017; Stevens and Bony 2013; Bony et al. 2017). One of the most challenging problems of
52 cloud–climate interactions is to understand how cloud microphysical processes affect atmospheric
53 water and radiation budgets, such as how precipitation efficiency affects radiative properties of
54 stratocumulous clouds (Boucher et al. 2013).

55 The Western North Atlantic Ocean (WNAO) region has attracted decades of atmospheric re-
56 search due to the complex atmospheric system (Painemal et al. 2021), pollution outflow from
57 North America (Corral et al. 2021), and accessibility by aircraft and ships. However, the subject
58 of Aerosol-Cloud-Interaction (ACI) is the least investigated among all the field campaign mea-
59 surements over the WNAO (Sorooshian et al. 2020) partly because of the complicated chemical,
60 physical, and dynamical processes in this region. ACI involves processes from the formation of about
61 nm-sized aerosols to the life cycle of kilometer-sized clouds, which covers a scale range of about
62 10^{12} . Such a scale separation coupled with turbulence poses great challenge for both measurements
63 and numerical modeling. The spatial distribution of aerosols and the ambient humidity fields de-
64 termine the formation of cloud droplets and ice crystals and their size distribution (Shaw 2003).
65 Precipitation and radiative properties of clouds are altered by the size distribution of particles. The
66 Aerosol Cloud meTeorology Interactions oVer the western ATLantic Experiment (ACTIVATE) field
67 campaign aims to tackle ACI by performing comprehensive measurements of cloud macro/micro
68 properties and atmospheric states using two aircraft simultaneously, which can be used to evaluate
69 and constrain atmospheric models (Sorooshian et al. 2019, 2020).


70 Large eddies of $O(10^2 - 10^3$ m) in the planetary boundary layer are important for turbulent
71 mixing, heat/moisture transport, and cloud formation. Large-eddy simulation (LES) has been
72 widely used to model marine boundary-layer clouds and ACI (Bretherton et al. 1999; Stevens et al.
73 2002; Brown et al. 2002; Ackerman et al. 2009; Wang et al. 2009; Wang and Feingold 2009;
74 de Roode et al. 2019; Brilouet et al. 2020). LES resolves the intermediate and large turbulent
75 eddies (sub-inertial range of turbulence) and parameterizes smaller scales using well-established
76 parameterization schemes. LES has advantages over cloud resolving models and beyond as it can

77 resolve the BL eddies and over direct numerical simulations (Li et al. 2018, 2019, 2020) since
78 it is able to simulate mesoscale cloud organizations in a sufficiently large domain. One of the
79 most challenging problems of using idealized LES with doubly periodic boundary conditions to
80 represent evolving clouds is realistically configuring large-scale forcings (e.g., horizontal advection
81 tendencies, divergence (D) of flow, and surface heat fluxes) that determine the spatiotemporal
82 variation of large-scale ambient conditions for the cloud system. The “large-scale” here refers to
83 scales of 50 – 500 km (Bony and Stevens 2019). There are different ways to construct large-scale
84 forcings for typical LES domains. For example, D profiles, horizontal advection tendencies and
85 heat fluxes can be obtained from analysis/reanalysis products and other numerical models, as well
86 as measurements of variables used for the calculation. To validate D and heat fluxes obtained
87 from numerical models, observations such as sounding profiles of atmospheric state and surface
88 temperature measurements are needed. Bretherton et al. (1999) forced single-column models and
89 two-dimensional eddy-resolving models using time-varying boundary conditions from reanalysis
90 data and found that these models predict the observed evolution of boundary layer well. Similar
91 forcing was applied to LES in Van der Dussen et al. (2013). Neggers et al. (2012) drove LES
92 using time-varying large-scale forcing from general circulation models and argued that such a
93 forcing strategy can reproduce large-scale meteorological states and preserve small-scale cloud
94 physics. Endo et al. (2015) constructed continuous large-scale and surface forcings from reanalysis
95 data to successfully simulate continental boundary layer clouds during the Routine Atmospheric
96 Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative
97 Observations (RACORO) campaign using an idealized LES model. The application of such large-
98 scale forcing schemes for marine stratocumulus clouds in the WNAO region, however, has not been
99 reported, which is a focus of this study.

100 Marine stratocumulus clouds associated with cold air outbreaks (CAOs) with mesoscale (scales
101 larger than a few kilometers) fluctuations are challenging to represent in climate models. CAO
102 occurs when cold air mass moves over a warm sea surface, creating strong convection analogous
103 to Rayleigh-Bénard convection (Agee 1987). CAO events are characterized by stronger surface
104 latent heat fluxes of $\mathcal{O}(10^2 - 10^3 \text{ W m}^{-2})$ (Papritz et al. 2015) and subsidence of up to an order
105 of magnitude, compared to non-CAO cases due to the large temperature difference (Agee 1987).
106 This can makes it difficult to simulate convection and clouds associated with CAOs. The ratio

107 of buoyancy force to shear (Richardson number), precipitation, and entrainment contribute to
108 the topological cloud structure of CAOs (e.g., cloud streets) (de Roode et al. 2019). The cloud
109 roll structure occurring during CAOs was first simulated by Liu et al. (2004) using a cloud-
110 resolving model able to capture the transition of clouds from two-dimensional roll structure to
111 three-dimensional closed cells. Gryschka and Raasch (2005) performed the first LES to simulate
112 CAO cloud roll structures. They found that roll structures are sensitive to the spatial resolution of
113 LES. Tomassini et al. (2017) investigated how well a CAO event over the North Atlantic Ocean is
114 represented in global models as compared to LES. They found that the global models employed
115 in their study underestimate the amount of cloud liquid water compared to LES results. More
116 recently, de Roode et al. (2019) performed an LES intercomparison study of a CAO case observed
117 during the CONSTRAIN campaign. They found that the evolution of the stratocumulus cloud
118 deck and the timing of its breakup differ significantly among seven LES models and attributed
119 this discrepancy to the inconsistency of microphysics parameterizations between different LES
120 models. Tornow et al. (2021) investigated a marine CAO case in the northwestern Atlantic
121 and found that frozen hydrometeors accelerate the transition of cloud decks into broken cloud
122 streets. Here we aim to examine the roles of large-scale forcings and aerosols in affecting the
123 evolution of WNAO marine boundary-layer meteorology and clouds associated with CAO using
124 LES constrained by in-situ and remote sensing measurements in a two-part serial study. The
125 first part focuses on quantifying sensitivities of meteorology and clouds to large-scale forcings
126 and turbulent surface fluxes. The second part will focus on characterizing cloud properties and
127 aerosol-cloud-meteorology interactions.

128 In this first part of two companion studies, we first introduce two CAO cases sampled during the
129 2020 winter deployment of ACTIVATE and describe the numerical experiment setup for idealized
130 LES to model the two cases. Then we use divergence profiles and surface heat fluxes derived
131 from ACTIVATE dropsondes and sea surface temperature (SST) measurements to first evaluate
132 these quantities from ERA5 reanalysis data. We further examine the sensitivities of LES results to
133 surface heat fluxes and large-scale thermodynamic advective tendencies. We adopt the same LES
134 model and large-scale forcing scheme as in Endo et al. (2015).

148 FIG. 1. Visible images for (a): 28 February 2020 and (b): 1 March 2020 cases from GOES-16 over the
 149 ACTIVATE measurement region. Lower-left panels represent the flight altitude as a function of UTC time for
 150 the HU-25 Falcon (low-flying aircraft) and King Air (high-flying aircraft).

135 **2. Observations, reanalysis data, and LES numerical experiment setup**

136 *a. ACTIVATE campaign*

137 The ACTIVATE field campaign aims to collect sufficient measurements to understand interac-
 138 tions of marine boundary-layer clouds with meteorological conditions and aerosol particles, which
 139 eventually leads to improved physical understanding of cloud micro/macro processes and reduced
 140 uncertainty in their representation in global climate models. A total of 150 coordinated flights with
 141 two air-borne platforms is planned for three years (2020-2022) over the western North Atlantic
 142 Ocean ($25^{\circ} - 50^{\circ}\text{N}$, $60^{\circ} - 85^{\circ}\text{W}$) to characterize aerosol-cloud-meteorology interactions in a sys-
 143 tematic and simultaneous manner (Sorooshian et al. 2019). This is being achieved by flying two
 144 aircraft simultaneously at different altitudes. The low-flying HU-25 Falcon measures in-situ trace
 145 gases, aerosol, clouds, precipitation, and meteorological properties below, in, and above clouds.
 146 The higher-flying King Air above clouds simultaneously acquires remote retrievals of aerosols and
 147 clouds while launching dropsondes.

151 Figure 1 shows flight tracks of King Air and HU-25 Falcon and visible images from GOES-16
 152 satellite during the two CAO process-study cases over the WNAO region on 28 February 2020

172 TABLE 1. This table lists the start-end time of dropsonde measurements, the location, 10-m wind speed U_{10m} ,
 173 $q_{v,10m}$, and T_{10m} at the center of dropsonde circle for the 28 February 2020 and 1 March 2020 cases. The
 174 corresponding SST from ERA5 reanalysis is also documented.

Case	Start-end times (UTC)	Lat (°)	Lon (°)	U_{10m} (ms ⁻¹)	$q_{v,10m}$ (g kg ⁻¹)	T_{10m} (K)	SST (K)	
							MW-IR	ERA5
0228	1540-1645	33.66	286.69	5.94	4.64	286.75	293.25	293.60
0301	1451-1547	38.01	288.36	11.74	2.79	275.71	286.84	286.88

153 and 1 March 2020, corresponding to Research Flight #10 and #13 (hereafter RF10 and RF13),
 154 respectively. 11 dropsondes (model Vaisala NRD41) were released from the King Air. Each of them
 155 provided vertical profiles of air pressure p , temperature T , relative humidity RH, and horizontal
 156 velocities u and v with a vertical resolution of 5-10 m and a resolution (with associated uncertainty)
 157 of 0.01 hPa (± 0.5 hPa), $0.01^\circ C$ ($\pm 0.2^\circ C$), 0.01% ($\pm 0.3\%$), and 0.01 ms^{-1} ($\pm 0.5\text{ ms}^{-1}$) (National
 158 Center for Atmospheric Research 2021), respectively. The King Air flew in a circular pattern with
 159 a diameter of about 152 km to cover the largest enclosed area for dropsonde measurements and
 160 to avoid sharp turns. Such a flight pattern for the dropsonde measurements was first proposed by
 161 Lenschow et al. (1999). This strategy has been used in other campaigns to measure the large-scale
 162 divergence D , such as Elucidating the Role of Cloud–Circulation Coupling in Climate (Bony and
 163 Stevens 2019), Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (Quinn
 164 et al. 2021), and Next-Generation Aircraft Remote Sensing for Validation (NARVAL2) airborne
 165 field campaign (Stevens et al. 2019). Dropsondes were released at a height of about 8 km. We
 166 interpolate the measured data evenly with a vertical spacing of 10 m for further analysis. Two
 167 contrasting CAO cases were observed over the WNAO region on February 28 (RF10, dropsonde-
 168 circle center at $33.66^\circ N$, $286.69^\circ E$) and March 1 (RF13, dropsonde-circle center at $38.01^\circ N$,
 169 $288.36^\circ E$) as shown in Figure 3. Table 1 summarizes the start/end time of dropsonde measurements,
 170 the location, 10-m wind speed U_{10m} , $q_{v,10m}$, T_{10m} , and ERA5 SST at the center of dropsonde circle
 171 for the February 28 and March 1 cases, respectively.

175 Dropsonde measurements are used to characterize the meteorological conditions and derive
 176 large-scale divergence and surface heat fluxes for both cases. Cloud droplets and ice crystals were
 177 observed for both cases. The mean number concentration of cloud droplets obtained from Fast

178 Cloud Droplet Probe (FCDP, equipped on HU-25 Falcon) measurement (Taylor et al. 2019; Knop
179 et al. 2021) is about $\langle N_c \rangle = 650 \text{ cm}^{-3}$ for the February 28 case and $\langle N_c \rangle = 450 \text{ cm}^{-3}$ for the March
180 1 case. These values are acquired by averaging in-cloud FCDP measurement with a lower cutoff of
181 liquid water path of 0.02 g kg^{-1} and effective diameter of $3.5 \mu\text{m}$ (FCDP covers a diameter range of
182 3.0 to $50.0 \mu\text{m}$). There were also detailed measurements of aerosol particles including mass and
183 number concentration, composition, size distribution, hygroscopicity, and optical properties. Given
184 the focus of this study, we only use the mean cloud drop number in our LES sensitivity simulations
185 on meteorological conditions and large-scale forcings. Liquid water path is retrieved from Research
186 Scanning Polarimeter (RSP) (Alexandrov et al. 2012, 2018). Given the instantaneous field of view
187 of 14 mrad, typical cloud tops (about 2 km), and a flight altitude of the King Air during ACTIVATE
188 ($8 \sim 9 \text{ km}$), the nadir pixel size of the RSP is approximately 100 m. To compare with the LES with
189 a 300 m horizontal grid spacing, we average the RSP sampling every 3 s, given that the moving
190 speed of King Air is about 100 m s^{-1} . Fast in-situ 3-D wind measurements were performed with
191 an uncertainty of 5% and a sampling frequency of 20 Hz. The static air temperature was measured
192 with an uncertainty of 5% and a sampling frequency of 1 Hz. The water vapor volume mixing
193 ratio in ppmv was measured by Diode Laser Hygrometer with an uncertainty of 5% and a sampling
194 frequency of 1 Hz.

195 b. ERA5 and MERRA-2 reanalysis data

196 The ERA5 reanalysis data are generated using the fifth generation of European Centre for
197 Medium-Range Weather Forecasts's Integrated Forecast System (Hersbach et al. 2020). We use
198 the ERA5 hourly data at a horizontal resolution of 31 km. For three-dimensional fields, there are
199 137 model levels up to a height of 80 km. Since ERA5 only provide \bar{D} in datasets with specified
200 pressure levels, we use pressure-level data for the comparison of \bar{D} and the corresponding large-
201 scale vertical velocity w . The ERA5 large-scale forcings for the LES are obtained at the model
202 levels instead of the pressure levels because the model-level data have a finer vertical mesh-size
203 and can better characterize the inversion layer. The ambient meteorological conditions for a given
204 location during a CAO usually evolve quickly due to strong winds and large surface heat fluxes
205 under winter mid-latitude weather disturbances. Since the measurement time window for the two
206 CAO events is about one hour during the ACTIVATE field campaign, we are not able to use the

207 measurements directly to drive the LES for many hours. We validate the ERA5 reanalysis data
208 against the limited field measurements and then use the evolving forcing conditions from ERA5
209 reanalysis data to drive the LES.

210 The Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2)
211 (Global Modeling and Assimilation Office (GMAO) 2015) is also used to compare with the ERA5
212 reanalysis and dropsonde measurements. The MERRA-2 reanalysis data are generated using
213 the Goddard Earth Observation System version 5 (GEOS-5) with its Data Assimilation System
214 version 5.12.4 (Gelaro et al. 2017). MERRA-2 has a horizontal resolution of $0.5^\circ \times 0.625^\circ$ with
215 72 model levels, from which the 3-hourly datasets at 42 pressure-levels are interpolated. It also
216 provides 1-hourly two-dimensional datasets. We note that dropsonde measurements made during
217 the ACTIVATE campaign have *not* been assimilated in either the ERA5 or MERRA-2 reanalysis
218 used in this study. This allows us to validate meteorological states from LES and the reanalysis
219 against the dropsonde measurements.

220 *c. Satellite measurements*

221 We use daily sea surface temperature (SST) retrieved from microwave and infrared based satellite
222 measurements (MW-IR SST) produced by Remote Sensing Systems (National Centers for Environ-
223 mental Information 2008). The SST product has a horizontal grid spacing of 9 km. This resolution
224 is 3 times higher than the SST from ERA5 reanalysis data.

225 *d. LES numerical experiment setup*

226 We use the Weather Research and Forecasting (WRF) model (Skamarock et al. 2019) in the
227 idealized LES mode (WRF-LES) (Wang and Feingold 2009) to simulate the two CAO cases and
228 test the sensitivities of the marine BL and clouds to large-scale forcing and heat fluxes. Doubly
229 periodic boundary conditions are employed in horizontal directions. The horizontal resolution is
230 set to $dx = dy = 300$ m with 200 lateral grid cells, which results in a horizontal domain size of $L_x =$
231 $L_y = 60$ km. The domain height is $z_{\text{top}} = 7$ km with 153 vertical η -layers ($\eta = (p - p_{\text{T}})/(p_{\text{S}} - p_{\text{T}})$)
232 with p_{S} and p_{T} the pressure at the bottom and top of the model domain, respectively), which results
233 in a vertical mesh-size of about 33 m in the boundary layer. The horizontal resolution of 300 m is
234 quite coarse for LES but it has proven to be able to simulate the formation and evolution of cloud

235 cellular structures in marine stratocumulus (Wang and Feingold 2009). The periodic boundary
 236 condition in horizontal directions is ideal for isolating main governing factors for cloud processes
 237 and has been widely used for LES with lateral domain size even larger than 60km (Seifert et al.
 238 2015; Bretherton and Blossey 2017). The time step is set to $\Delta t = 3$ s in all simulations. Simulations
 239 are initiated at 06:00 UTC to allow sufficient model spin-up time before the WRF-LES results are
 240 evaluated against measurements taken during 16:00-17:00 UTC on February 28 and 15:00-16:00
 241 UTC on March 1.

242 The two-moment Morrison cloud microphysics scheme (Morrison et al. 2009) is used. In this part
 243 of the study, a constant number concentration of cloud droplets derived from in-situ measurements
 244 during the ACTIVATE campaign is prescribed in the Morrison scheme to stay focused on cloud-
 245 meteorology interactions. Both shortwave and longwave radiative schemes are originally from
 246 the NCAR Community Atmosphere Model (CAM 3.0), which were used in previous WRF-LES
 247 studies, such as Wang et al. (2009) and Wang and Feingold (2009). Surface heat fluxes and SST
 248 are all prescribed in the model as the boundary conditions at the sea surface.

249 LES with horizontally uniform initial conditions and periodic boundary conditions cannot predict
 250 changes in atmospheric state at scales larger than its domain size. This is particularly true for rapidly
 251 evolving CAOs, with a baroclinic structure and the resulting vertical wind-profiles that cannot be
 252 properly simulated by LES (Gryschka et al. 2014). To circumvent this problem, we apply relaxation
 253 to horizontal wind components u and v and advective tendencies to potential temperature θ and
 254 water vapor mixing ratio q_v as forcing terms in the prognostic equations. We adopt the same
 255 large-scale forcing and relaxation schemes as in Endo et al. (2015). To derive the large-scale
 256 forcings, we simplify the governing equation of θ and q_v by removing sink and source terms as,

$$\frac{\partial \theta}{\partial t} = -\mathbf{u} \cdot \nabla \theta = -u \frac{\partial \theta}{\partial x} - v \frac{\partial \theta}{\partial y} - w \frac{\partial \theta}{\partial z}, \quad (1)$$

$$\frac{\partial q_v}{\partial t} = -\mathbf{u} \cdot \nabla q_v = -u \frac{\partial q_v}{\partial x} - v \frac{\partial q_v}{\partial y} - w \frac{\partial q_v}{\partial z}. \quad (2)$$

257 Applying Reynolds decomposition to Equations (1) and (2) and ignoring the perturbation terms
 258 $\overline{\mathbf{u}' \cdot \nabla \theta'}$ and $\overline{\mathbf{u}' \cdot \nabla q'_v}$, we obtain temporal tendencies at large scales,

$$\frac{\partial \bar{\theta}}{\partial t} = \left[-\bar{u} \frac{\partial \bar{\theta}}{\partial x} - \bar{v} \frac{\partial \bar{\theta}}{\partial y} - \bar{w} \frac{\partial \bar{\theta}}{\partial z} \right]_{\text{ERA5}}, \quad (3)$$

260 and

$$\frac{\partial \bar{q}_v}{\partial t} = \left[-\bar{u} \frac{\partial \bar{q}_v}{\partial x} - \bar{v} \frac{\partial \bar{q}_v}{\partial y} - \bar{w} \frac{\partial \bar{q}_v}{\partial z} \right]_{\text{ERA5}}, \quad (4)$$

261 where the overbar denotes a large-scale mean. The large-scale horizontal advective tendencies of $\bar{\theta}$
262 and \bar{q}_v are given by the first two terms of r.h.s of Equation (3) and Equation (4), respectively. The
263 third term in the r.h.s of Equation (3) and Equation (4) represents the large-scale vertical advective
264 tendencies. These large-scale advective tendencies are obtained from the hourly ERA5 reanalysis
265 data and applied to each grid cell. Ignoring the perturbation terms $\bar{u}' \cdot \nabla \bar{\theta}'$ and $\bar{u}' \cdot \nabla \bar{q}'_v$ is for
266 the practical reason that ERA5 reanalysis data do not resolve intermediate scales for our LES due
267 to the relatively coarse mesh size of 31 km. In addition, such a forcing scheme was also adopted
268 in previous studies, such as Siebesma and Cuijpers (1995); Endo et al. (2015). van Laar et al.
269 (2019) took the contribution of intermediate scales into the large-scale forcing using $0.1^\circ \times 0.1^\circ$
270 mesh-sized forcing data. However, in the present study, we aim to clearly define the scales to be
271 included as the large-scale contribution. The horizontal wind components u and v are applied with
272 a relaxation strategy (i.e., nudging LES domain-average winds to a reference state), as also used in
273 previous LES studies (Wang and McFarquhar 2008; Endo et al. 2015), defined by

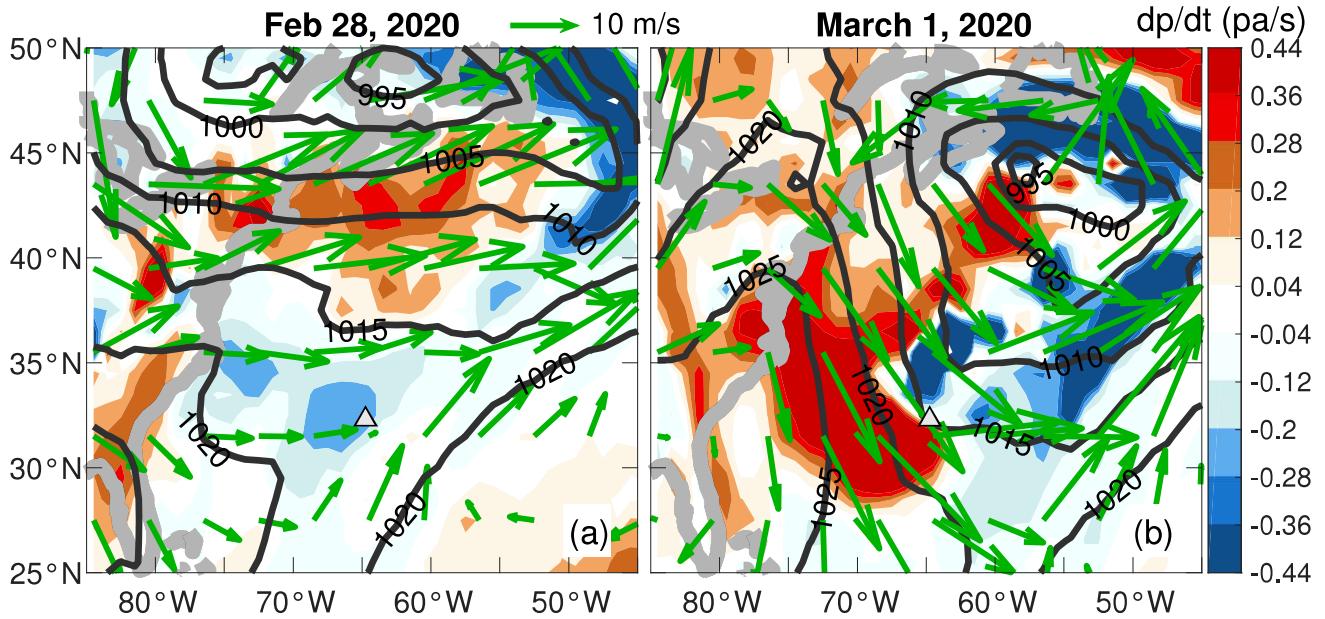
$$\frac{\partial u}{\partial t} \Big|_R = \frac{u_{\text{ERA5}} - \langle u \rangle}{\tau}, \quad (5)$$

$$\frac{\partial v}{\partial t} \Big|_R = \frac{v_{\text{ERA5}} - \langle v \rangle}{\tau}, \quad (6)$$

274 where $\langle \rangle$ denotes average over the domain of WRF-LES, τ is the relaxation time scale, which is set
275 to be 1 hour in this study. The subscript “R” denotes the relaxation adjustment to the horizontal
276 wind components. The grid-scale wind is determined by Equations (5) and (6) and pressure
277 gradients as the Coriolis force is set to zero in our LES. Overall, the large-scale forcing applied to
278 LES is homogeneous horizontally.

279 We acknowledge that applying relaxation of wind to WRF-LES lacks physical judgment as also
280 addressed in Endo et al. (2015). However, LES of horizontal winds with relaxation adjustments are
281 found to be comparable with the reanalysis and observational data. This is not new and has been
282 used in the single column model (Randall and Cripe 1999) and many LES works (Neggers et al.
283 2012; Heinze et al. 2017) in the meteorology community. Even though the simulation domain is

290 TABLE 2. List of WRF-LES with different forcings. SHF(t)_I and LHF(t)_I denote sensible and latent heat fluxes
 291 calculated interactively in WRF-LES.

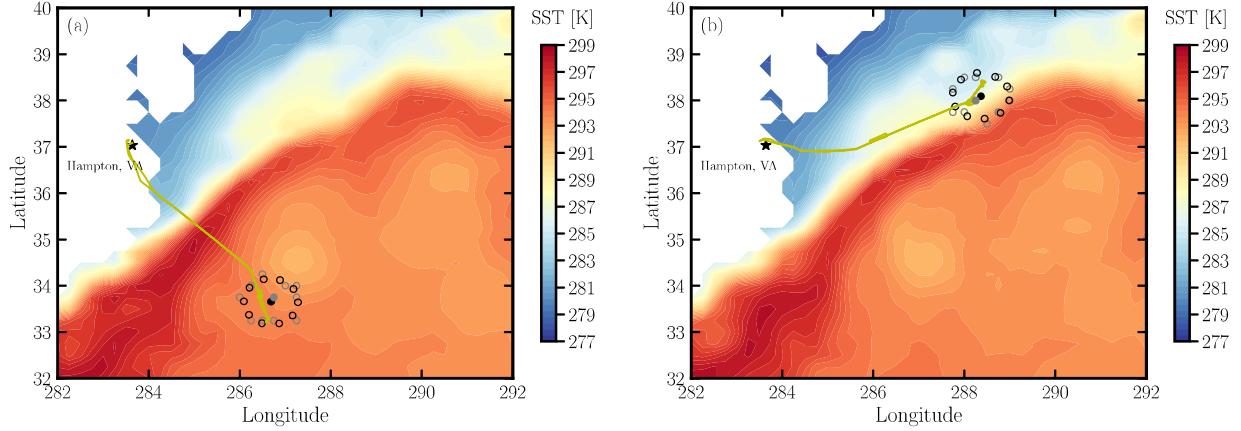

Simulation	$\frac{\partial \bar{\theta}}{\partial t}$ & $\frac{\partial \bar{q}_v}{\partial t}$	<i>u</i> & <i>v</i> relaxation	SHF (W m ⁻²)	LHF (W m ⁻²)	\bar{D}	<i>N_c</i> [cm ⁻³]	dx (m)
0228A	Yes	Yes	79.91	305.02	Yes	650	300
0228B	No	Yes	79.91	305.02	Yes	650	300
0228C	Yes	No	79.91	305.02	Yes	650	300
0228D	No	No	79.91	305.02	Yes	650	300
0228E	Yes	Yes	SHF(t)	LHF(t)	Yes	650	300
0228F	Yes	Yes	SHF(t) _I	LHF(t) _I	Yes	650	300
0228G	Yes	Yes	SHF(t)	LHF(t)	Yes	650	100
0301A	Yes	Yes	231.76	382.18	Yes	450	300
0301B	Yes	Yes	231.76	LHF(t)	Yes	450	300
0301C	Yes	Yes	SHF(t)	382.18	Yes	450	300
0301D	Yes	Yes	231.76	382.18	No	450	300
0301E	Yes	Yes	SHF(t)	LHF(t)	Yes	450	300
0301F	Yes	Yes	SHF(t) _I	LHF(t) _I	Yes	450	300
0301G	Yes	Yes	SHF(t)	LHF(t)	Yes	450	100

285 stationary and a horizontal periodic boundary condition is used, the WRF-LES is set to take the
 286 cold air advection within CAO into account through the large-scale advective tendencies and wind
 287 relaxation described by Equations (3) and (4) and Equations (5) and (6), respectively.

288 We also test the sensitivities of WRF-LES results to prescribed surface heat fluxes obtained from
 289 ERA5 reanalysis data. Table 2 lists parameters examined in the sensitivity tests.

292 3. Meteorological conditions and forcings for the two cases

293 Figure 2 shows synoptic weather maps at 18:00 UTC from MERRA-2 for the February 28 and
 294 March 1 cases over the ACTIVATE measurement region. A low pressure system at the upper-left
 295 domain on February 28 moved to the southeast on March 1 with an anticyclone development
 296 along the coast. The Februray 28 case is featured by synoptic-scale ascending motion (negtitive
 297 omega velocity dp/dt) and westerly winds over the sampling domain. The March 1 case features
 298 a subsidence region (positive omega velocity dp/dt) east of the coastal anticyclone and dominant
 299 northwesterly winds west of 60°W.



300 FIG. 2. Synoptic weather maps for the (a) February 28 and (b) March 1 cases. The colored contours, green
 301 arrows, and black contours represent MERRA-2 omega velocity dp/dt at 600 hPa (positive indicates downward),
 302 averaged winds ($m s^{-1}$) at 900 hPa, and sea level pressure at 18:00 UTC over the ACTIVATE measurement
 303 region, respectively. Triangles represent the location of Bermuda Island. The thick grey lines indicate coastlines.
 304 The length of green arrows is proportional to the magnitude of wind speeds. The benchmark length represents
 305 $10 m s^{-1}$ wind speeds. The instantaneous fields at 18:00 UTC is plotted to match the time of MERRA-2 and
 306 dropsonde measurements.

307 *a. Dropsonde measurements and derived divergence*

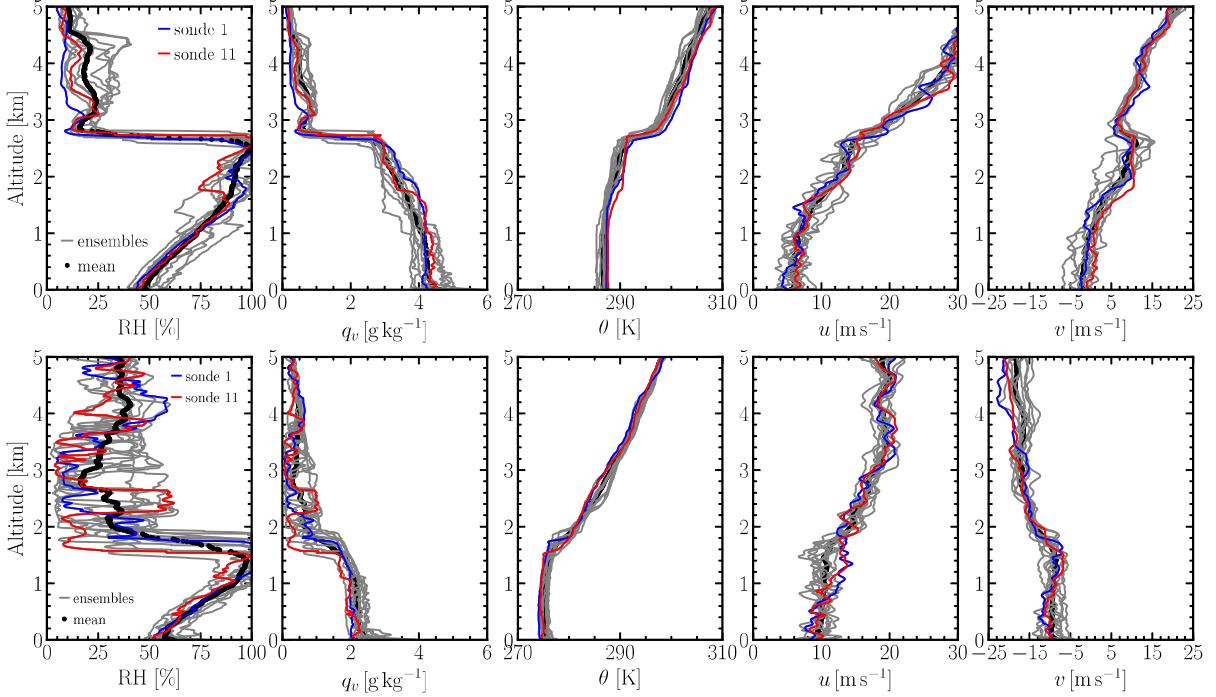
308 Figure 3 shows the location of individual dropsondes and the center of dropsonde circle on an
 309 ERA5 SST map for both cases. The nearest ERA5 grid points to the dropsondes are also shown in
 310 gray open symbols which are used to obtain the SST for the corresponding dropsondes. Clearly,
 311 the SST is much warmer over the circle on February 28 than March 1.

312 Figure 4 shows the vertical profiles of RH, q_v , θ , u , and v from dropsonde measurements for the
 313 two cases. The February 28 case (RF10) is characterized by a deeper boundary layer with a depth
 314 of about 2.8 km and a drier free troposphere compared to the March 1 case (RF13). Individual RH
 315 and q_v profiles show more fluctuations from the mean in the free troposphere on March 1 than the
 316 February 28 case. The boundary layer for the March 1 case is shallower. The magnitude of u and
 317 v increases rapidly with height above the boundary layer, which is more profound on February 28,
 318

312 FIG. 3. Location of dropsondes for the (a): February 28 and (b): March 1 cases. Black open symbols are the
 313 location of dropsondes at the surface and the gray ones are mapped locations from the ERA5 reanalysis data.
 314 Solid dots represent the center of the dropsonde circle. The contour map shows ERA5 SST in the measurement
 315 region. The black star represent the location of Hampton, VA on this map. The yellow curve shows the flight
 316 path.

323 showing a strong wind shear. The meteorological states evolve substantially during the one-hour
 324 sampling time period of both cases, as indicated by the contrast between the first dropsonde (blue
 325 curve) and the last one (red curve) that were released roughly at the same location. The boundary
 326 layer became deeper (shallower) with time on February 28 (March 1).

331 The vertical velocity of airflow regulates the atmospheric water distribution but is difficult to
 332 measure (Bony and Stevens 2019). The continuity equation of nearly incompressible airflow with
 333 velocity $\mathbf{u} = u(u, v, w)$ is given by


$$\nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0. \quad (7)$$

334 According to Equation (7), the vertical velocity w can be expressed as

$$w(z) = - \int_0^z \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dz'. \quad (8)$$

335 Divergence is defined as

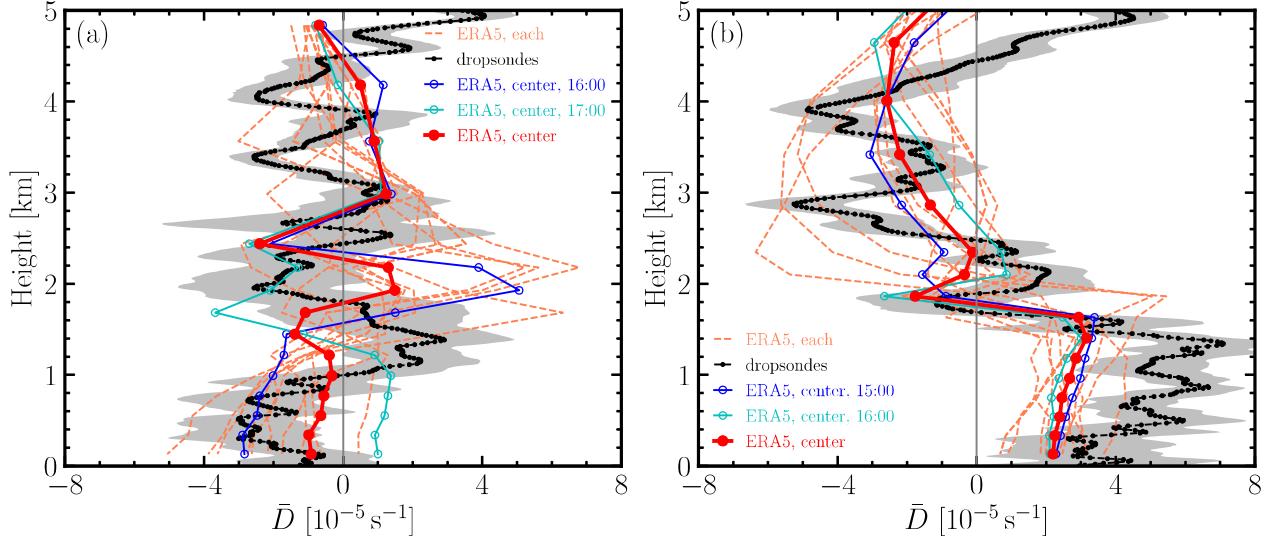
$$D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}. \quad (9)$$

327 FIG. 4. Profiles from dropsonde measurements for the February 28 (upper panel) and March 1 cases (lower
 328 panel). The gray lines represent vertical profiles measured from 11 dropsondes and the thick black lines represent
 329 the corresponding mean profile. The blue and red curves represent the first and last dropsonde, respectively,
 330 released at about the same location but one hour apart.

336 Thus, Equation (9) can be written as

$$w(z) = - \int_0^z D dz'. \quad (10)$$

337 Therefore, w can be indirectly obtained from the measured horizontal wind components. In the
 338 atmospheric boundary layer, motion of airflow is conventionally decomposed to large and small
 339 scales. By applying Reynolds decomposition to Equation (7), we obtain the large-scale divergence,


$$\bar{D} = \frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y}. \quad (11)$$

340 We follow the procedure described by Lenschow et al. (2007) to calculate the divergence from
 341 dropsonde measurements, details of which are given in Appendix A1. Since we use the linear
 342 regression method to estimate \bar{D} , the standard error σ_ϵ can be estimated. The large-scale divergence

343 \bar{D} enters the third term in the r.h.s of Equation (3) and Equation (4) through Equation (10). Thus the
344 effect of \bar{D} is taken into account via vertical motion, w , in the vertical component of the advective
345 tendency.

346 We compare \bar{D} estimated from the dropsonde measurements with the one obtained from ERA5
347 reanalysis data for both cases as shown in Figure 5. ERA5- \bar{D} profile (red curve) averaged between
348 16:00 UTC and 17:00 UTC (two vertical profiles) at the dropsonde center is able to capture
349 the sign of \bar{D} vertical-structure measured by dropsonde (black curve) for the February 28 case
350 (Figure 5(a)) within 1 km above the surface. However, it differs from the dropsonde measurements
351 in both signs and magnitude above 1 km, which requires further investigation. More interestingly,
352 ERA5- \bar{D} profile evolves from convergence to divergence within the boundary layer from 16:00
353 UTC (blue curve) to 17:00 UTC (cyan curve). We also examine the ERA5 \bar{D} averaged between
354 16:00 UTC and 17:00 UTC at the location of each dropsonde as shown by coral-colored dashed
355 lines in Figure 5, which exhibits large spatial fluctuations. This demonstrates strong spatial
356 inhomogeneity in large-scale vertical motions over this area on February 28, as also indicated
357 by the sensitivity of \bar{D} to different dropsonde subsets as shown in Figure A2. The amplitude of
358 the mean and largest value of dropsonde- \bar{D} for the February 28 case is $\langle |\bar{D}| \rangle = 1.38 \times 10^{-5} \text{ s}^{-1}$
359 and $|\bar{D}|_{\max} = 4.06 \times 10^{-5} \text{ s}^{-1}$, respectively. For the March 1, they are $\langle |\bar{D}| \rangle = 2.99 \times 10^{-5} \text{ s}^{-1}$ and
360 $|\bar{D}|_{\max} = 7.09 \times 10^{-5} \text{ s}^{-1}$. These values are about one order of magnitude larger than the ones
361 from non-CAO marine BL cloud regimes. The mean value of \bar{D} inferred from the ensemble of
362 radiosondes during the Atlantic Trade-Wind Experiment (Augstein et al. 1973) and the Barbados
363 Oceanographic and Meteorological Experiment (Holland and Rasmusson 1973) is about 10^{-6} s^{-1} .
364 Similar values were used in the case studies during the VAMOS Ocean-Cloud-Atmosphere-Land
365 Study (Rahn and Garreaud 2010; Wang et al. 2010) and Second Dynamics and Chemistry of Marine
366 Stratocumulus field study (DYCOMS II) field campaign (Wang and Feingold 2009). \bar{D} estimated
367 during the NARVAL2 is about 10^{-5} s^{-1} (Bony and Stevens 2019).

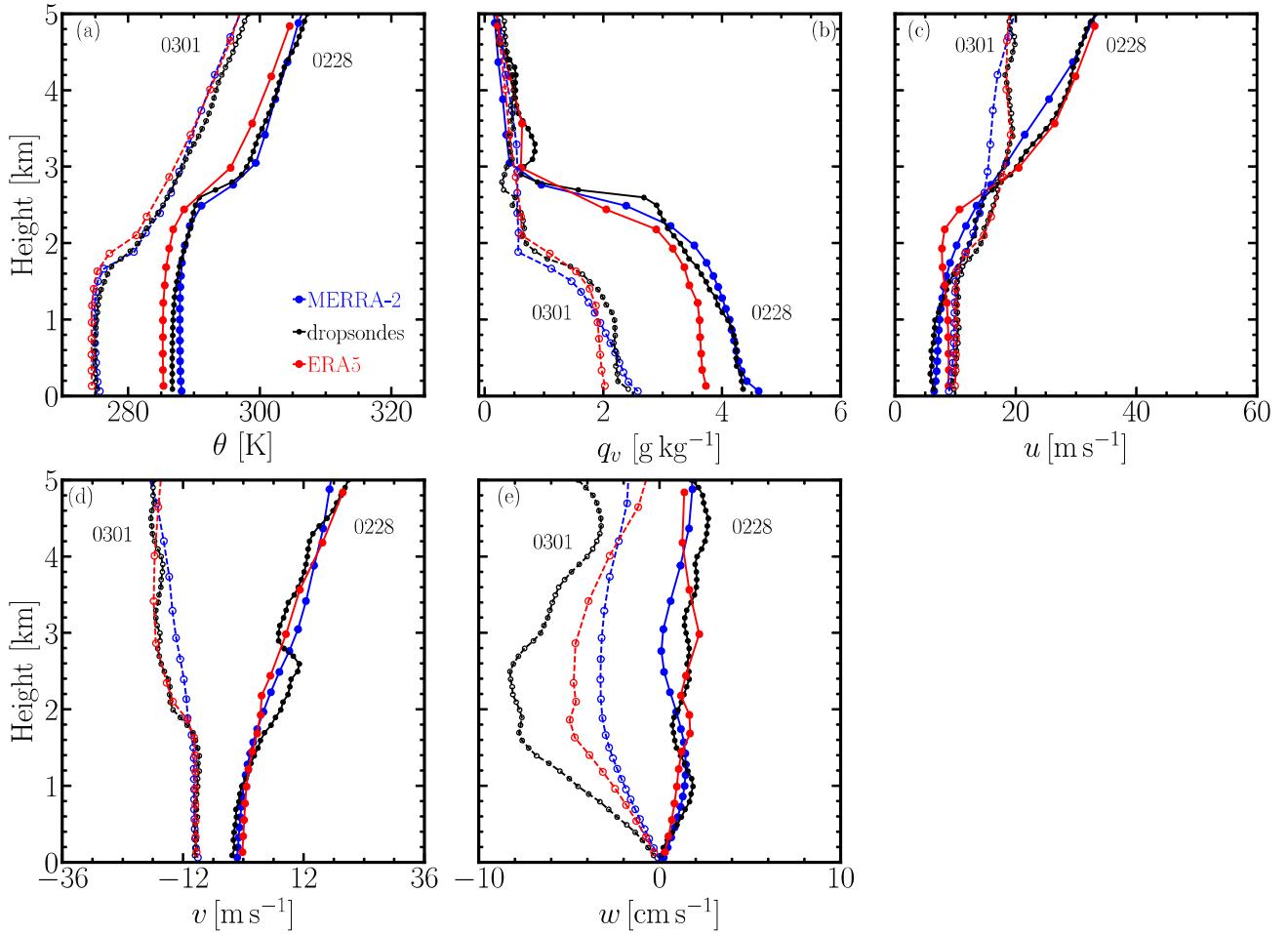
376 Figure 5(b) shows the same comparison but with the dropsonde measurements conducted on
377 March 1. In this case, \bar{D} obtained from ERA5 reanalysis data (red solid-dotted line) at the center
378 of dropsonde circle is able to capture the general vertical structure of \bar{D} estimated from dropsonde
379 measurements. Similar to the February 28 case, there is a strong spatiotemporal variation in the
380 ERA5 \bar{D} .

368 FIG. 5. Comparison of \bar{D} profiles estimated from dropsonde measurements with the one from ERA5 reanalysis
 369 data for the (a): February 28 and (b): March 1 cases. Black dotted lines represent \bar{D} estimated from 10
 370 dropsondes with $\pm\sigma_e$ uncertainty (gray shaded area). Blue lines represent ERA5- \bar{D} profiles at 16:00 UTC for
 371 the February 28 and 17:00 UTC for the March 1 cases at the center of dropsondes. Cyan lines represent ERA5- \bar{D}
 372 profiles at 17:00 UTC for the February 28 and 16:00 UTC for the March 1 cases at the center of dropsondes. Red
 373 solid-dotted lines represent \bar{D} from ERA5 reanalysis data averaged during the measurement time (between blue
 374 lines and cyan lines). The dashed coral-colored lines represent ERA5 reanalysis data at the location of individual
 375 dropsondes averaged during the measurement time for each case.

381 We further compare the large-scale vertical velocity w (subsidence) with MERRA-2 reanalysis
 382 data as shown in Figure 6(e) for both cases. For the February 28 case, the w profile from MERRA-2
 383 is averaged between 15:00 UTC and 18:00 UTC and the one from ERA5 is averaged between 16:00
 384 UTC and 17:00 UTC to better match the dropsonde sampling time. Both the ERA5 and MERRA-2
 385 can reasonably capture the vertical profile of w when compared with dropsonde measurements
 386 for this case. For the March 1 case, the w profile from MERRA-2 reanalysis data at 15:00 UTC
 387 is used to compare with dropsonde measurements while the one from ERA5 reanalysis data is
 388 averaged between 15:00 UTC and 16:00 UTC. The ERA5 reanalysis data agree with the dropsonde
 389 measurements in the sign but underestimate the magnitude. The MERRA-2 does not capture the
 390 structure and magnitude of the vertical profile of w well. Comparison of θ , q_v , u , and v profiles is
 391 also shown in Figure 6(a)–(d). MERRA-2 shows a slightly warmer boundary layer for the February

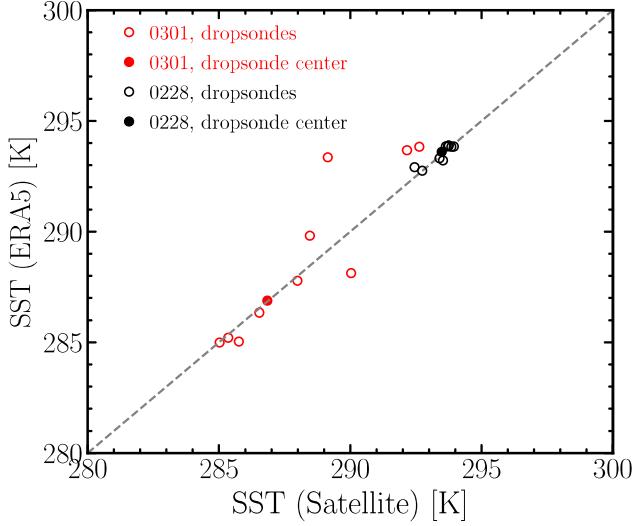
28 case while the ERA5 shows a colder one. Both MERRA-2 and ERA5 data capture the θ profile
 392 well for the March 1 case. ERA5 yields a drier (q_v profiles) boundary layer while MERRA-2
 393 capture the q_v well compared to the dropsonde measurements for both cases. The u and v profiles
 394 within the boundary layer are represented well by MERRA-2 and ERA5 data for both cases, given
 395 the large spread among the individual dropsondes for the circled area (see Figure 4). The ERA5
 396 captures those profiles above the boundary layer better than the MERRA-2. Overall, comparing to
 397 MERRA-2, ERA5 profiles are more consistent with the dropsonde measurements, as also shown
 398 in Chellappan et al. (2021) for the broader WNAO region.

400 Since we aim to use the divergence as part of the large-scale forcings to drive WRF-LES, the
 401 agreement of \bar{D} (and the corresponding w) from ERA5 with the estimates from dropsondes for
 402 the March 1 case affords confidence to use the hourly ERA5 divergence to test the sensitivity of
 403 WRF-LES to time-varying large-scale forcings.


409 *b. Surface heat fluxes*

410 Turbulent sensible and latent heat fluxes at the surface are important flux boundary conditions
 411 to drive LES of boundary layer clouds. They are responsible for the heat and moisture exchange
 412 between the ocean and atmosphere. Surface heat fluxes are challenging to measure and estimate due
 413 to the nonlinear processes involved. Therefore the so-called bulk aerodynamics parameterization
 414 has been used to estimate surface heat fluxes. Bulk aerodynamics algorithms parameterize the
 415 turbulence instability as well as the roughness length of the wind speed, temperature and the water
 416 vapor mixing ratio (Zeng et al. 1998). The surface sensible heat flux (SHF) and latent heat flux
 417 (LHF) are given by (Smith 1988)

$$418 \quad \text{SHF} = C_T \rho c_p U (T_s - \theta), \quad (12)$$


$$419 \quad \text{LHF} = C_E L_v \rho U (q_s - q_v), \quad (13)$$

420 where ρ is the air mass density, c_p is the specific heat of air, U is the mean wind speed at a
 421 particular reference height, T_s is the SST, θ is the potential temperature at the reference height, q_s is
 422 the saturated water vapor mixing ratio, q_v is the water vapor mixing ratio, and L_v is the latent heat of
 evaporation. The sensible heat flux coefficient C_T and evaporation coefficient C_E are determined

404 FIG. 6. Comparison among dropsonde measurements (black curves), ERA5 (red curves), and MERRA-2
 405 (blue curves) at the dropsonde center for both cases. Solid symbols represent the February 28 case (ERA5 data
 406 averaged between 16:00 and 17:00 UTC and MERRA-2 averaged between 15:00 and 18:00 UTC) and the open
 407 circles mark the March 1 case (ERA5 averaged between 15:00 and 16:00 UTC and MERRA-2 at 15:00 UTC).
 408 Large-scale vertical velocity w from ERA5 corresponds to ERA5- \bar{D} in Figure 5.

423 by the empirical Monin–Obukhov (MO) similarity theory. In this study, we adopt the bulk
 424 aerodynamics algorithms developed by Zeng et al. (1998) to calculate heat fluxes for comparison
 425 between ERA5 and dropsonde measurements, which we refer to as “Z98” hereafter. The Z98
 426 algorithm calculates C_T and C_E based on instability analysis. Equation (12) and Equation (13) are
 427 used to calculate SHF and LHF after C_T and C_E are obtained. The input parameters of the Z98
 428 algorithm are T_s , 10-m (reference height) wind speed U_{10m} , temperature T_{10m} (to calculate θ_{10m}),
 429 and the water vapor mixing ratio $q_{v,10m}$.

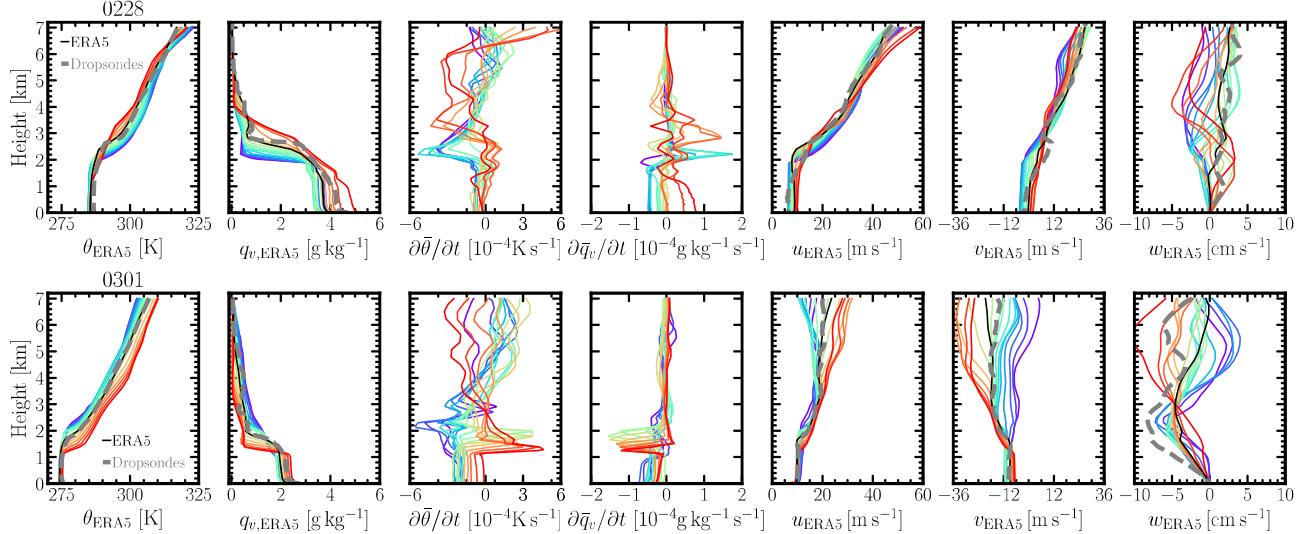
433 FIG. 7. Comparison of SST from satellite retrievals and ERA5 reanalysis data for both February 28 (black)
 434 and March 1 (red) cases . Open symbols represent SST at the position of each dropsonde. The two solid dots
 435 represent SST at the center of dropsonde circles.

436 To derive the surface heat fluxes using dropsonde measurements and evaluate ERA5 reanalysis
 437 data, we first compare the ERA5 SST to satellite measurement for the two cases as a quality check.
 438 As shown in Figure 7, for both 28 February 2020 (black symbols) and 1 March 2020 cases (red
 439 symbols), SST from ERA5 and the satellite measurement matches well at the center of dropsonde
 440 circle. At the location of individual dropsondes the agreement is reasonable on February 28 while
 441 several points on March 1 are quite off, which is likely because of the location mismatch due to
 442 the resolution difference and sampling area being near strong SST gradients (shown in Figure 3).
 443 The Normalized Root-Mean-Square Error (NRMSE) is 0.1% for the February 28 case and is 0.6%
 444 for the March 1 case. This comparison suggests that the SST from ERA5 can also be used as the
 445 initial input for our WRF-LES. ERA5 has assimilated the Operational Sea Surface Temperature
 446 and Sea Ice Analysis (OSTIA) system for hourly SST starting from 2007 (Hirahara et al. 2016).
 447 The OSTIA assimilated the MW-IR measurements. Thus, the agreement between ERA5 and the
 448 satellite retrievals is expected.

449 Next, we compare surface heat fluxes directly obtained from ERA5 reanalysis data and the ones
 450 estimated from ACTIVATE measurements. Since the SST obtained from ERA5 agrees with the
 451 satellite measurement, we try to examine if the ERA5 heat-fluxes can be reproduced from ERA5

449 SST and dropsonde measurements. First, we use the Z98 algorithm to calculate heat fluxes based
 450 on T_s^{ERA5} , U_{10m}^{ERA5} , $q_{v,10m}^{\text{ERA5}}$ from ERA5 and T_{10m}^{drop} from dropsonde. Figure 8(a) shows the comparison
 451 between the estimated SHF and the ERA5 reanalysis data (red and black circles). The corresponding
 452 NRMSE is 5.1% and is 36.4% for the March 1 and February 28 case, respectively. The comparison
 453 of LHF is shown in Figure 8(b) with NRMSE of 8.5% and 30.0% for the March 1 (red circles) and
 454 February 28 case (black circles), respectively. These demonstrate a good agreement between the
 455 estimated heat fluxes and the ERA5 reanalysis data on March 1 case, given the large spread within
 456 the dropsonde circle. The agreement is particularly good at the circle center (solid symbols). This
 457 suggests that the Z98 algorithm can be used to calculate heat fluxes and the use of T_{10m}^{drop} is justified
 458 in this study. It is evident that SHF and LHF calculated using Z98 are underestimated compared to
 459 ERA5 for the February 28 case. This is because ERA5- θ is smaller than the dropsonde- θ within the
 460 boundary layers as shown in Figure 6(a). We then use U_{10m}^{drop} and $q_{v,10m}^{\text{drop}}$ obtained from dropsonde
 461 measuremens to estimate the fluxes (stars in Figure 8), which yields a NRMSE value of 11.5% for
 462 SHF and 19.3% for LHF for the March 1 case, further indicating that ERA5 gives a good estimate
 463 of turbulent heat fluxes for the March 1 case. For the February 28 case, NRMSE of SHF and
 464 LHF calculated using U_{10m}^{drop} and $q_{v,10m}^{\text{drop}}$ are 33.2% and 23.1%, respectively. This underestimation
 465 is because that q_v from ERA5 is smaller than the one from dropsonde measurements within the
 466 boundary layer as shown in Figure 6(b). We also compare heat fluxes between the ERA5 and
 467 MERRA-2 reanalysis data. Both SHF and LHF agree well between MERRA-2 and ERA5 for the
 468 February 28 case. However, MERRA-2 underestimates SHF and LHF compared to ERA5 for the
 469 March 1 case (see appendix A2).

470 Overall, by adopting T_s^{ERA5} , U_{10m} , $q_{v,10m}$, and T_{10m}^{drop} from dropsonde measurements to estimate
 471 heat fluxes using Z98 algorithm, we are able to evaluate the heat fluxes from ERA5. The time-
 472 varying ERA5 heat fluxes are then used in the WRF-LES sensitivity tests. The method of using
 473 dropsonde measurements to estimate surface heat fluxes was also adopted for studying the tropical
 474 cyclones (Powell et al. 2003; Holthuijsen et al. 2012; Richter et al. 2016). These studies show that
 475 the accuracy of estimated coefficients based on MO similarity theory decreases with increasing
 476 wind speed. In the present study, the wind speed is orders of magnitude smaller than that of tropical
 477 cyclones, which ensures the accuracy of using dropsonde measurement to estimate surface heat
 478 fluxes.

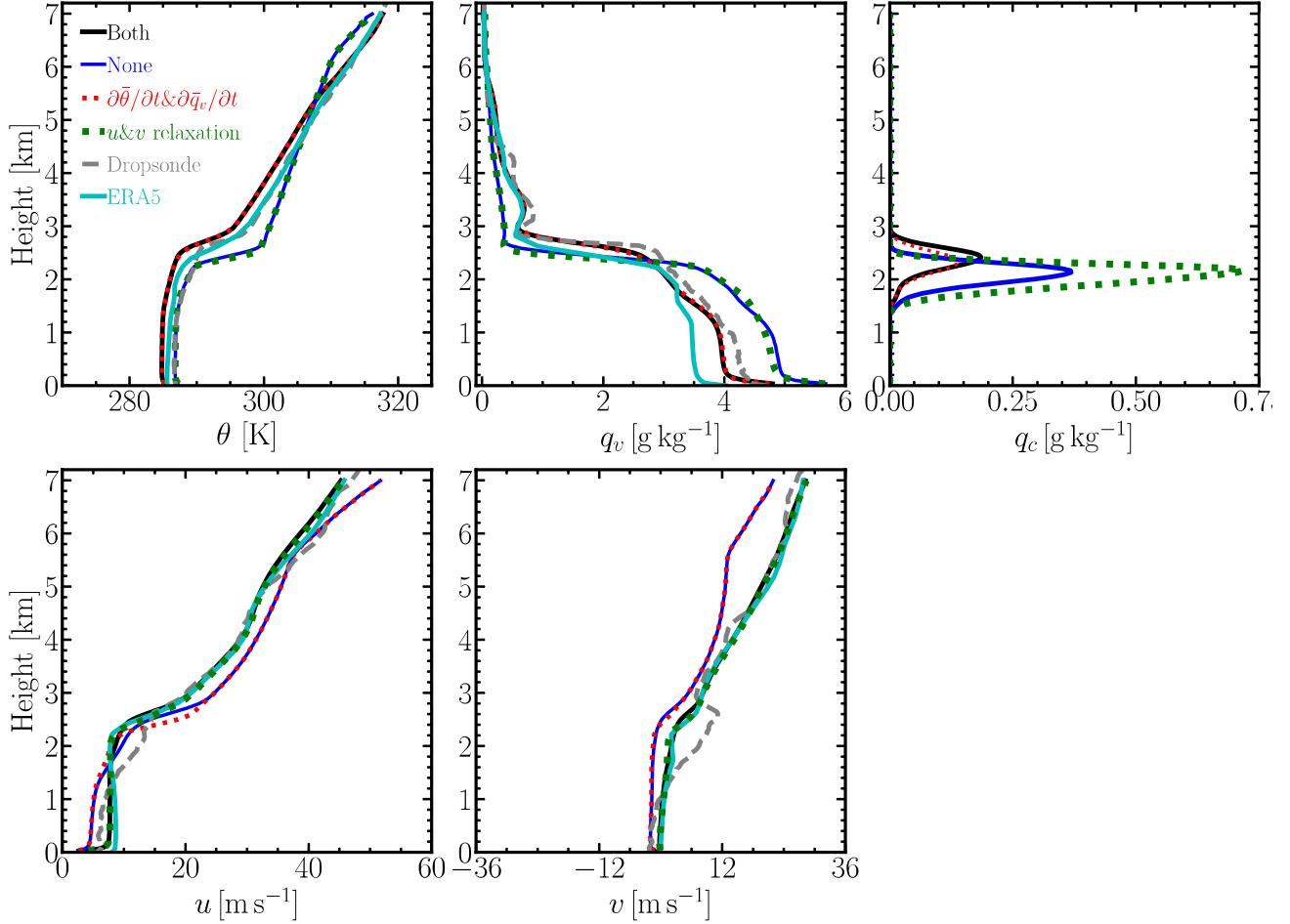

479 FIG. 8. Comparison between the estimated heat fluxes and the one from ERA5 reanalysis data at 16:00 UTC
 480 for the February 28 case (black symbols) and 15:00 UTC for the March 1 case (red symbols). T_s^{ERA5} is adopted
 481 for the calculation. Open symbols represent T_s^{ERA5} at the position of individual dropsondes and solid symbols
 482 represent the center of the dropsonde circle. Two sets of input variables are adopted to calculate the surface heat
 483 fluxes: U_{10m}^{ERA5} and $q_{v,10m}^{\text{ERA5}}$ (circles) and U_{10m}^{drop} and $q_{v,10m}^{\text{drop}}$ (stars).

484 4. WRF-LES sensitivities to large-scale forcings and contrast between the two CAO cases

485 a. Sensitivities to large-scale advective tendencies and relaxation

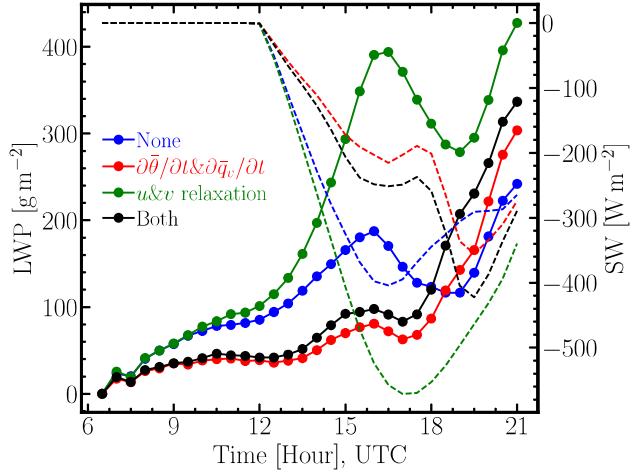
486 In this section, we investigate how to better represent time-varying meteorological states in
 487 idealized WRF-LES applying either advective tendencies to θ and q_v , relaxation to u and v , or
 488 both. Simulations are driven by constant surface fluxes $\text{SHF}(t_0)$ and $\text{LHF}(t_0)$. Here t_0 denotes the
 489 starting time of simulations. Since we have shown in the previous section that ERA5 reanalysis
 490 data agree well with the dropsonde measurements during the sampling time periods of the two
 491 CAO cases, we adopt hourly θ , q_v , u , and v vertical profiles from ERA5 reanalysis data and derive
 492 the corresponding vertical profiles of advective tendencies and relaxation adjustments. The hourly
 493 meteorological states simulated in WRF-LES are then compared to ERA5 reanalysis data that are
 494 partly validated against dropsonde measurements.

495 Figure 9 shows the hourly (rainbow-colored lines) input meteorological forcing being obtained
 496 from ERA5 reanalysis data for the WRF-LES simulations. The evolution of vertical profiles are



511 FIG. 9. Hourly meteorological state and forcing profiles for the February 28 case (simulation 0228A, upper
 512 panel) and March 1 case (simulation 0301A, lower panel) from ERA5 reanalysis data averaged over a $2^\circ \times 2^\circ$
 513 domain. The rainbow color scheme represents the time evolution (06:00-21:00 UTC): from purple to red. The
 514 averaged ERA5 reanalysis data over the measurement time period are marked by black lines, which are compared
 515 with the dropsonde measurements (dashed gray lines).

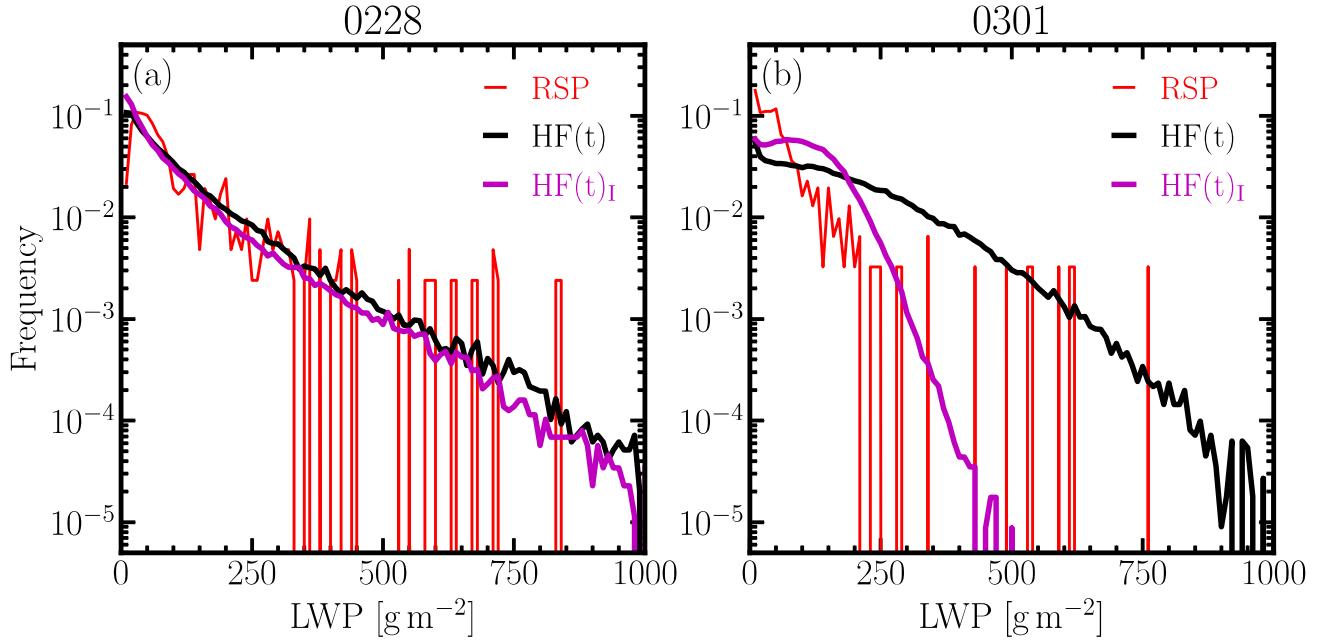
497 averaged over a $2^\circ \times 2^\circ$ area centered at the middle of the dropsonde circle of each case. This
 498 selected area sufficiently covers the dropsonde circle. Vertical profiles of θ , q_v , u , v , and w
 499 obtained from ERA5 reanalysis data averaged during the measurement time (black solid lines)
 500 agree reasonably well with the dropsonde measurements (gray dashed lines) for the February 28
 501 case (upper row) and for the March 1 case (lower row). Vertical profiles of advective tendencies
 502 of θ and q_v (i.e., $\partial\bar{\theta}/\partial t$ and $\partial\bar{q}_v/\partial t$) are calculated from θ_{ERA5} and $q_{v,\text{ERA5}}$. Vertical profiles of
 503 θ_{ERA5} , $q_{v,\text{ERA5}}$, u_{ERA5} , and v_{ERA5} at 06:00 UTC are taken as the input sounding for WRF-LES
 504 when the simulation starts. We note that w_{ERA5} averaged over the $2^\circ \times 2^\circ$ area at 15:00 UTC differs
 505 slightly from the one at the dropsonde center shown by the red curve in Figure 6 as expected. This
 506 is because of the strong spatial variation of \bar{D} as shown in Figure 5. We have tested the relaxation
 507 time scale τ of u and v for the February 28 case and found that WRF-LES with $\tau=30$ min, 1 h,
 508 and 3 h reveal almost identical vertical profiles and liquid water path (LWP). Therefore we adopt
 509 $\tau=1$ h for all the simulations as the ERA5 reanalysis data has a time resolution of one hour. The
 510 relaxation is applied to all vertical layers of the LES domain.


516 We first perform a simulation without applying advective tendencies of θ and q_v and relaxation of
517 u and v (simulation 0228D) for the February 28 case. It is shown by the blue curves in Figure 10 that
518 such a configuration yields vertical profiles that have a large deviation from the ERA5 reanalysis
519 data (cyan curves) and dropsonde measurements (grey curves). The θ profile from WRF-LES
520 differs considerably from ERA5 above the boundary layer and the q_v profile shows a more humid
521 boundary layer than the ERA5 (the ratio of q_v from “Both” to that from “ERA5” is 1.32 averaged
522 within the boundary layer with a depth of 2.4 km during the measurement time). The u and v
523 profiles from WRF-LES deviate from the ERA5 and dropsonde measurements. When $\partial\bar{\theta}/\partial t$ and
524 $\partial\bar{q}_v/\partial t$ are applied (simulation 0228C), θ and q_v profiles from WRF-LES agree well with the
525 dropsonde measurements as shown by the red curves in Figure 10. However, u and v profiles still
526 deviate from the ERA5 reanalysis data. We then only apply the u and v relaxation to the WRF-LES
527 (simulation 0228B). As shown by the green curves of Figure 10, u and v profiles from WRF-LES
528 are in good agreement with dropsonde measurements even though θ and q_v profiles differ from the
529 measurements. This naturally leads to the configuration of applying advective tendencies of θ and
530 q_v together with u and v relaxation to u_{ERA5} and v_{ERA5} (simulation 0228A). Such a configuration
531 leads to vertical profiles (θ , q_v , u , and v) that are comparable to ERA5 reanalysis data and dropsonde
532 measurements as shown by the black curves of Figure 10. Therefore, this combined forcing and
533 relaxation scheme is justified to simulate the two CAO cases. Evolution of the vertical profiles
534 for simulations 0228A, 0228B, 0228C, and 0228D are shown in section A4. As also shown in
535 Figure 10, the magnitude and time evolution of cloud water simulated by WRF-LES are sensitive
536 to the boundary layer meteorological conditions.

542 Applying $\partial\bar{\theta}/\partial t$ and $\partial\bar{q}_v/\partial t$ leads to a colder and less humid boundary layer (compare simulation
543 0228C and 0228D) but allows the boundary layer to grow higher. This results in a deeper cloud
544 layer with a reduced amount of the liquid water content q_c , which is enhanced by a factor of
545 two by applying u and v relaxation (compare simulation 0228B to 0228D). We then examine the
546 time evolution of LWP. LWP peaks around 16:00 UTC and then starts to decrease as shown in
547 Figure 11, which could be due to the solar heating. The short-wave (SW) cloud forcing at the
548 top of atmosphere increases with increasing LWP at a fixed time as indicated by the dashed lines
549 in Figure 11. To validate the simulated LWP, we compare it with the RSP retrievals during the
550 ACTIVATE field campaign. As shown in Figure 12(a), the WRF-LES (shown as the black line,

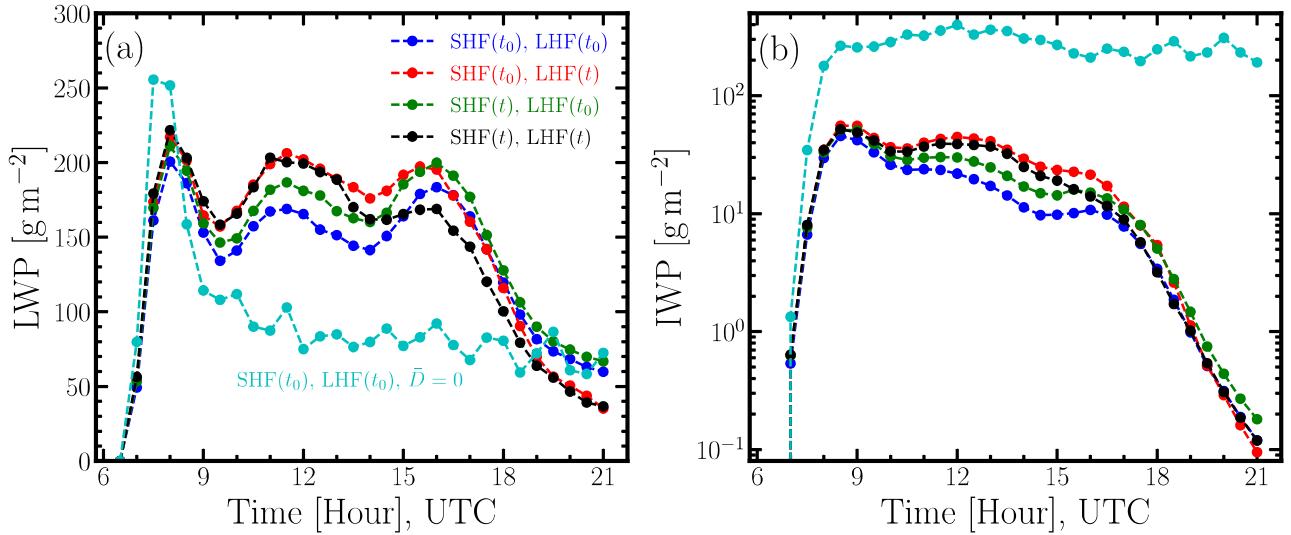
537 FIG. 10. Domain-averaged vertical profiles for simulation 0228A (black curve), 0228B (green curve), 0228C
 538 (red curve), and 0228D (blue curve) with the corresponding input forcings shown in Figure 9 for the February 28
 539 case during the measurement time listed in Table 1. The cyan curve represent profiles from the ERA5 reanalysis
 540 data averaged during the measurement time and the grey curve represent the ones from dropsonde measurements.
 541 Heat fluxes are from ERA5 reanalysis data: $SHF(t_0) = 79.91 \text{ W m}^{-2}$ and $LHF(t_0) = 305.02 \text{ W m}^{-2}$.

551 averaged over the measurement time) agrees reasonably well with the RSP measurement. This
 552 further illustrates that the WRF-LES is able to capture the cloud formation and evolution in this
 553 case study. We also tested the tendencies and relaxation forcing for the March 1 case, which
 554 yields the same conclusion as for the February 28 case. Figure 12(b) shows that the WRF-LES
 555 underestimates the frequency of lower LWP values (less than 100 g m^{-2}) but overestimates the
 556 frequency between $200 - 400 \text{ g m}^{-2}$ for the March 1 case.



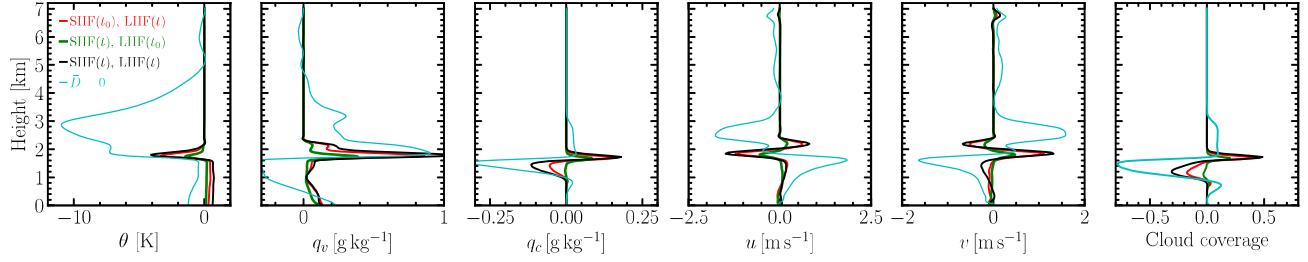
557 FIG. 11. Time series of domain-averaged LWP (liquid cloud and rain, solid symbols) and short-wave (SW)
558 cloud forcing at the top of atmosphere (dashed lines) of simulations (blue:0228D, red:0228B, green:0228C,
559 black:0228A) with different forcing options as shown in Figure 10.

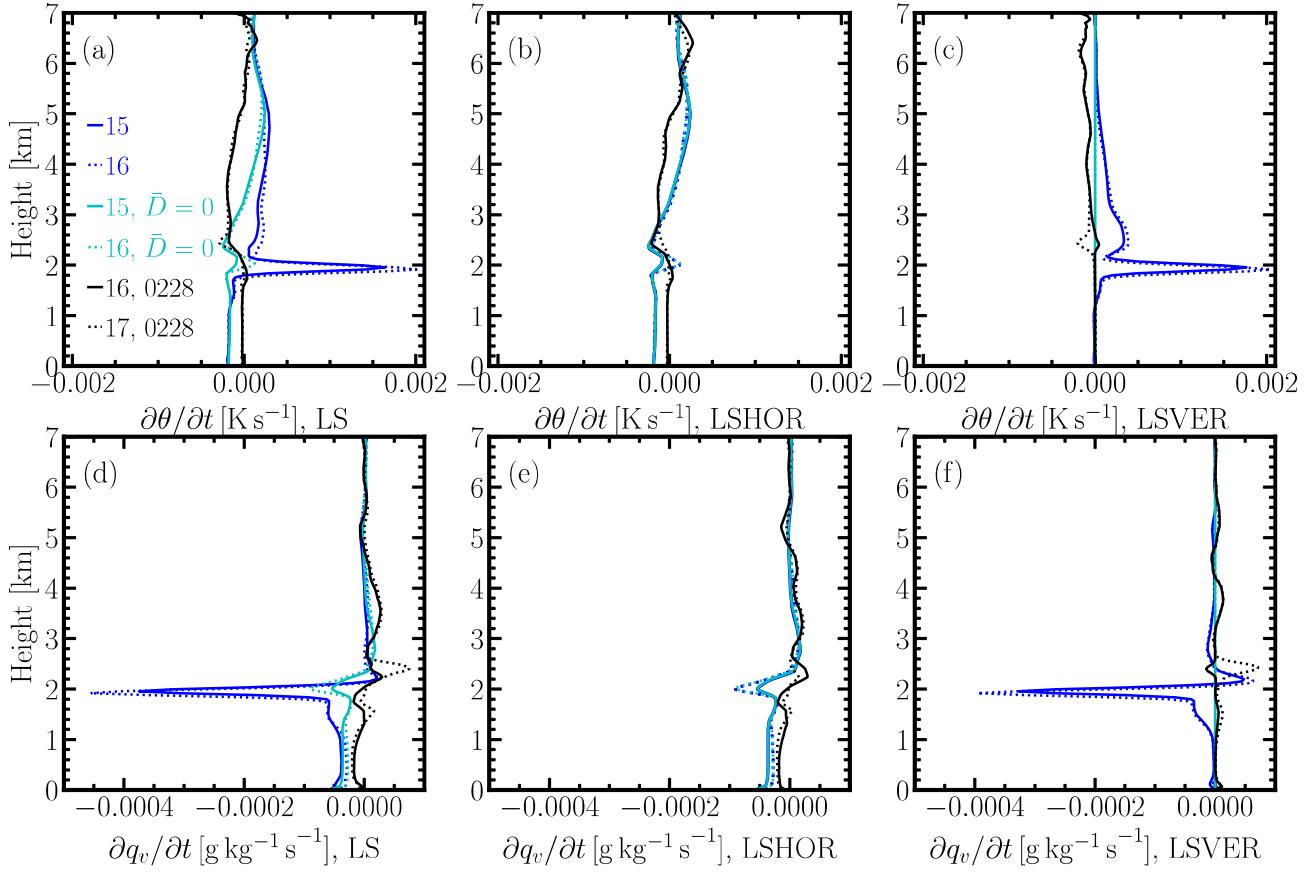
567 *b. Sensitivities to large-scale divergence \bar{D}*


568 We have shown that applying $\partial\bar{\theta}/\partial t$, $\partial\bar{q}_v/\partial t$, u relaxation to u_{ERA5} , and v relaxation to v_{ERA5} is
569 essential to reproduce the time evolution of meteorological states for the two CAO cases considered
570 in this study. This configuration is adopted to further test the sensitivities of WRF-LES results to
571 \bar{D} . We focus on the March 1 since it is more challenging to simulate due to the large surface heat
572 fluxes.

573 We perform two WRF-LES with or without the large-scale vertical velocity as a forcing (third
574 term on the r.h.s of Equations (3) and (4)) for the March 1 case. The forcing configuration for the
575 baseline simulation 0301A is the same as simulation 0228A. To examine the impact of large-scale
576 divergence separately, we conduct a simulation (0301D in Table 2) that excludes the forcing term
577 related to \bar{D} (vertical component of the advective tendencies) but keeps all other forcings the same
578 as the baseline (0301A). As shown in Figure 13, the initial model spin-up time (06:00-08:00 UTC)
579 is characterized by a sharp increase of LWP from 0 to about 200 g m^{-2} for the baseline simulation
580 (blue). Without the time varying large-scale divergence (cyan), LWP and Ice Water Path (IWP)
581 experience a larger increase compared to the baseline (blue) during the initial time steps because
582 of the lack of subsidence that tends to suppress the growth of BL. LWP from simulation 0301D
583 decreases and becomes smaller compared to the one from simulation 0301A. This is because IWP

560 FIG. 12. Comparison of frequency distribution of LWP between RSP measurements and WRF-LES for (a):
561 February 28 (0228E) and (b): March 1 (0301E) cases. HF(t)_I denotes heat fluxes calculated interactively
562 (0228F and 0301F) from WRF-LES. The frequency for WRF-LES LWP is calculated from 3 snapshots (every
563 30 minutes) during the measurement time. Note that the boundary layer evolves as shown in the last row of
564 Figure A9. LWP samples are binned into 100 bins with a uniform width of 10 g m^{-2} . The minimum value of
565 LWP from the RSP measurement (2.4 g m^{-2} and 0.6 g m^{-2} for the February 28 and March 1 cases, respectively)
566 is taken as a lower cutoff for the simulated LWP.


584 from 0301D are about 10 times more than the ones from 0301A. In the absence of \bar{D} , the updraft
585 cooling is more profound. Thus, the ice formation is enhanced. The cyan curve in Figure 14
586 shows the deviation of vertical profiles of the simulation 0301D to 0301A averaged over the
587 measurement time. As expected from a positive w , a much deeper boundary layer is developed in
588 the simulation without subsidence. The moist air is mixed to over 3 km. This can be explained by
589 the fact that the lack of divergence breaks the balance between the BL growth driven by surface
590 fluxes and suppression due to subsidence. Figure 15 shows the contribution of horizontal and
591 vertical advective tendencies to $\partial\theta/\partial t$ (upper row) and $\partial q_v/\partial t$ (lower row) for simulation 0301A
592 and 0301D, respectively. When $\bar{D} = 0$ (simulation 0301D), only horizontal advective tendencies
593 contribute to $\partial\theta/\partial t$ by comparing the solid cyan curves in Figure 15(a)–(c). When $\bar{D} \neq 0$, it is
594 evident that the vertical advective term (\bar{D}) dominates the temperature and humidity changes due


603 FIG. 13. Time series of domain-averaged (a): LWP (in-cloud liquid water and rain) and (b): IWP (ice, graupel,
 604 and snow) from WRF-LES (blue: 0301A, red: 0301B, green: 0301C, cyan: 0301D, black: 0301E) with different
 605 heat fluxes and large-scale divergence as indicated by the legends for the March 1 case. Heat fluxes are from
 606 ERA5 reanalysis data, the values of which are $SHF(t_0) = 231.76 \text{ W m}^{-2}$ and $LHF(t_0) = 382.18 \text{ W m}^{-2}$. Here t_0
 607 denotes the starting time of the WRF-LES, which is 06:00 UTC.

595 to large-scale tendencies, especially near the inversion layer. The contribution from horizontal
 596 terms are small when comparing simulations 0301A and 0301D. The vertical profiles of $\partial\theta/\partial t$
 597 and $\partial q_v/\partial t$ only evolve slightly from 15:00 to 16:00 UTC because \bar{D} does not vary much for the
 598 March 1 case. Recall that for the February 28 case, \bar{D} evolves from convergence to divergence
 599 from 16:00 to 17:00 UTC (Figure 5(a)). Consequently, the vertical profiles of $\partial\theta/\partial t$ and $\partial q_v/\partial t$
 600 are nearly zero as shown in Figure 15. When comparing vertical profiles of $\partial\theta/\partial t$ and $\partial q_v/\partial t$ for
 601 the March 1 (blue lines) and February 28 (black lines) cases, we see that \bar{D} has a more profound
 602 impact for the March 1 case.

615 To conclude, \bar{D} likely has a strong control on the time evolution of the boundary layer in WRF-
 616 LES of the two CAO events we explored here, especially for the March 1 case. Therefore, including
 617 a time-varying \bar{D} profile to drive WRF-LES is necessary for simulating the fast-evolving CAO
 618 events over WNAO.

608 FIG. 14. Deviation of vertical profiles of simulation 0301B, 0301C, 0301E, and 0301D from the baseline
609 simulation 0301A averaged over the measurement time (3 snapshots over 15:00 to 16:00 UTC).

610 FIG. 15. Contributions of large-scale forcings to $\partial\theta/\partial t$ (upper row) and $\partial q_v/\partial t$ (lower row) for simulation
611 0301A (blue curves) and 0301D (cyan curves) at 15:00 UTC (solid lines) and 16:00 UTC (dashed lines). Black
612 lines represent the ones for simulation 0228A at 16:00 UTC (solid line) and 17:00 UTC (dashed line). LS,
613 LSHOR, and LSVER denote large-scale forcing due to total, horizontal, and vertical advective tendencies,
614 respectively.

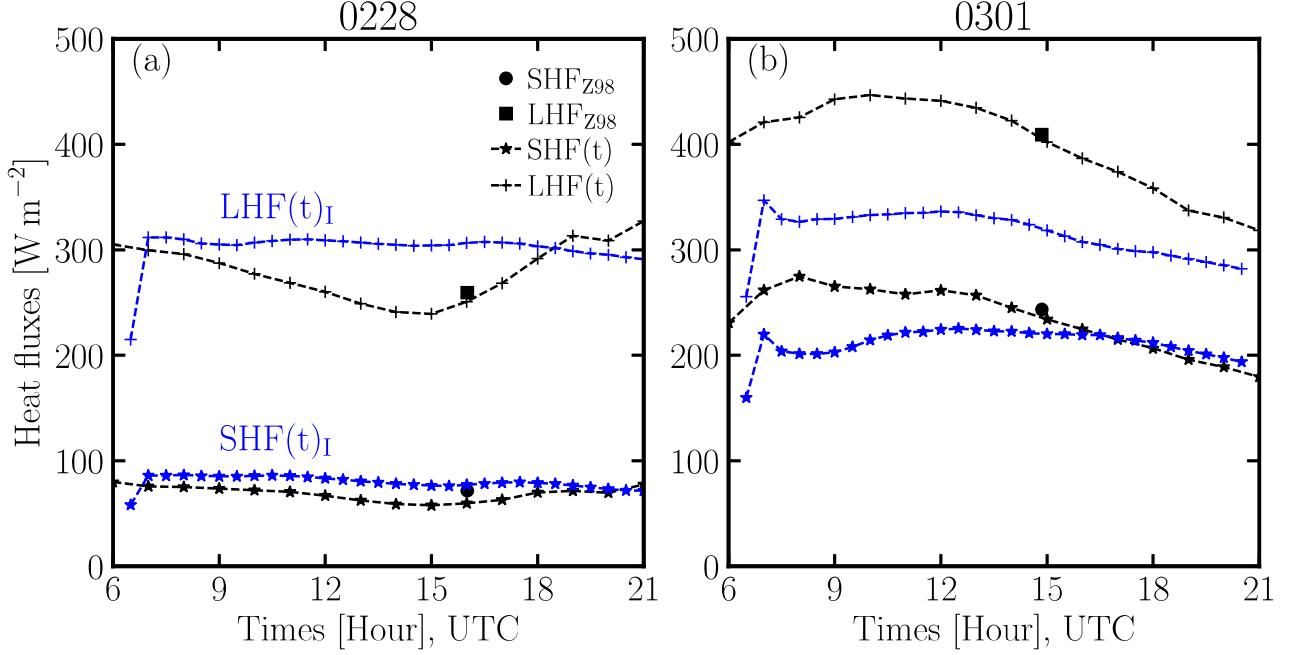
619 *c. Sensitivities to surface heat fluxes*

620 To test the sensitivities to surface fluxes, we perform another three WRF-LES simulations using
621 the same forcing configuration as the baseline simulation 0301A but with temporally varying and
622 spatially uniform surface heat fluxes for the March 1 case. The time series of such surface heat
623 fluxes obtained from ERA5 reanalysis data at the center of dropsonde circle is shown as the black
624 lines in Figure 16. As shown in Figure 13, when the WRF-LES is forced by $SHF(t_0)$ and $LHF(t)$
625 (red curve), LWP evolves in the same pattern as the baseline but with larger values between 10:00-
626 16:00 UTC. This is because $LHF(t)$ is larger than $LHF(t_0)$ until 15:00 UTC, as shown in Figure 16.
627 Overall, simulations driven by $LHF(t)$ result in more LWP compared with the one by $LHF(t_0)$.
628 Simulations forced by $SHF(t)$ and $LHF(t_0)$ (green curve) exhibit the same trend as the one by
629 $SHF(t_0)$ and $LHF(t)$. When the time-varying $SHF(t)$ and $LHF(t)$ are both applied to the WRF-
630 LES (black curve), the initial increase in $SHF(t)$ & $LHF(t)$, as compared to $SHF(t_0)$ & $LHF(t)$
631 (red), does not have an impact on the LWP. Since the forcing $SHF(t)$ and $LHF(t)$ only vary
632 slightly, the mean LWP values do not show a significant difference when comparing the four
633 WRF-LES. We also compare the IWP as shown in Figure 13(b). The evolution of these quantities
634 follow the same trend as LWP. Figure 14 shows the corresponding deviations of vertical profiles of
635 simulation 0301B, 0301C, 0301E, and 0301D from the baseline simulation 0301A. These profiles
636 are averaged over the measurement time (3 snapshots over 15:00 to 16:00 UTC). Differences at
637 the inversion layer (about 2 km) are the most pronounced. The green curves ($SHF(t)$, $LHF(t_0)$)
638 deviate the least from the blue curves (baseline simulation) while the red ($SHF(t_0)$, $LHF(t)$) and
639 black ($SHF(t)$, $LHF(t)$) curves diverge the most within the boundary layer. The red and black
640 curves are almost identical except for the slight difference in q_c .

641 We also perform WRF-LES with interactive surface heat fluxes estimated from a prescribed
642 constant SST from ERA5 and model simulated atmospheric states for both cases. A constant
643 ERA5-SST is used here because ERA5-SST does not vary at the location of dropsonde center from
644 06:00 UTC to 21:00 UTC. Figure 16(a) shows that surface heat fluxes (SHF_I and LHF_I) calculated
645 within the WRF-LES surface scheme (Beljaars 1995; Chen and Dudhia 2001) are close to the
646 ones from ERA5, leading to a similar LWP (Figure A6) and meteorological states (Figure A7)
647 for the February 28 case. The frequency of LWP from simulation 0228E (prescribed $HF(t)$ from
648 ERA5) and 0228F ($HF(t)$ calculated interactively within WRF-LES) agree excellently with the

670 TABLE 3. Surface heat fluxes during the dropsonde measurement time. “Flux” represents moisture and heat
 671 fluxes calculated from LES $\overline{w'q'_v}$ and $\overline{w'\theta'}$ (0228E and 0301E) at the bottom model layer, respectively.

Case	SHF [W m^{-2}]				LHF [W m^{-2}]			
	ERA5	Z98	I	Flux	ERA5	Z98	I	Flux
0228	59.7	71.7	77.2	64.4	250.7	259.5	306.6	273.1
0301	234.1	243.4	220.3	232.2	402.3	409.2	318.4	406.7


649 RSP measurement as shown in Figure 12(a). For the March 1 case, the surface latent heat flux
 650 from WRF-LES is substantially weaker than the one from ERA5 (Figure 16(b)), resulting in a
 651 drier BL (Figure A7) and smaller LWP (Figure A6). The frequency of LWP from simulation
 652 0301F agrees better with RSP than that from 0301E. Nevertheless, we use prescribed surface
 653 heat fluxes from ERA5 in our LES because there is no direct measurement of surface heat fluxes
 654 from the ACTIVATE campaign. We aim to unravel aerosol-meteorology-cloud interactions and to
 655 improve its parameterizations in the Earth System Models by using LES constrained by ACTIVATE
 656 measurements and reanalysis data.

657 Simulations with finer horizontal resolution ($dx = 100\text{m}$) yields similar LWP (Figure A6) and
 658 almost identical vertical profiles (Figure A7) as the ones with $dx = 300\text{m}$ for both cases. The
 659 energy power spectra at 1 km height during the measurement time is shown in Figure A8. As
 660 expected, a larger inertial range is observed for simulation with $dx = 100\text{m}$. Nevertheless, this
 661 does not affect the simulated LWP and BL thermodynamics, which justifies our use of $dx = 300\text{m}$.

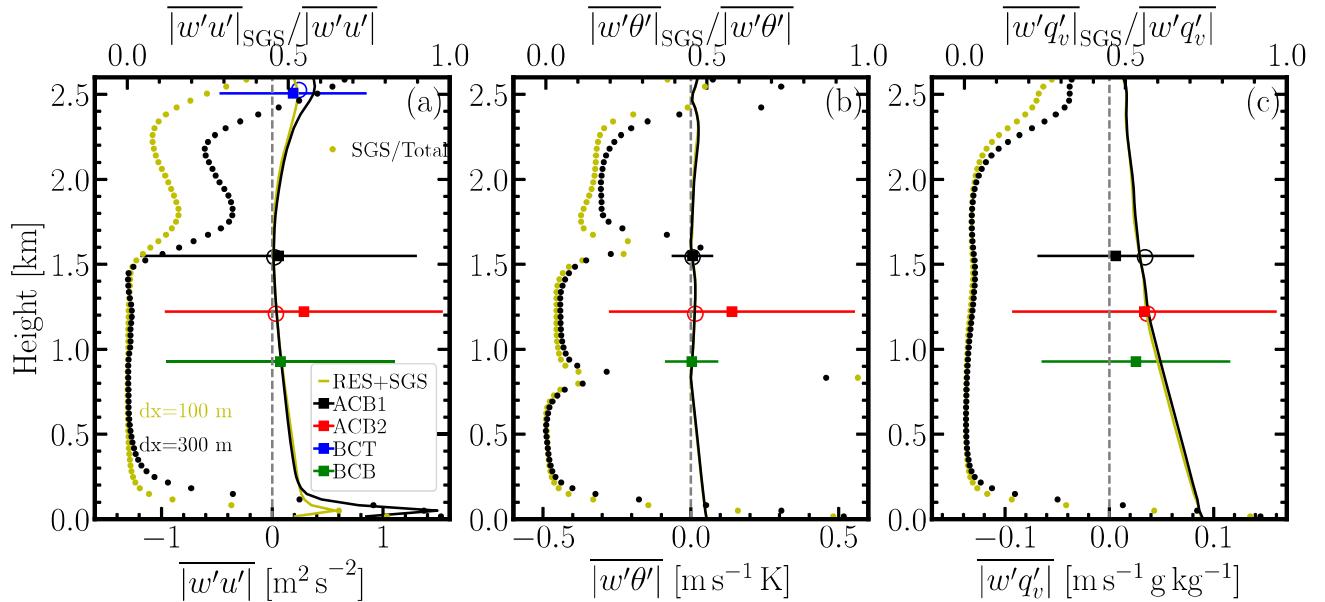
662 Figure A10 shows the instantaneous field of θ , q_v , q_c , and TKE at UTC 16:00 and 2.5 km (near
 663 cloud top) for the February 28 case (simulation 0228G with $dx=100\text{ m}$). The thermodynamics
 664 fields exhibits same spatial patterns as TKE. Same for the March 1 case (simulation 0301G with
 665 $dx=100\text{ m}$) at 1.5 km as shown in Figure A11.

672 5. Turbulent fluxes: validating LES against aircraft in-situ measurements

673 To validate LES against in-situ measurements during the ACTIVATE campaign, we compare
 674 the measured turbulent fluxes from the Falcon aircraft flying in the BL to the ones from LES. We
 675 select two above cloud-base (ACB), one below cloud-top (BCT), and one below cloud-base (BCB)
 676 flight legs during the dropsonde measurement time (16:00-17:00 UTC) on February 28. The time
 677 series and vertical profiles of w' , q'_v and θ' from the four flight legs (ACB1, ACB2, BCT, BCB)

666 FIG. 16. Surface heat fluxes from ERA5 (black lines) reanalysis data at the center of dropsonde circle on (a)
667 February 28 and (b) March 1. Solid dots and squares represent heat fluxes at the center of dropsonde circles
668 calculated based on the Z98 algorithm. Blue stars and pluses represent surface sensible $SHF(t)_I$ and latent heat
669 $LHF(t)_I$ fluxes output from WRF-LES (0228F and 0301F), respectively.

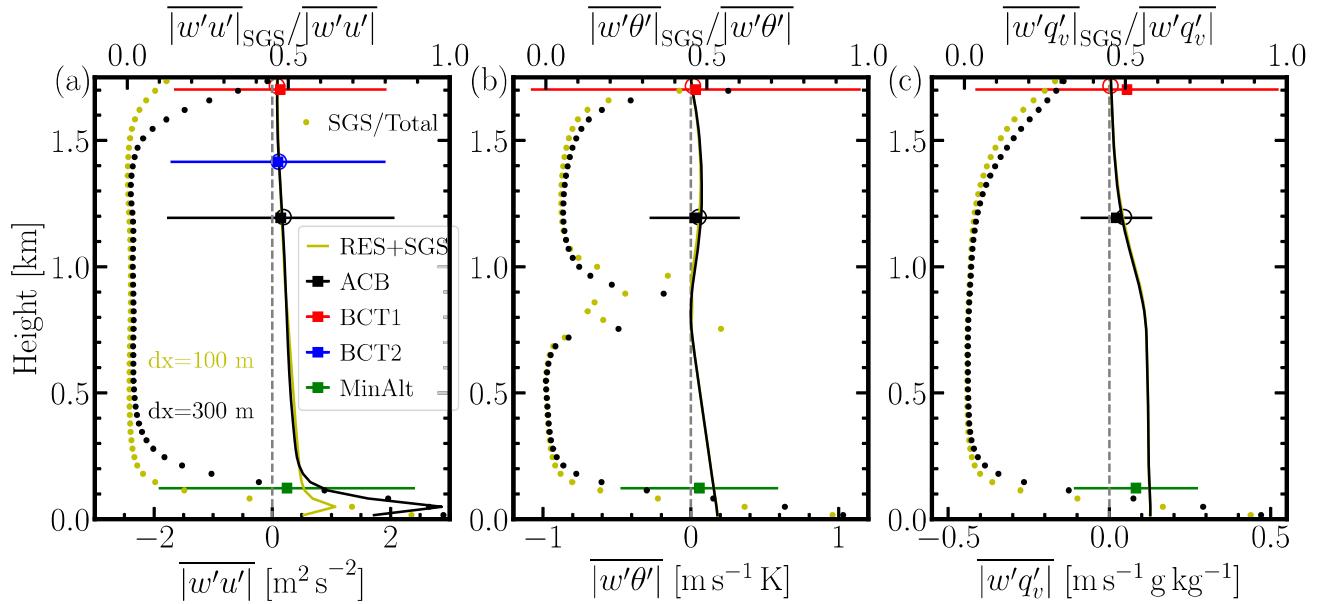
678 are shown in Figure A12. The sampling time and altitude variation of each flight leg is about 10
679 minutes or less and about 17 m (Table A1), respectively. Since the vertical layer thickness of LES
680 is about 33 m within BL, we compare turbulent fluxes at the LES layer center that is closest to the
681 height of each flight leg. The closest LES snapshot (every 30 minutes) to the flight sampling time
682 is used for comparison. To calculate turbulent fluxes from measurements, the sampling time of T
683 and q_v are mapped to that of averaged wind speed, which has 20 times higher sampling frequency.
684 Figure 17 shows the comparison of turbulent fluxes between the Falcon measurements and LES.
685 The sampling frequency of T and q_v is 1 Hz, which is equivalent to a spatial distance of 100m
686 given that the flight speed is about 100 m s^{-1} . Such a spatial distance is comparable to the mesh
687 size of LES. The LES is able to reproduce $\overline{w'u'}$ and $\overline{w'\theta'}$ measured during flight legs ACB1, BCT,
688 and BCB. It captures the measured $\overline{w'q'_v}$ at flight leg ACB2. The measured $\overline{w'u'}$, $\overline{w'\theta'}$ and $\overline{w'q'_v}$
689 agree well with the ones from LES for the March 1 case, as shown in Figure 18.


690 Comparison of turbulent fluxes between simulation 0228E ($dx = 300$ m) and 0228G ($dx = 100$ m)
691 is also shown in Figure 17. The parameterized subgrid-scale (SGS) turbulent fluxes are strong
692 within the surface layer for both simulations, above which all the eddies are resolved by LES as
693 suggested by the ratio between SGS and the total fluxes (i.e. yellow and black dots). $\overline{w'u'}$ within the
694 surface layer is strongly mesh-size dependent, which is not the case for $\overline{w'\theta'}$ and $\overline{w'q'_v}$. Therefore,
695 the simulation with $dx=300$ m yields the same LWP as the one with $dx=100$ m as discussed in
696 section 4.c. The same conclusion can be drawn for the March 1 case as shown in Figure 18.

712 6. Discussion and conclusions

713 We have reported two contrasting cold air outbreak (CAO) cases observed during the ACTIVATE
714 field campaign and the corresponding WRF-LES modeling of them. The February 28 case is char-
715 acterized by weaker turbulent surface heat fluxes ($SHF = 79.91 \text{ W m}^{-2}$ and $LHF = 305.02 \text{ W m}^{-2}$)
716 than those of the March 1 case ($SHF = 231.76 \text{ W m}^{-2}$ and $LHF = 382.18 \text{ W m}^{-2}$). The divergence
717 is on the order of 10^{-5} s^{-1} for both cases, which is about 10 times larger than common marine cases
718 (e.g., $\bar{D} \approx 10^{-6} \text{ s}^{-1}$ in the DYCOMS-II case simulated by Wang and Feingold (2009)) and about
719 two times larger than the CAO case in de Roode et al. (2019). A deeper, warmer, and more humid
720 boundary layer was observed for the February 28 event than the one on March 1.

721 To examine and validate different prescribed forcing options to drive WRF-LES, we first evaluate
722 divergence obtained from the ERA5 reanalysis data against the one derived from dropsonde
723 measurements for the two CAO cases. The divergence profile and the corresponding vertical
724 velocity obtained from ERA5 reanalysis data at the center of dropsonde circle are able to capture
725 the structure of the ones estimated from dropsonde measurements for the March 1 case. This gives
726 us the confidence to adopt the time-varying divergence profiles from ERA5 to drive our WRF-LES.


727 Since the surface turbulent heat fluxes are partly determined by SST, we compare SST from
728 ERA5 to the one from satellite retrievals. They agree very well for both February 28 and March 1
729 cases. Therefore, SST from ERA5 together with the 10 m temperature, water vapor mixing ratio,
730 and wind speed from dropsonde measurements are used to calculate heat fluxes for the March 1
731 case and those from ERA5 for the February 28 case using the bulk aerodynamic algorithms from
732 Zeng et al. (1998). The estimated sensible and latent heat fluxes agree well with the ones directly

697 FIG. 17. (a) momentum, (b) heat, and (c) moisture fluxes within BL during dropsonde measurement time for
698 the February 28 case. Open circles represent total fluxes, i.e., resolved (RES) plus sub-grid scale (SGS) fluxes,
699 from simulation 0228G. Solid squares represent the ones from different flight legs (“ACB”, “BCT” and “BCB”
700 denotes above cloud-base, below cloud-top, and below cloud-base, respectively). The error bars represent one
701 standard deviation of fluxes. Solid and dotted lines represent the total fluxes and the ratio between SGS and the
702 total fluxes from LES, respectively. The closest snapshots in both time and height from simulation 0228G are
703 used to compare to the measurements. $\overline{w'\theta'}$ and $\overline{w'q'_v}$ from Falcon measurements are calculated by matching
704 the sampling time of q'_v and θ' to the averaged w' , respectively. The time series and vertical profiles of w' , q'_v
705 and θ' from the measurements are shown in Figure A12. Flight time and height of the four flight legs are listed
706 in Table A1. $\overline{w'q'_v}$ and $\overline{w'\theta'}$ from the BCT leg is not shown due to limited sampling. Vertical profiles from LES
707 are averaged during the dropsonde measurement time. Moisture and heat fluxes calculated from the bottom layer
708 of LES $\overline{w'q'_v}$ and $\overline{w'\theta'}$ (0228E and 0301E), respectively, are listed in Table 3.

733 obtained from ERA5 reanalysis data for the March 1 case. They are underestimated by about
734 30% compared to the ERA5 heat fluxes for the February 28 case.

735 By applying the surface heat fluxes, large-scale temperature and moisture advective tendencies,
736 and wind relaxation adjustments from ERA5 to the WRF-LES, the simulated meteorological
737 states for both CAO cases match the ERA5 reanalysis data and the ACTIVATE field campaign
738 measurements. We also conduct WRF-LES sensitivity simulations on the surface fluxes and
739 divergence and find that the divergence is important in suppressing the evolution of the boundary

709 FIG. 18. Same as Figure 17 but for the March 1 case (simulation 0301G and 0301E). $\overline{w'q'_v}$ is not shown
710 for the flight leg BCT2 because q'_v was not measured. “MinAlt” denotes minimum altitude (~ 150 m). The
711 corresponding time series and vertical profiles of the measured w' , θ' , and q'_v are shown in Figure A13.

740 layer and achieves the observed states of the boundary layer for this case, while surface heat fluxes
741 are more influential for the simulated LWP. The frequency of LWP produced from our WRF-
742 LES agrees reasonably well with the measured ones from the ACTIVATE campaign for both the
743 February 28 case. Since the large-scale tendencies profiles vary with time for the two CAO cases,
744 it is important to apply time-varying tendencies to the WRF-LES instead of constant ones.

745 In summary, with initial conditions, large-scale forcings, and turbulent surface heat fluxes ob-
746 tained from ERA5 and validated by ACTIVATE airborne measurements, WRF-LES is able to
747 reproduce the observed boundary-layer meteorological states and LWP for two contrasting CAO
748 cases. This manifests the meteorological impact on marine boundary layer and clouds associated
749 with CAO over WNAO. This study (Part 1) paves the path to further investigation of aerosol effects
750 on cloud microphysics during the CAO events to be reported in the forthcoming companion paper
751 (Part 2).

752 *Acknowledgments.* This work was supported through the ACTIVATE Earth Venture Suborbital-3
753 (EVS-3) investigation, which is funded by NASA’s Earth Science Division and managed through
754 the Earth System Science Pathfinder Program Office. The Pacific Northwest National Laboratory

755 (PNNL) is operated for the U.S. Department of Energy by Battelle Memorial Institute under
756 contract DE-AC05-76RLO1830. We wish to thank the pilots and aircraft maintenance personnel
757 of NASA Langley Research Services Directorate for their work in conducting the ACTIVATE
758 flights. We thank Andrew S Ackerman for discussions. The source code used for the simulations
759 of this study, the Weather Research and Forecasting (WRF) model, is freely available on <https://github.com/wrf-model/WRF>. The simulations were performed using resources available
760 through Research Computing at PNNL.
761

762 *Data availability statement.* ACTIVATE data are publicly available at: <https://www-air.larc.nasa.gov/cgi-bin/ArcView/activate.2019>

764 MW-IR SST are produced by Remote Sensing Systems and sponsored by NASA. Data are
765 available at www.remss.com

766 APPENDIX

767 A1. Dropsonde measurements

768 This appendix is to review the method being adopted to calculate divergence D from the drop-
769 sonde measurements and to test statistical convergence of D to the number of dropsondes used in
770 the calculation.

771 The integral form of Equation (7) is

$$\int \nabla \cdot u dS = 0. \quad (A1)$$

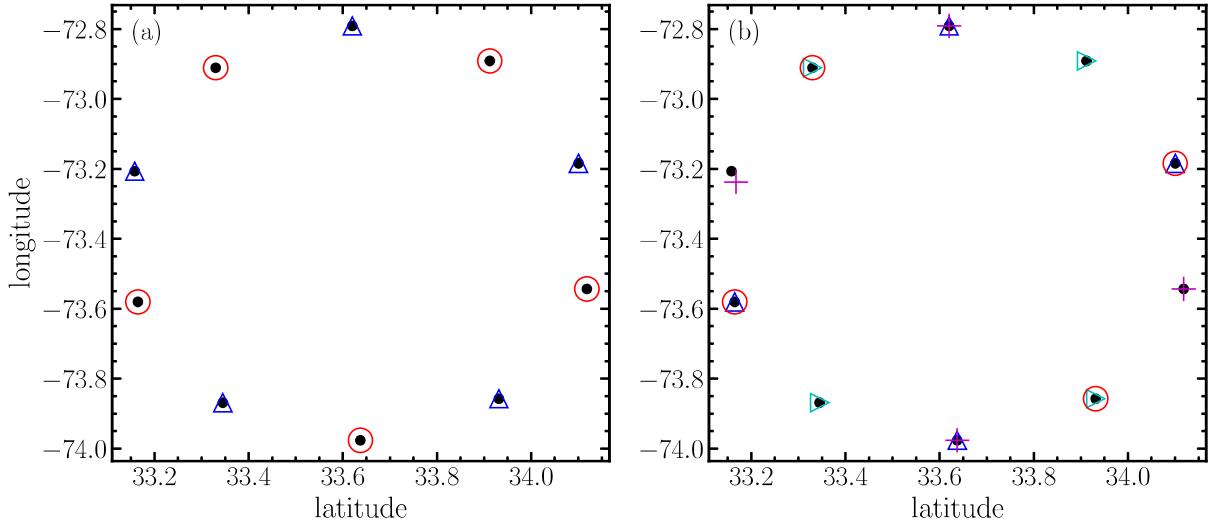
772 Thus,

$$\int \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dS = - \int \frac{\partial w}{\partial z} dS = -A \frac{\partial w}{\partial z}. \quad (A2)$$

773 According to the Stokes theorem, Equation (A2) can be written as

$$\frac{\partial w}{\partial z} = -D = -\frac{1}{A} \oint_l v_n dl. \quad (A3)$$

774 Based on Equation (A3), Lenschow et al. (2007) noted that the most efficient flight track is a
775 circle-like shape since the circle has the largest enclosed area of any closed curve and the turning


776 rate of flight is slow. Such a method to calculate D is called the “linear integral method”. This
 777 method requires a closed and circular flight track and a linearly evolving wind speed, none of
 778 which can be satisfied. Therefore, Lenschow et al. (2007) developed the “regression method”,
 779 which can alleviate the requirements of the linear integral method. The first order Taylor expansion
 780 of horizontal wind velocity $\mathbf{v} = v(u, v)$ at the dropsondes center is

$$\mathbf{v} = \mathbf{v}_0 + \frac{\partial \mathbf{v}}{\partial x} \Delta x + \frac{\partial \mathbf{v}}{\partial y} \Delta y + \frac{\partial \mathbf{v}}{\partial t} \Delta t, \quad (\text{A4})$$

781 where Δx and Δy are the eastward and northwest displacements from the center of dropsondes.
 782 Assuming a stationary state, the term $\frac{\partial \mathbf{v}}{\partial t} \Delta t$ can be neglected. This assumption suggests that all the
 783 dropsondes should be released simultaneously, which is not feasible experimentally. The sampling
 784 lag in space and time between different dropsondes may cause error of calculating \bar{D} . However,
 785 Bony and Stevens (2019) demonstrated that the stationarity assumption is not bad.

786 We then test the sensitivity of \bar{D} to the number of dropsondes used in the calculation. Figure A1
 787 shows the circular distribution of 10 dropsondes (black solid dots) for the February 28 case. Here,
 788 only 10 dropsondes are used to calculate the divergence because two (out of the 11 dropsondes) were
 789 released at the same location. We select two subsets as shown in Figure A1(a). The corresponding
 790 \bar{D} is shown in Figure A2(a). \bar{D} derived from the 5-dropsonde circle agrees with that from the
 791 10-dropsonde circle. We also test four subsets of 4-dropsonde circles, as shown in Figure A1(b),
 792 and the corresponding \bar{D} is shown in Figure A2(b). Same as the 5-dropsonde circles, 4-dropsonde
 793 subset agree with the 10-dropsonde circle even though the individual subsets exhibit differences.

794 We also apply the same analysis to dropsonde measurements being carried out on the March
 795 1 case as shown in Figure A3 and Figure A4. \bar{D} derived from the 5-dropsonde circle agrees
 796 with that from the 10-dropsonde circle above the inversion layer but differs within the boundary
 797 layer. The difference is even larger between the two different sets of 5-dropsonde circles (red and
 798 blue curves in Figure A4(a)) in the boundary layer. Interestingly, \bar{D} from the 4-dropsonde subset
 799 (Figure A4(b)) is closer to the one derived from the 10-dropsonde. Therefore, reducing the total
 800 number of dropsondes in a circle results in statistical uncertainties. Bony and Stevens (2019)
 801 suggested that at least 12 dropsondes are needed to estimate \bar{D} . More dropsondes can indeed
 802 improve the accuracy of the estimation in the tropics as shown in Figure 5 of Bony and Stevens
 803 (2019). However, the additional two dropsondes are not expected to make a big difference.

804 FIG. A1. Latitude and longitude coordinates of dropsondes released on February 28 case. Black dots represent
 805 the 10 dropsondes. (a): Red circles and blue triangles represent two subsets of 5 dropsondes, respectively. (b):
 806 Red circles, blue triangles, cyan triangles, and red crosses represent four subsets of 4 dropsondes, respectively.

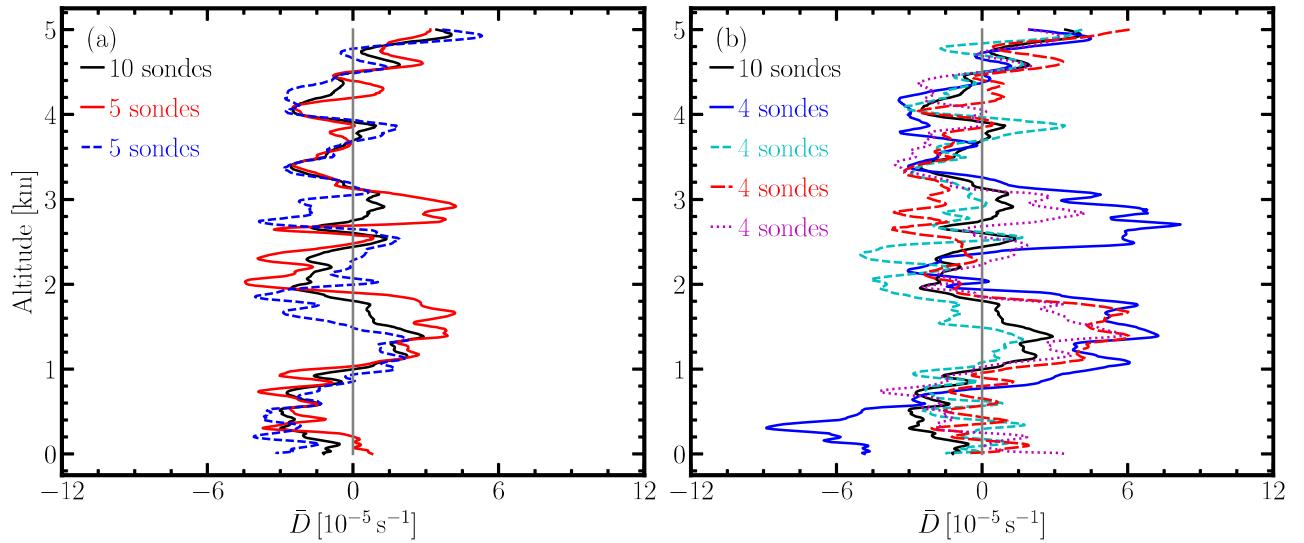


FIG. A2. Corresponding \bar{D} profiles derived from dropsonde measurements shown in Figure A1.

807 **A2. Surface heat fluxes: ERA5 versus MERRA-2**

808 Figure A5 shows the comparison of heat fluxes between ERA5 and MERRA-2 reanalysis data.
 809 MERRA-2 underestimates the heat fluxes compared to ERA5.

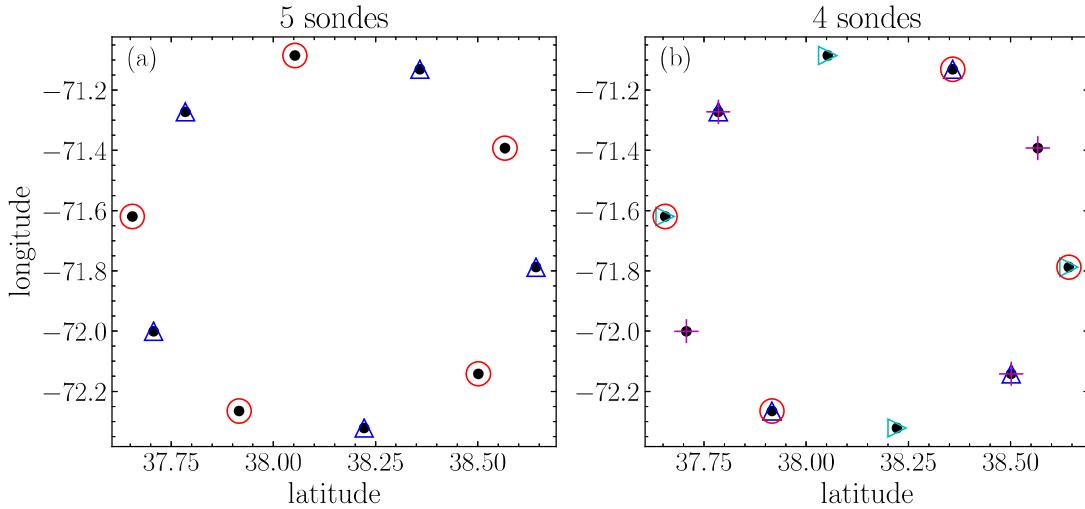
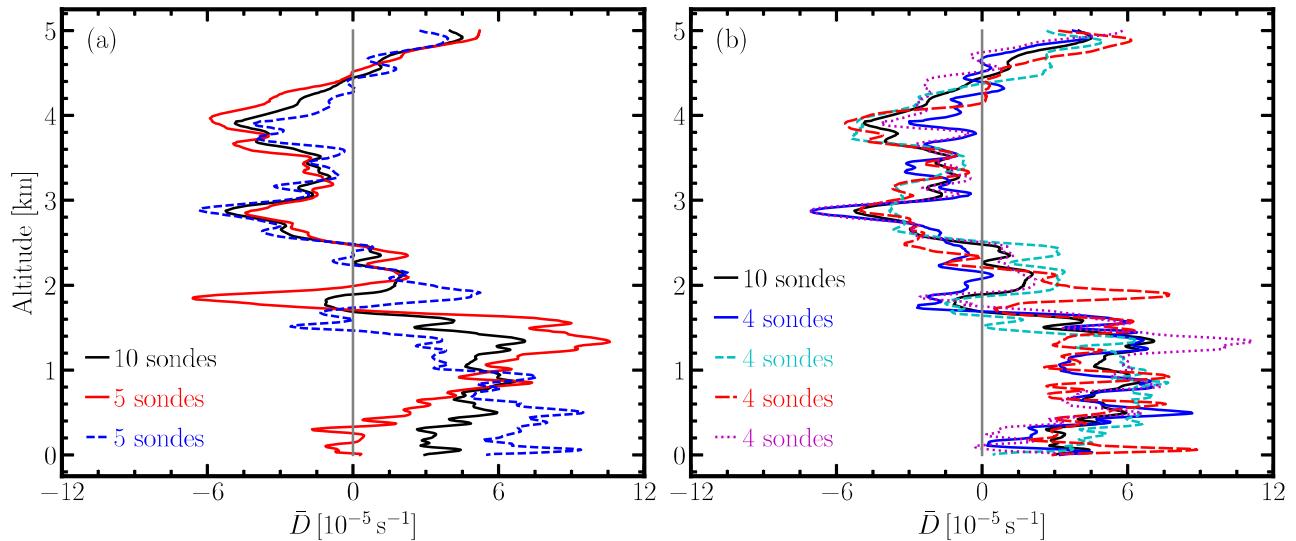
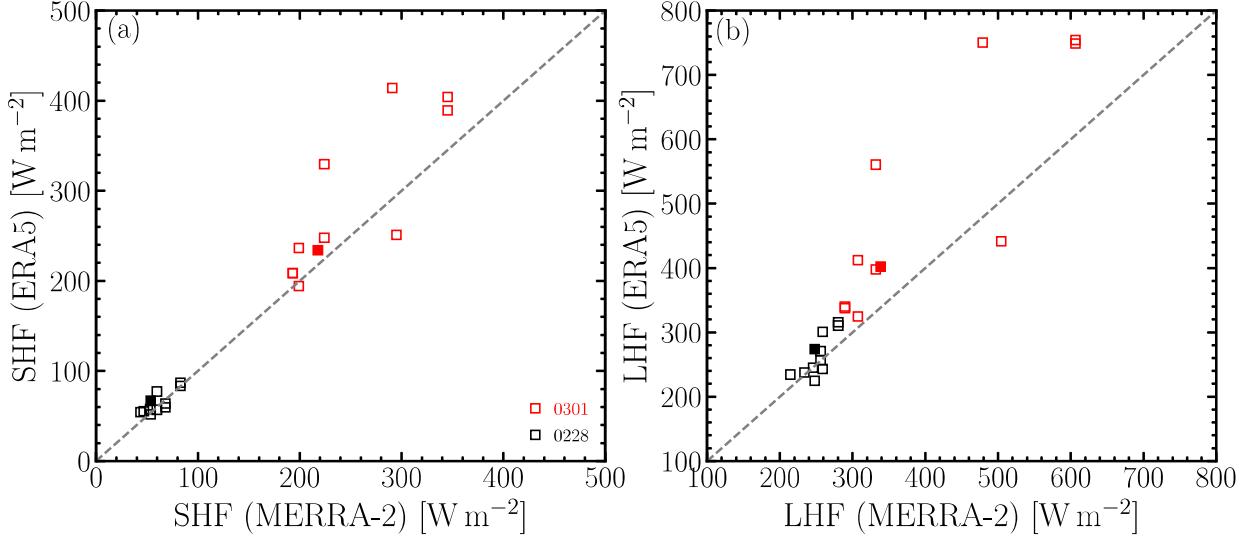
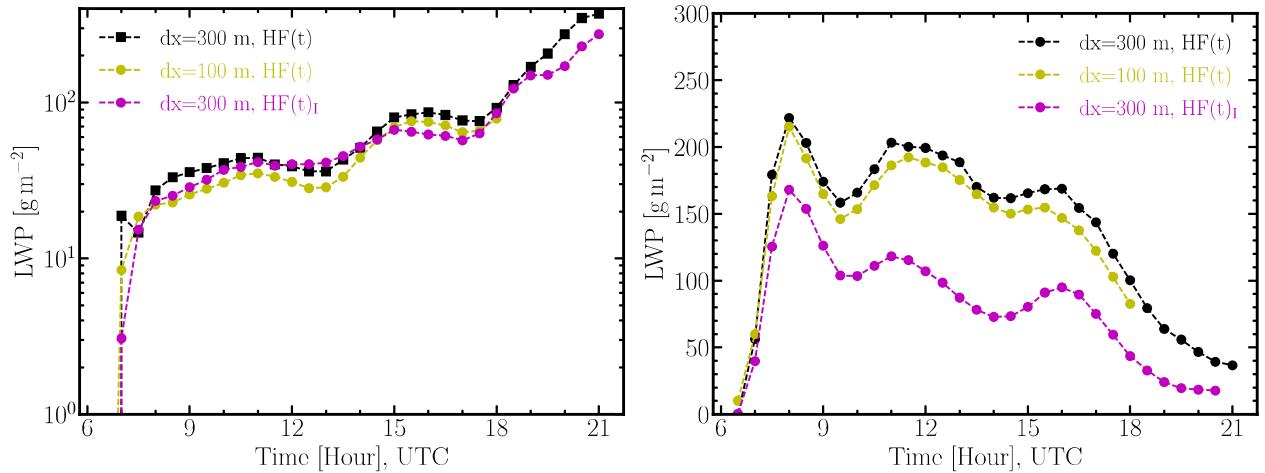


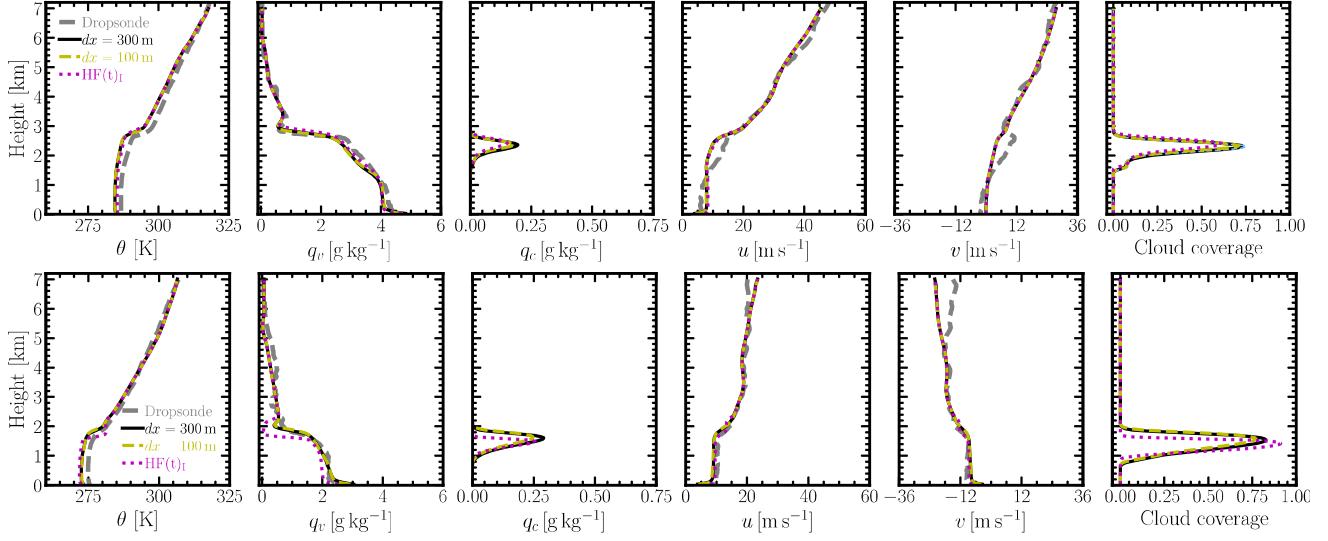
FIG. A3. Same as Figure A1 but for the March 1 case.

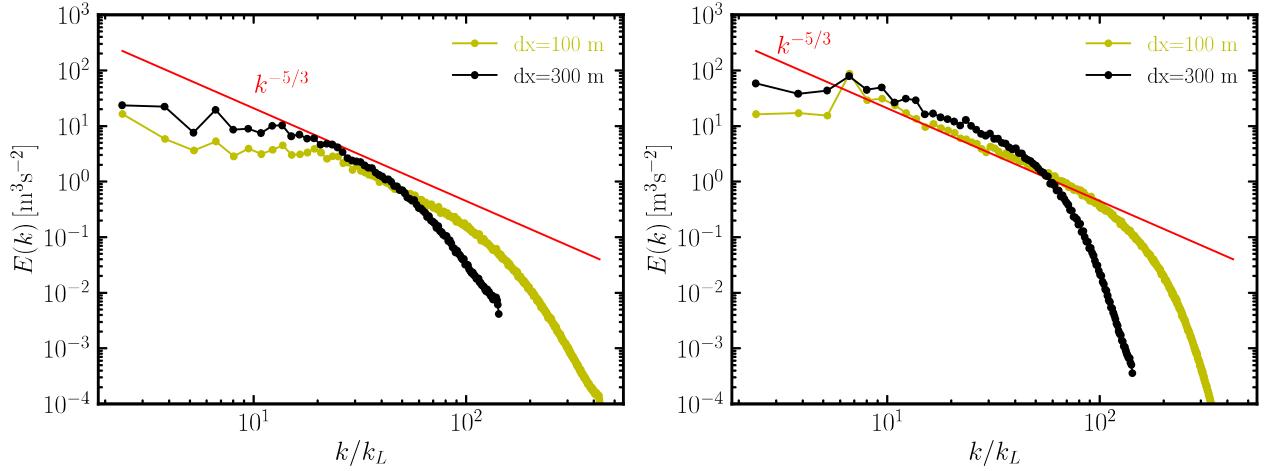




FIG. A4. Corresponding \bar{D} profiles derived from groups of dropsondes shown in Figure A3.

814 **A3. Horizontal resolution and interactive surface heat fluxes**

815 Figure A6 and Figure A7 shows the horizontal resolution and interactive surface heat fluxes
 816 dependency for both cases. The interactive heat fluxes result in smaller LWP and IWP. This is due
 817 to smaller heat fluxes shown in Figure 16.


810 FIG. A5. Comparison of heat fluxes between ERA5 and MERRA-2 reanalysis data at 15:00 UTC for the
 811 February 28 case (black squares) and 16:00 UTC for the March 1 case (red squares). Heat fluxes from the
 812 MERRA-2 reanalysis data are averaged between 16:30 and 17:30 for the February 28 case and between 14:30
 813 and 15:30 for the March 1 case.


818 FIG. A6. Horizontal resolution and interactive surface heat fluxes dependency for the February 28 (left-hand
 819 side) and March 01 cases (right-hand side). SHF(t) and LHF(t) from ERA5 are adopted. HF(t)_I denotes the heat
 820 fluxes calculated interactively with ERA5-SST as input. Black, yellow, and magenta lines represent simulation
 821 0228E (0301E), 0228G (0301G), and 0228F (0301F), respectively.

829 A4. Vertical profiles for LES with different forcing

830 Figure A9 shows the evolution of vertical profiles of the meteorological state for simulations
 831 shown in Figure 10.

822 FIG. A7. Vertical profiles for the February 28 (upper row) and March 1 (lower row) case during the dropsonde
 823 measurement. Same simulations as in Figure A6.

824 FIG. A8. Energy power spectra at $H = 1\text{km}$ averaged during the measurement time for the February 28 (left-
 825 hand side, 16:00-17:00 UTC) and March 1 (right-hand side, 15:00-16:00 UTC) case. The abscissa is normalized
 826 by $k_L = 2\pi/L_x$ to demonstrate at which length scale the eddies are not resolved, i.e., $E(k)$ deviates away from
 827 the Kolmogorov scaling $k^{-5/3}$ (red curve). Black and red yellow lines represent simulation 0228E (0301E) and
 828 0228G (0301G), respectively.

839 Figure A10 shows horizontal cross-section of θ , q_v , q_c , and TKE at UTC 16:00 and a height
 840 of 2.5 km for the February 28 case (simulation 0228G). Those for the March 1 case (simulation
 841 0301G) are shown in Figure A11.

848 TABLE A1. Falcon flight legs for the February 28 and March 1 cases. “ACB”, “BCT”, “BCB”, “MinAlt”
 849 denotes above cloud-base, below cloud-top, below cloud-base, and minimum altitude, respectively.

Case	Flight legs	Time [s], UTC	Height [m]
0228	ABC1	15:55:35-16:05:28	1538.37-1555.35
	ABC2	16:47:51-16:51:00	1217.93-1230.76
	BCT	16:18:41-16:26:56	2496.92-2514.76
	BCB	16:43:41-16:47:03	918.58-934.12
0301	ABC	15:02:47-15:12:24	1185.53-1210.00
	BCT1	15:24:31-15:32:51	1697.50-1708.11
	BCT2	15:34:07-15:42:44	1405.56-1423.46
	MinAlt	15:45:54-15:49:26	116.56-128.13

842 A5. Instantaneous fields and in-situ measurements

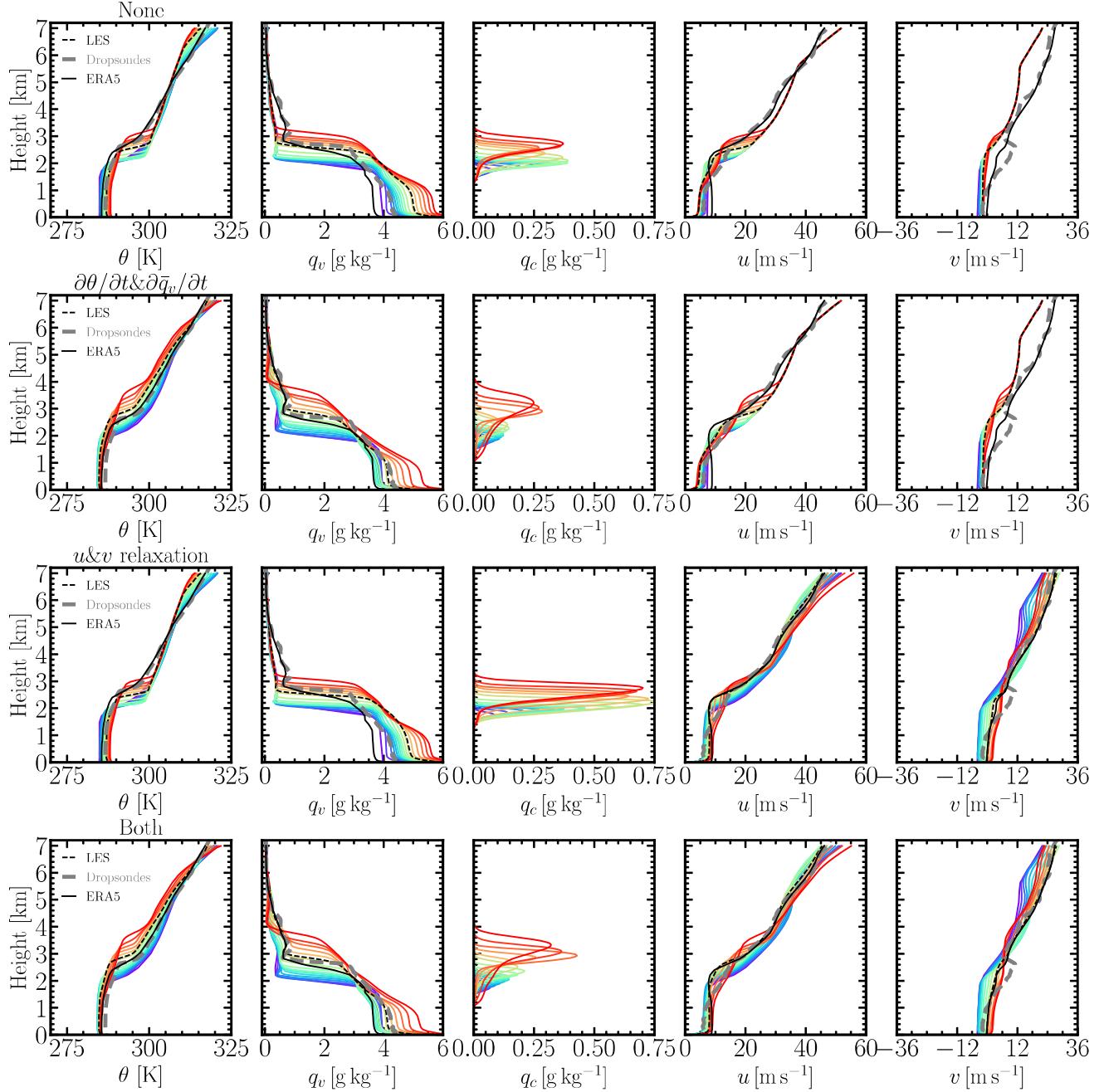
843 Figure A10 and Figure A11 show instantaneous fields for the February 28 and March 1 cases,
 844 respectively. Time series and vertical profiles of w' , q'_v , and θ' from the Falcon measurements are
 845 shown in Figure A12 and Figure A13 for the two cases.

854 References

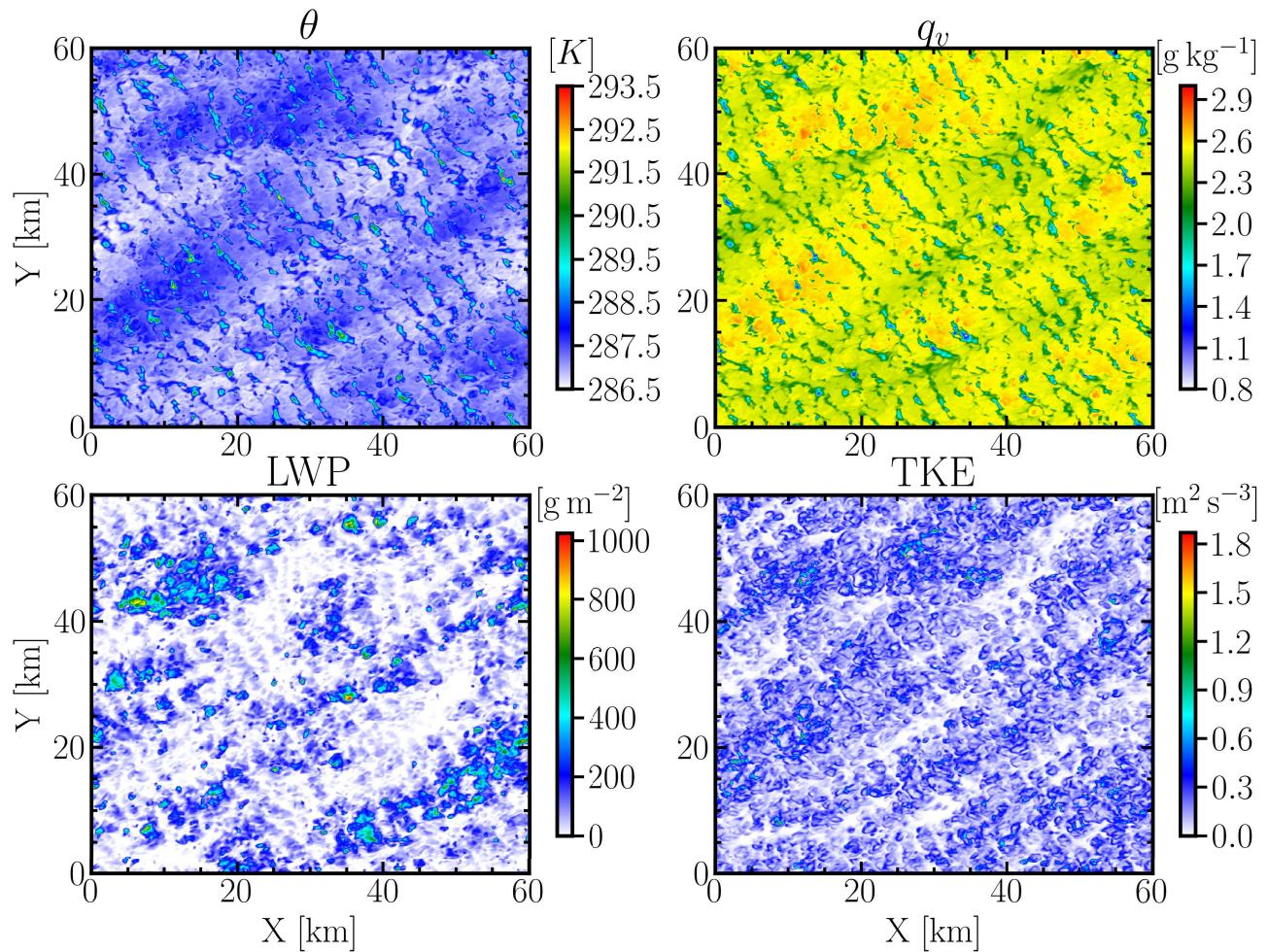
- 855 Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-
 856 topped marine boundary layer. *Monthly Weather Review*, **137** (3), 1083–1110.
- 857 Agee, E. M., 1987: Mesoscale cellular convection over the oceans. *Dynamics of atmospheres and*
 858 *oceans*, **10** (4), 317–341.
- 859 Alexandrov, M. D., B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, 2012: Accuracy
 860 assessments of cloud droplet size retrievals from polarized reflectance measurements by the
 861 research scanning polarimeter. *Remote sensing of environment*, **125**, 92–111.
- 862 Alexandrov, M. D., and Coauthors, 2018: Retrievals of cloud droplet size from the research scan-
 863 ning polarimeter data: Validation using in situ measurements. *Remote Sensing of Environment*,
 864 **210**, 76–95.

- 865 Augstein, E., H. Riehl, F. Ostapoff, and V. Wagner, 1973: Mass and energy transports in an
866 undisturbed atlantic trade-wind flow. *Monthly Weather Review*, **101** (2), 101–111.
- 867 Beljaars, A. C., 1995: The parametrization of surface fluxes in large-scale models under free
868 convection. *Quarterly Journal of the Royal Meteorological Society*, **121** (522), 255–270.
- 869 Bony, S., and B. Stevens, 2019: Measuring area-averaged vertical motions with dropsondes.
870 *Journal of the Atmospheric Sciences*, **76** (3), 767–783.
- 871 Bony, S., B. Stevens, and D. Carlson, 2017: *WMO Bulletin*, **66**, 8–11.
- 872 Boucher, O., and Coauthors, 2013: Clouds and aerosols. *Climate change 2013: the physical science
873 basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
874 Panel on Climate Change*, Cambridge University Press, 571–657.
- 875 Bretherton, C., and P. Blossey, 2017: Understanding mesoscale aggregation of shallow cumulus
876 convection using large-eddy simulation. *Journal of Advances in Modeling Earth Systems*, **9** (8),
877 2798–2821.
- 878 Bretherton, C. S., S. K. Krueger, M. C. Wyant, P. Bechtold, E. Van Meijgaard, B. Stevens, and
879 J. Teixeira, 1999: A gcss boundary-layer cloud model intercomparison study of the first astex
880 lagrangian experiment. *Boundary-Layer Meteorology*, **93** (3), 341–380.
- 881 Brilouet, P.-E., P. Durand, G. Canut, and N. Fourrié, 2020: Organized turbulence in a cold-air
882 outbreak: Evaluating a large-eddy simulation with respect to airborne measurements. *Boundary-
883 Layer Meteorology*, 1–35.
- 884 Brown, A., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus
885 convection over land. *Quarterly Journal of the Royal Meteorological Society: A journal of the
886 atmospheric sciences, applied meteorology and physical oceanography*, **128** (582), 1075–1093.
- 887 Chellappan, S., and Coauthors, 2021: On assessing era5 and merra2 representations of cold-air
888 outbreaks across the gulf stream. *Geophysical Research Letters*.
- 889 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the
890 penn state–ncar mm5 modeling system. part i: Model implementation and sensitivity. *Monthly
weather review*, **129** (4), 569–585.

- 892 Corral, A. F., and Coauthors, 2021: An overview of atmospheric features over the western north
893 atlantic ocean and north american east coast—part 1: Analysis of aerosols, gases, and wet
894 deposition chemistry. *Journal of Geophysical Research: Atmospheres*, e2020JD032592.
- 895 de Roode, S. R., and Coauthors, 2019: Turbulent transport in the gray zone: A large eddy model
896 intercomparison study of the constrain cold air outbreak case. *Journal of Advances in Modeling
897 Earth Systems*, **11** (3), 597–623.
- 898 Endo, S., and Coauthors, 2015: RACORO continental boundary layer cloud investigations: 2. large-
899 eddy simulations of cumulus clouds and evaluation with in situ and ground-based observations.
900 *Journal of Geophysical Research: Atmospheres*, **120** (12), 5993–6014.
- 901 Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applica-
902 tions, version 2 (merra-2). *Journal of climate*, **30** (14), 5419–5454.
- 903 Global Modeling and Assimilation Office (GMAO), 2015: Merra-2 inst3_3d_asm_nv: 3d, 3-
904 hourly, instantaneous, model-level, assimilation, assimilated meteorological fields v5.12.4.
905 Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center
906 (GES DISC), URL https://disc.gsfc.nasa.gov/datasets/M2I3NVASM_5.12.4/summary, accessed
907 March 10, 2021, <https://doi.org/10.5067/WWQSQ8IVFW8>.
- 908 Gryschka, M., J. Fricke, and S. Raasch, 2014: On the impact of forced roll convection on
909 vertical turbulent transport in cold air outbreaks. *Journal of Geophysical Research: Atmospheres*,
910 **119** (22), 12–513.
- 911 Gryschka, M., and S. Raasch, 2005: Roll convection during a cold air outbreak: A large eddy
912 simulation with stationary model domain. *Geophysical research letters*, **32** (14).
- 913 Heinze, R., C. Moseley, L. N. Böske, S. K. Muppa, V. Maurer, S. Raasch, and B. Stevens, 2017:
914 Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period
915 during a measurement campaign. *Atmospheric Chemistry and Physics*, **17** (11), 7083–7109.
- 916 Hersbach, H., and Coauthors, 2020: The era5 global reanalysis. *Quarterly Journal of the Royal
917 Meteorological Society*, **146** (730), 1999–2049, <https://doi.org/10.1002/qj.3803>,
918 URL <https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803>.


- 919 Hirahara, S., M. A. Balmaseda, E. de Boisseson, and H. Hersbach, 2016: 26 sea surface temperature
920 and sea ice concentration for era5.
- 921 Holland, J. Z., and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and
922 momentum budgets over a 500-kilometer square of tropical ocean. *Monthly Weather Review*,
923 **101** (1), 44–55.
- 924 Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes.
925 *Journal of Geophysical Research: Oceans*, **117** (C9).
- 926 Knop, I., S. E. Bansmer, V. Hahn, and C. Voigt, 2021: Comparison of different droplet measurement
927 techniques in the braunschweig icing wind tunnel. *Atmospheric Measurement Techniques*, **14** (2),
928 1761–1781.
- 929 Lenschow, D. H., P. B. Krummel, and S. T. Siems, 1999: Measuring entrainment, divergence,
930 and vorticity on the mesoscale from aircraft. *Journal of atmospheric and oceanic technology*,
931 **16** (10), 1384–1400.
- 932 Lenschow, D. H., V. Savic-Jovicic, and B. Stevens, 2007: Divergence and vorticity from aircraft air
933 motion measurements. *Journal of atmospheric and oceanic technology*, **24** (12), 2062–2072.
- 934 Li, X.-Y., A. Brandenburg, G. Svensson, N. E. Haugen, B. Mehlig, and I. Rogachevskii, 2018:
935 Effect of turbulence on collisional growth of cloud droplets. *Journal of the Atmospheric Sciences*,
936 **75** (10), 3469–3487.
- 937 Li, X.-Y., A. Brandenburg, G. Svensson, N. E. Haugen, B. Mehlig, and I. Rogachevskii, 2020:
938 Condensational and collisional growth of cloud droplets in a turbulent environment. *Journal of
939 the Atmospheric Sciences*, **77** (1), 337–353.
- 940 Li, X.-Y., G. Svensson, A. Brandenburg, and N. E. Haugen, 2019: Cloud-droplet growth due to
941 supersaturation fluctuations in stratiform clouds. *Atmospheric Chemistry and Physics*, **19** (1),
942 639–648.
- 943 Liu, A., G. Moore, K. Tsuboki, and I. Renfrew, 2004: A high-resolution simulation of convective
944 roll clouds during a cold-air outbreak. *Geophysical Research Letters*, **31** (3).

- 945 Morrison, H., G. Thompson, and V. Tatarki, 2009: Impact of cloud microphysics on the devel-
946 opment of trailing stratiform precipitation in a simulated squall line: Comparison of one-and
947 two-moment schemes. *Monthly weather review*, **137** (3), 991–1007.
- 948 National Center for Atmospheric Research, 2021: Avaps dropsondes. URL <https://www.eol.ucar.edu/content/avaps-dropsondes>, accessed March 16, 2021.
- 949
950 National Centers for Environmental Information, 2008: Remote sensing systems (remss). ghrsst
951 level 4 mw_ir_oi global foundation sea surface temperature and analysis version 5.0 from remss
952 (gds versions 1 and 2). URL https://www.ncei.noaa.gov/archive/accession/GHRSST-MW_IR_
953 OI-REMSS-L4-GLOB, accessed March 16, 2021.
- 954 Neggers, R. A., A. Siebesma, and T. Heus, 2012: Continuous single-column model evaluation at
955 a permanent meteorological supersite. *Bulletin of the American Meteorological Society*, **93** (9),
956 1389–1400.
- 957 Painemal, D., and Coauthors, 2021: An overview of atmospheric features over the western north
958 atlantic ocean and north american east coast—part 2: Circulation, boundary layer, and clouds.
959 *Journal of Geophysical Research: Atmospheres*, e2020JD033423.
- 960 Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and
961 their impact on air–sea heat fluxes in the high-latitude south pacific. *Journal of Climate*, **28** (1),
962 342–364.
- 963 Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind
964 speeds in tropical cyclones. *Nature*, **422** (6929), 279–283.
- 965 Quinn, P. K., and Coauthors, 2021: Measurements from the rv ronald h. brown and related
966 platforms as part of the atlantic tradewind ocean-atmosphere mesoscale interaction campaign
967 (atomic). *Earth System Science Data*, **13** (4), 1759–1790.
- 968 Rahn, D. A., and R. Garreaud, 2010: Marine boundary layer over the subtropical southeast pacific
969 during vocals-rex—part 1: Mean structure and diurnal cycle. *Atmospheric Chemistry and Physics*,
970 **10** (10), 4491–4506.
- 971 Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hart-
972 mann, 1989: *Science*, **243** (4887), 57–63.


- 973 Randall, D. A., and D. G. Cripe, 1999: Alternative methods for specification of observed forcing
974 in single-column models and cloud system models. *Journal of Geophysical Research: Atmospheres*, **104** (D20), 24 527–24 545.
- 976 Richter, D. H., R. Bohac, and D. P. Stern, 2016: An assessment of the flux profile method for
977 determining air–sea momentum and enthalpy fluxes from dropsonde data in tropical cyclones.
978 *Journal of the Atmospheric Sciences*, **73** (7), 2665–2682.
- 979 Schneider, T., J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Schär, and A. Siebesma,
980 2017: *Nature Climate Change*, **7** (1), 3–5.
- 981 Seifert, A., T. Heus, R. Pincus, and B. Stevens, 2015: Large-eddy simulation of the transient and
982 near-equilibrium behavior of precipitating shallow convection. *Journal of Advances in Modeling
983 Earth Systems*, **7** (4), 1918–1937.
- 984 Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. *Annu. Rev. Fluid Mech.*,
985 **35** (1), 183–227.
- 986 Siebesma, A., and J. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus
987 convection. *Journal of Atmospheric Sciences*, **52** (6), 650–666.
- 988 Skamarock, W. C., and Coauthors, 2019: A description of the advanced research wrf model version
989 4. *National Center for Atmospheric Research: Boulder, CO, USA*, 145.
- 990 Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a
991 function of wind speed and temperature. *Journal of Geophysical Research: Oceans*, **93** (C12),
992 15 467–15 472.
- 993 Sorooshian, A., and Coauthors, 2019: Aerosol–cloud–meteorology interaction airborne field in-
994 vestigations: Using lessons learned from the us west coast in the design of activate off the us
995 east coast. *Bulletin of the American Meteorological Society*, **100** (8), 1511–1528.
- 996 Sorooshian, A., and Coauthors, 2020: Atmospheric research over the western north atlantic ocean
997 region and north american east coast: a review of past work and challenges ahead. *Journal of
998 Geophysical Research: Atmospheres*, **125** (6), e2019JD031 626.
- 999 Stevens, B., and S. Bony, 2013: *Science*, **340** (6136), 1053–1054.

- 1000 Stevens, B., and Coauthors, 2019: A high-altitude long-range aircraft configured as a cloud
1001 observatory: The narval expeditions. *Bulletin of the American Meteorological Society*, **100** (6),
1002 1061–1077.
- 1003 Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical
1004 resolution on the simulation of shallow cumulus convection. *Journal of the atmospheric sciences*,
1005 **59** (23), 3285–3301.
- 1006 Taylor, J. W., and Coauthors, 2019: Aerosol influences on low-level clouds in the west african
1007 monsoon. *Atmospheric Chemistry and Physics*, **19** (13), 8503–8522.
- 1008 Tomassini, L., P. R. Field, R. Honnert, S. Malardel, R. McTaggart-Cowan, K. Saitou, A. T. Noda,
1009 and A. Seifert, 2017: The “grey zone” cold air outbreak global model intercomparison: A cross
1010 evaluation using large-eddy simulations. *Journal of Advances in Modeling Earth Systems*, **9** (1),
1011 39–64.
- 1012 Tornow, F., A. S. Ackerman, and A. M. Fridlind, 2021: Preconditioning of overcast-to-broken
1013 cloud transitions by riming in marine cold air outbreaks. *Atmospheric Chemistry and Physics*,
1014 **21** (15), 12 049–12 067, <https://doi.org/10.5194/acp-21-12049-2021>.
- 1015 Van der Dussen, J., and Coauthors, 2013: The gass/eclipse model intercomparison of the stra-
1016 tocumulus transition as observed during astex: Les results. *Journal of Advances in Modeling
1017 Earth Systems*, **5** (3), 483–499.
- 1018 van Laar, T. W., V. Schemann, and R. A. Neggers, 2019: Investigating the diurnal evolution of
1019 the cloud size distribution of continental cumulus convection using multiday les. *Journal of the
1020 Atmospheric Sciences*, **76** (3), 729–747.
- 1021 Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine
1022 stratocumulus. part i: Impact of drizzle on the formation and evolution of open cells. *Journal of
1023 the Atmospheric Sciences*, **66** (11), 3237–3256.
- 1024 Wang, H., G. Feingold, R. Wood, and J. Kazil, 2010: Modelling microphysical and meteorolog-
1025 ical controls on precipitation and cloud cellular structures in southeast pacific stratocumulus.
1026 *Atmospheric Chemistry and Physics*, **10** (13), 6347–6362.

- 1027 Wang, H., and G. M. McFarquhar, 2008: Modeling aerosol effects on shallow cumulus convection
1028 under various meteorological conditions observed over the indian ocean and implications for de-
1029 velopment of mass-flux parameterizations for climate models. *Journal of Geophysical Research: Atmospheres*, **113 (D20)**.
- 1031 Wang, H., W. C. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in
1032 the advanced research wrf model using large-eddy simulations of aerosol–cloud interactions.
1033 *Monthly Weather Review*, **137 (8)**, 2547–2558.
- 1034 Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms
1035 for the computation of sea surface fluxes using toga coare and tao data. *Journal of Climate*,
1036 **11 (10)**, 2628–2644.

832 Fig. A9. Evolution of domain-averaged vertical profiles from the WRF-LES simulation with the corresponding
 833 input forcings shown in Figure 9 for the February 28 case. The rainbow color scheme represents the time evolution
 834 (06:00-21:00 UTC): from purple to red. The solid black line represents the ERA5 reanalysis data and the dashed
 835 one represent the WRF-LES averaged during the measurement time. The grey curve represents the dropsonde
 836 measurement. From the top to the bottom, rows represent the simulation with no forcing, only advective
 837 tendencies ($\partial\bar{\theta}/\partial t$ and $\partial\bar{q}_v/\partial t$), only relaxation of u and v , and advective tendencies ($\partial\bar{\theta}/\partial t$ $\partial\bar{q}_v/\partial t$) plus \bar{u} and
 838 \bar{v} relaxation to u_{ERA5} and v_{ERA5} , respectively.

846 FIG. A10. Horizontal cross-section of θ , q_v , q_c , and TKE at UTC 16:00 and 2.5 km (near cloud top) for the
 847 February 28 case (simulation 0228G).

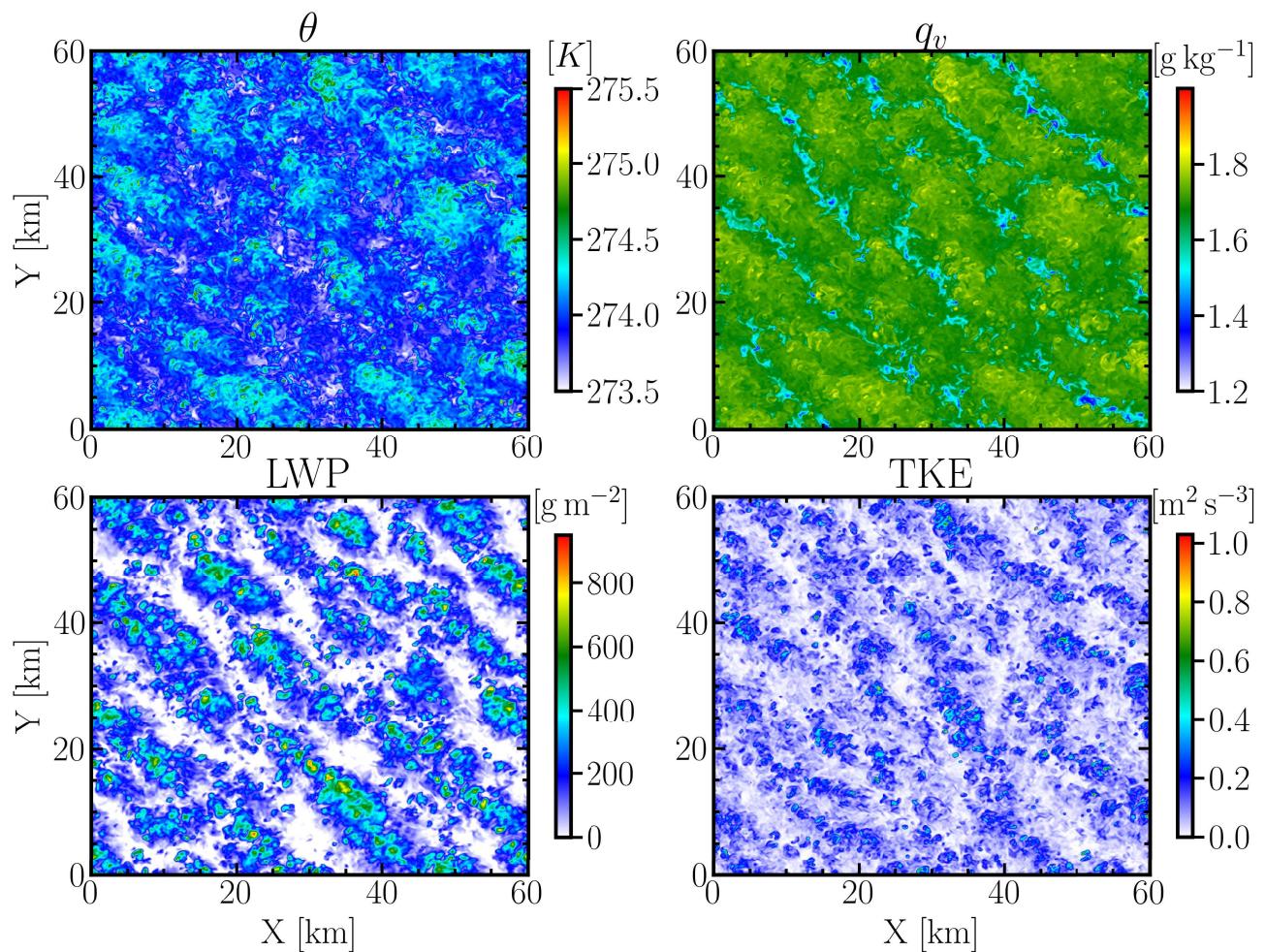
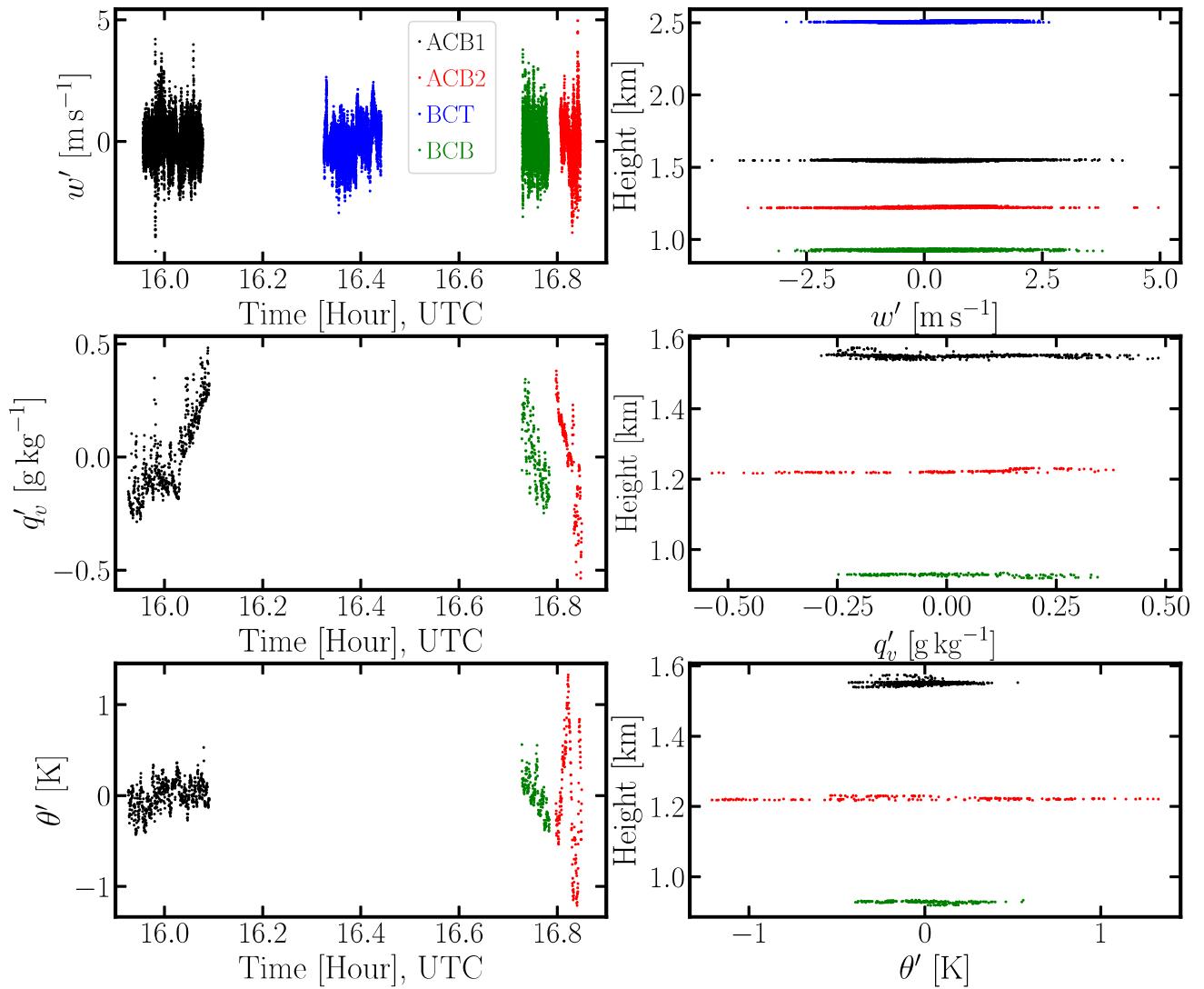
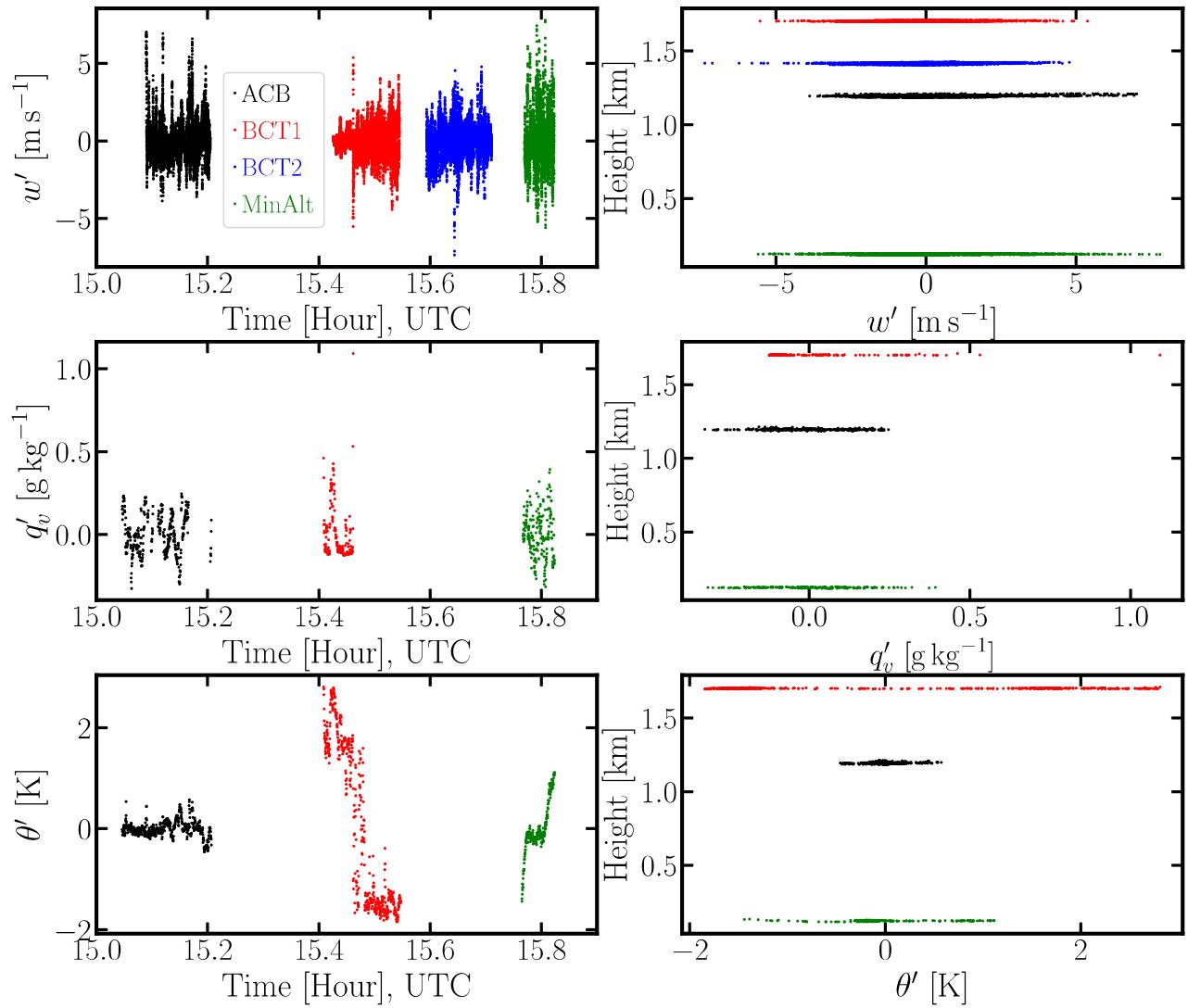




FIG. A11. Same as Figure A10 but for the March 1 case (simulation 0301G) at 1.5 km.

850 FIG. A12. Time series and vertical profiles of w' , q'_v , and θ' from the Falcon measurements for the February
 851 28 case. Flight time and height of each leg are listed in Table A1.

852 FIG. A13. Same as Figure A12 but for the March 1 case. Flight time and height of each leg are listed in
 853 Table A1.