
NASA/TM–20220000049

Integrating FRET with Copilot:
Automated Translation of Natural
Language Requirements to Runtime
Monitors

Ivan Perez
National Institute of Aerospace, Hampton, Virginia

Anastasia Mavridou
KBR, NASA Ames Research Center, Moffett Field, California

Thomas Pressburger
NASA Ames Research Center, Moffett Field, California

Alwyn Goodloe
NASA Langley Research Center, Hampton, Virginia

Dimitra Giannakopoulou∗

NASA Ames Research Center, Moffett Field, California
∗Author contributed to this work prior to joining AWS

January 2022

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The
NASA STI Program provides access to the
NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing
one of the largest collections of aeronautical and
space science STI in the world. Results are
published in both non-NASA channels and by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s
mission.

Specialized services also include organizing and
publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Help Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681–2199

NASA/TM–20220000049

Integrating FRET with Copilot:
Automated Translation of Natural
Language Requirements to Runtime
Monitors

Ivan Perez
National Institute of Aerospace, Hampton, Virginia

Anastasia Mavridou
KBR, NASA Ames Research Center, Moffett Field, California

Thomas Pressburger
NASA Ames Research Center, Moffett Field, California

Alwyn Goodloe
NASA Langley Research Center, Hampton, Virginia

Dimitra Giannakopoulou∗

NASA Ames Research Center, Moffett Field, California
∗Author contributed to this work prior to joining AWS

National Aeronautics and
Space Administration

Ames Research Center, Moffett Field, CA 94035

January 2022

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute
an offical endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

Executive Summary

Runtime verification (RV) enables monitoring systems at runtime, to detect property vi-
olations early and limit their potential consequences. To provide the level of assurance
required for ultra-critical systems, monitor specifications must faithfully reflect the original
mission requirements, which are often written in ambiguous natural language. This report
presents an end-to-end framework to capture requirements in structured natural language
and generate monitors that capture their semantics faithfully. We leverage NASA’s Formal
Requirement Elicitation Tool (fret), and the RV system Copilot. We extend fret with
mechanisms to capture additional information needed to generate monitors, and introduce
Ogma, a new tool to bridge the gap between fret and Copilot. With this framework,
users can write requirements in an intuitive format and obtain real-time C monitors suitable
for use in embedded systems. Our toolchain is available as open source.

Contents

1 Introduction 1

2 Step-by-step Framework Workflow 3

3 FRET Steps 5

4 Ogma Steps 7

5 Copilot Steps 8

6 Preliminary Results 11

7 Conclusion 13
7.1 FSM Specification . 18
7.2 FSM Manager Specification . 19
7.3 FSM Sensor pecification . 22
7.4 Regulators Specification . 23

List of Figures

1.1 Framework overview . 1

2.1 Step-by-step workflow . 3
2.2 Running example in Natural Language (NL), fretish, and pmLTL forms. 4

3.1 fret explanations . 5
3.2 fret variable editor . 6

5.1 Demonstration of Copilot monitor running as X-Plane plugin: cruising. . 9
5.2 Demonstration of Copilot monitor running as X-Plane plugin: stall. . . . 9
5.3 Demonstration of Copilot monitor running as X-Plane plugin: recovery. . 10

List of Tables

6.1 Regulators analysis results with the Kind2 (abbr. by K) model checker and
runtime monitors. Timeout was set to 2 hours for the model checkers and
the monitors were tested for up to 2000 different inputs. 12

6.2 FSM analysis results with the Kind2 (abbr. by K) model checker and runtime
monitors. Timeout was set to 2 hours for the model checkers and the monitors
were tested for 2000 different inputs. 12

Chapter 1

Introduction

Safety-critical systems, such as aircraft, automobiles, and power systems, where failure can
result in injury or death of a human [1], must undergo extensive assurance. The verification
process must ensure that the system satisfies its requirements under realistic operating
conditions and that there is no unintended behavior. Verification rests on possessing a precise
statement of requirements, arguably one of the most difficult tasks in engineering reliable
software. Formal verification techniques are, in principle, one method for achieving the
level of reliability required in safety-critical systems. Although there have been considerable
advances in industrial-scale formal methods, in most real-world scenarios it is not yet practical
to apply formal methods to an entire system due to their exceedingly large complexity and
the difficulty in constructing specifications.

Runtime verification (RV) [2, 3, 4] has the potential to enable the safe operation of
complex safety-critical systems. RV monitors can be used to detect and respond to property
violations during the mission, as well as to verify implementations and simulations at design
time. For monitors to be effective, they must faithfully reflect the mission requirements,
which is generally difficult for any non-trivial properties, since properties are normally
expressed in temporal logic or programming code, and requirements in natural language.

Figure 1.1: Framework overview

The focus of this report , as shown
in Figure 1.1, is to provide an end-to-
end framework that takes as input require-
ments and other necessary data and pro-
vides mechanisms to 1) help the user deeply
understand the semantics of these require-
ments, 2) automatically generate formal-
izations and 3) produce RV monitors that
faithfully capture the semantics of the re-
quirements. We leverage NASA’s Formal
Requirement Elicitation Tool (fret) [5, 6] and the runtime monitoring system Copi-
lot [7, 8, 9]. fret allows users to express and understand requirements through its intuitive
structured natural language (named fretish) and elicitation mechanisms, and generates
formalizations in temporal logic. Copilot allows users to specify monitors and compile
them to hard real-time C code.

The contribution of this report is the tight integration of the fret-Copilot tools to
support the automated synthesis of executable RV monitors directly from requirement
specifications. In particular, we present:

• A new tool, named Ogma, that receives requirement formalizations and variable data

1

from fret and compiles these into Copilot monitors.
• An extension of the fret analysis portal to support the generation and export of
specifications that can be directly digested by Ogma.

• Preliminary experimental results that evaluate the proposed workflow.
All tools needed by our workflow are available as open source [10, 11, 12].

Related Work. A number of runtime verification languages and systems have been
applied in resource-constrained environments [13, 14, 15, 16, 17, 18]. In contrast to our
work, these systems do not provide a direct translation from natural language. Several
tools [19, 20, 21, 22, 23] formalize natural-language like requirements, but not for the
purpose of generating runtime monitors. The STIMULUS tool [24] allows users to express
requirements in an extensible, natural-like language that is syntactic sugar for hierarchical
state machines. The machines then act as monitors that can be used to validate requirements
during the design and testing phases, but are not intended to be used at runtime. FLEA [25]
is a formal language for expressing requirements that compiles to runtime monitors in a
garbage collected language, making it harder to use in embedded systems; in contrast, our
approach generates hard real-time code.

2

Chapter 2

Step-by-step Framework Workflow

To integrate fret and Copilot, we extended the fret analysis portal and created the
Ogma tool. Figure 2.1 shows the step-by-step workflow of the complete framework - dashed
lines represent the newly added steps (2, 3, and 4). Once requirements are written in fretish,
fret helps users understand and refine their requirements through various explanations and
simulation (step 0). Next, fret automatically translates requirements (step 1) into pure
Past-time Metric Linear Temporal Logic (pmLTL) formulas. Next, information about the
variables referenced in the requirements must be provided by the user (step 2). The formulas,
as well as the provided variables’ data, are then combined to generate the Component
Specification (step 3). Based on this specification, Ogma creates a complete Copilot
monitor specification (step 4). Copilot then generates the C Monitor (step 5), which is
given along with other C code (step 6) to a C Compiler for the generation (step 7) of the
final object code.

Figure 2.1: Step-by-step workflow

Running Example. The next sections illustrate each workflow step using a flight-critical
system requirement: airplanes should always avoid stalling (a stall is a sudden loss of
lift, which may lead to a loss of control). To avoid stalls, they should fly above a certain
speed, known as stall speed (as well as stay below a critical angle of attack). Our running
requirement example is captured in natural language in Figure 2.2. For the purposes of this
example, we consider the airspeed threshold to be 100 m/s and the correction time to be 10
seconds.

3

NL: “While flying, if the airspeed is below 100 m/s, the autopilot shall increase the airspeed to

at least 100 m/s within 10 seconds.”

FRETish: in flight mode if airspeed < 100 the aircraft shall within 10 seconds

satisfy (airspeed >= 100)

pmLTL: H (Lin flight→(Y (((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight))

& (!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) S (((O[=10](((airspeed <

100) & ((Y (!(airspeed < 100))) | Fin flight)) & (!(airspeed ≥ 100)))) → (O[<10](Fin flight

| (airspeed ≥ 100)))) & Fin flight)))) & ((!Lin flight) S ((!Lin flight) & Fin flight)) →
(((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight)) & (!(airspeed ≥ 100))))

→ (O[<10](Fin flight | (airspeed ≥ 100)))) S (((O[=10](((airspeed < 100) & ((Y (!(airspeed <

100))) | Fin flight)) & (!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) &

Fin flight)),

where Fin flight (First timepoint in flight mode) is flight & (FTP | Y !flight), Lin flight (Last

timepoint in flight mode) is !flight & Y flight, FTP (First Time Point) is ! Y true.

Figure 2.2: Running example in Natural Language (NL), fretish, and pmLTL forms.

4

Chapter 3

FRET Steps

Next we discuss fret, the requirements tool that constitutes our frontend.

Step 0: fretish and semantic nuances. A fretish requirement (see running example
in Figure 2.2) contains up to six fields: scope, condition, component*, shall*, timing,
and response*. Fields marked with * are mandatory.

component specifies the component that the requirement refers to (e.g., aircraft). shall
expresses that the component’s behavior must conform to the requirement. response is of
the form satisfy R, where R is a Boolean condition (e.g., satisfy airspeed ≥ 100). scope

specifies the period when the requirement holds during the execution of the system, e.g.,
when “in flight mode”. condition is a Boolean expression that further constrains when
the response shall occur (e.g., the requirement becomes relevant only upon airspeed ≤ 100
becoming true). timing specifies when the response must occur (e.g., within 10 seconds).

Figure 3.1: fret explanations

Getting a temporal requirement
right is usually a tricky task since
such requirements are often riddled
with semantic subtleties. To help
the user, fret provides a simulator
and semantic explanations [5]. For
example, the diagram in Figure 3.1
explains that the requirement is
only relevant within the grayed box
M (while in flight mode). TC repre-
sents the triggering condition (air-
speed < 100) and the orange band,
with a duration of n=10 seconds,
states that the response (airspeed
>= 100) is required to hold at least once within the 10 seconds duration, assuming that
flight mode holds for at least 10 seconds.

Step 1: fretish to pmLTL. For each fretish requirement, fret generates formulas in a
variety of formalisms. For the Copilot integration, we use the generated pmLTL formulas
(Figure 2.2) Clearly, manually writing such formulas can be quite error-prone, while the
fret formalization process has been extensively tested through its formalization verifier [5].

5

Figure 3.2: fret variable editor

Steps 2 & 3: Variables data
and Component Specification.
We extended fret’s analysis por-
tal [26] to capture the informa-
tion needed to generate Component
Specifications for Ogma. To gen-
erate a specification, the user must
indicate the type (i.e., input, out-
put, internal) and data type (inte-
ger, Boolean, double, etc) of each
variable (Figure 3.2). Internal vari-
ables represent expressions of in-
put and output variables; if the
same expression is used in multiple
requirements, an internal variable
can be used to substitute it and simplify the requirements. The user must assign an ex-
pression to each internal variable. In our example, the flight internal variable is defined
by the expression altitude > 0.0, where altitude is an input variable. Internal variable
assignments can be defined in Lustre [27] or Copilot [7]. Integrated Lustre and Copilot
parsers identify parsing errors and return feedback (Figure 3.2). Note that fret asks users
for variables data only for the connection with analysis tools (e.g., Copilot). Other fret
functionalities such as requirement formalization do not require this information. Once
steps 1 and 2 are completed, fret generates a Component Specification, which contains all
requirements in pmLTL and Lustre code, as well as variable data that belong to the same
system component.

6

Chapter 4

Ogma Steps

Ogma is a command-line tool to produce monitoring applications. Ogma generates monitors
in Copilot, and also supports integrating them into larger systems, such as applications
built with NASA’s core Flight System (cFS) [28].

Step 4: Copilot Monitors. Ogma provides a command fret-component-spec to
process Component Specifications and generates a corresponding Copilot specification. For
example:

$ ogma fret-component-spec --fret-file-name reqs.json > Monitor.hs

The command traverses the Abstract Syntax Tree of the Component Specification, and
converts each tree node into its Copilot counterpart. Input and output variables in fret
become extern streams in Copilot, or time-varying sources of information needed by the
monitors:

airspeed :: Stream Double

airspeed = extern "airspeed" Nothing

flight :: Stream Bool

flight = extern "flight" Nothing

Internal variables are also mapped to streams. Each requirement’s pmLTL formula is
translated into a Boolean stream, paired with a C handler triggered when the requirement
is violated. In the example below, the property we monitor is associated with a handler,
handlerpropAvoidStall, which must be implemented separately in C by the user to
determine how to address property violations:

propAvoidStall :: Stream Bool

propAvoidStall = ((PTLTL.alwaysBeen ((((not (flight)) && ...)))))

spec :: Spec

spec = do

trigger "handlerpropAvoidStall" (not propAvoidStall) []

7

Chapter 5

Copilot Steps

Copilot is a stream-based runtime monitoring language. Copilot streams may contain
data of different types. At the top level, specifications consist of pairs of Boolean streams,
together with a C handler to be called when the current sample of a stream becomes true.
For a detailed introduction to Copilot, see [7].

Step 5: C Monitors. Ogma generates self-contained Copilot monitoring specifications,
which can be further compiled into C99 by just compiling and running the Copilot
specifications with a Haskell compiler. This process produces two files: a C header and a C
implementation.

Step 6: Larger Applications. The C files generated by Copilot are designed to be
integrated into larger applications. They provide three connections end-points: extern
variables, a step function, and handler functions, which users implement to handle property
violations. The code generated has no dynamic memory allocation, loops or recursive calls,
it executes in predictable memory and time. For our running example, the header file
generated by Copilot declares:

extern bool flight;

extern float airspeed;

void handlerpropAvoidStall(void);

void step(void);

Users are not expected to modify the files generated by Copilot, but simply use the
above interface to connect them to the system being monitored.

Commonly, the calling application will poll sensors, write their values to global variables
(in the example above, flight and airspeed), call the step function, and implement han-
dlers that log property violations or execute corrective actions (i.e., handlerpropAvoidStall).
Users are responsible for compiling and linking the Copilot code together with their appli-
cation (step 7).

We used the running requirement in this report to monitor a flight in the simulator
X-Plane. We wrote an X-Plane plugin to show the state of the C monitor and some additional
information on the screen (Fig. 5.1). To test the code, we brought an aircraft to a stall by
increasing the angle of attack, which also lowered the airspeed (Fig. 5.2). After 10 seconds
below the specified threshold, the monitor became active, remaining on after executing a
stall recovery (Fig. 5.3).

8

Figure 5.1: Demonstration of Copilot monitor running as X-Plane plugin: cruising.

Figure 5.2: Demonstration of Copilot monitor running as X-Plane plugin: stall.

9

Figure 5.3: Demonstration of Copilot monitor running as X-Plane plugin: recovery.

10

Chapter 6

Preliminary Results

We report on experiments with monitors generated from the publicly available Lockheed
Martin Cyber-Physical System (LMCPS) challenge problems [29, 30], which are a set of
industrial Simulink model benchmarks and natural language requirements developed by
domain experts. LMCPS requirements were previously written in fretish [31, 32] by a
subset of the authors and were analyzed against the provided models using model checking.

In this report, we reuse the fretish requirements to generate monitors and compare
our runtime verification results with the model checking results of [32]. We experimented
with the Finite State Machine (FSM) and the Control Loop Regulators (REG) LMCPS
challenges. We used fret to generate the Component Specifications for both LMCPS
challenges. We provide all fret-generated Component Specifications in the Appendix. For
each Simulink model we generated C code through the automatic code generation feature of
Matlab/Simulink. We then attached the generated C monitors to the C code and used the
property-based testing system QuickCheck [33] to generate random streams of data, feed
them to the system under observation, and report if any of the monitors were activated,
based on [34, 35, 36].

For both LMCPS challenges, our results are consistent with the model checking results
- QuickCheck was able to find input vectors that activated the monitors, indicating that
certain requirements are not satisfied. Additionally, we were able to return results within
seconds in cases where model checkers timed out. See [37] for a reproducible artifact.

Table 6.1 shows the model checking results of the Regulators (REG) LMCPS challenge
problem as reported in [32], where we used the Kind2 [38] SMT-based model checker. Column
four shows the analysis results from runtime monitoring the same requirements for 2000
inputs. As shown in Table 6.1, Kind2 was able to return a result for most requirements and
timed out for requirements REG-001, REG-002, REG-004, REG-005.

Through the approach presented in this report, we generated a monitor per requirement.
For runtime verification we used QuickCheck to generate input vectors - we tested the
C system code with 2000 different inputs. Our monitors were activated for requirements
REG-006, REG-007, REG-008, REG-009, and REG-010, a result consistent with the KIND
2 results. For requirements, REG-001 to REG-005 the corresponding monitors were not
activated for any of the 2000 inputs.

Similarly, Table 6.2 shows the model checking results of the Finite State Machine (FSM)
LMCPS challenge problem as reported in [32], where we used the Kind2 [38] SMT-based
model checker. Column four shows the analysis results from runtime monitoring the same
fretish requirements for 2000 inputs.

11

Table 6.1: Regulators analysis results with the Kind2 (abbr. by K) model checker and
runtime monitors. Timeout was set to 2 hours for the model checkers and the monitors were
tested for up to 2000 different inputs.

Requirement K Result K Time Monitors

[REG-001] Undecided Timeout Non-Activated

[REG-002] Undecided Timeout Non-Activated

[REG-003] Valid 10.046 sec Non-Activated

[REG-004] Undecided Timeout Non-Activated

[REG-005] Undecided Timeout Non-Activated

[REG-006] Invalid 5.998 sec Activated

[REG-007] Invalid 5.998 sec Activated

[REG-008] Invalid 5.998 sec Activated

[REG-009] Invalid 5.998 sec Activated

[REG-010] Invalid 5.998 sec Activated

Total running time CoCoSim: Timeout 2000 inputs

Table 6.2: FSM analysis results with the Kind2 (abbr. by K) model checker and runtime
monitors. Timeout was set to 2 hours for the model checkers and the monitors were tested
for 2000 different inputs.

Requirement K Result K Time Monitors

[FSM-001v1] Invalid 0.254 sec Activated

[FSM-001v2] Invalid 0.465 sec Activated

[FSM-001v3] true up to 28 steps timeout (2h) Non-Activated

[FSM-002] Valid 0.252 sec Non-Activated

[FSM-003] Invalid 0.191 sec Activated

[FSM-004] Invalid 0.191 sec Activated

[FSM-005] Valid 0.252 sec Non-Activated

[FSM-006] Valid 0.252 sec Non-Activated

[FSM-007] Invalid 0.135 sec Activated

[FSM-007v2] Valid 0.252 sec Non-Activated

[FSM-008v1] Invalid 0.165 sec Activated

[FSM-009] Valid 0.252 sec Non-Activated

[FSM-010] Valid 0.132 sec Non-Activated

[FSM-011v1] Invalid 0.110 sec Activated

[FSM-011v2] Valid 0.132 sec Non-Activated

[FSM-012] Valid 0.132 sec Non-Activated

[FSM-013] Valid 0.132 sec Non-Activated

Total running time CoCoSim: 141.09sec 2000 inputs

12

Chapter 7

Conclusion

We described an end-to-end framework in which requirements written in structured natural
language can be equivalently transformed into monitors and be analyzed against C code. Our
framework ensures that requirements and analysis activities are fully aligned: C monitors
are derived directly from requirements and not handcrafted. The design of our toolchain
facilitates extension with additional front-ends (e.g., JKind Lustre [39]), and backends (e.g.,
R2U2 [40]). In the future, we plan to explore more use cases, including some from real drone
test flights.

13

Bibliography

1. Knight, J. C.: Safety Critical Systems: Challenges and Directions. Proceedings of the
24th International Conference on Software Engineering , ICSE ’02, ACM, 2002, pp.
547–550.

2. Havelund, K.; and Goldberg, A.: Verify Your Runs, Springer Berlin Heidelberg, Berlin,
Heidelberg. 2008, pp. 374–383.

3. Goodloe, A.; and Pike, L.: Monitoring Distributed Real-Time Systems: A Survey and
Future Directions. NASA/CR-2010-216724, NASA Langley Research Center, July 2010.

4. Bartocci, E.; Falcone, Y.; Francalanza, A.; and Reger, G.: Introduction to Runtime
Verification. Lectures on Runtime Verification - Introductory and Advanced Topics,
Springer, vol. 10457 of Lecture Notes in Computer Science, 2018, pp. 1–33.

5. Giannakopoulou, D.; Pressburger, T.; Mavridou, A.; Rhein, J.; Schumann, J.; and Shi,
N.: Formal Requirements Elicitation with FRET. Joint Proceedings of REFSQ-2020
Workshops, Doctoral Symposium, Live Studies Track, and Poster Track co-located with
the 26th International Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2020), 2020.

6. Giannakopoulou, D.; Pressburger, T.; Mavridou, A.; and Schumann, J.: Automated
formalization of structured natural language requirements. Inf. Softw. Technol., vol. 137,
2021, p. 106590.

7. Perez, I.; Dedden, F.; and Goodloe, A.: Copilot 3. NASA/TM–2020–220587, NASA
Langley Research Center, April 2020.

8. Pike, L.; Wegmann, N.; Niller, S.; and Goodloe, A.: Copilot: Monitoring Embedded
Systems. Innov. Syst. Softw. Eng., vol. 9, no. 4, Dec. 2013, p. 235–255.

9. Pike, L.; Goodloe, A.; Morisset, R.; and Niller, S.: Copilot: A Hard Real-Time Runtime
Monitor. Proceedings of the 1st Intl. Conference on Runtime Verification, LNCS, Springer,
November 2010.

10. FRET: Formal Requirements Elicitation Tool. https://github.com/NASA-SW-VnV/
fret/. Accessed Oct 04, 2021.

11. Copilot. https://github.com/Copilot-Language/copilot/. Accessed Oct 04, 2021.

12. Ogma. https://github.com/nasa/ogma/. Accessed Oct 04, 2021.

14

https://github.com/NASA-SW-VnV/fret/
https://github.com/NASA-SW-VnV/fret/
https://github.com/Copilot-Language/copilot/
https://github.com/nasa/ogma/

13. Torfah, H.: Stream-Based Monitors for Real-Time Properties. Runtime Verification - 19th
International Conference, RV 2019, Porto, Portugal, October 8-11, 2019, Proceedings,
B. Finkbeiner and L. Mariani, eds., Springer, vol. 11757 of Lecture Notes in Computer
Science, 2019, pp. 91–110.

14. Faymonville, P.; Finkbeiner, B.; Schledjewski, M.; Schwenger, M.; Stenger, M.; Tentrup,
L.; and Torfah, H.: StreamLAB: Stream-based Monitoring of Cyber-Physical Systems.
Computer Aided Verification, I. Dillig and S. Tasiran, eds., Springer International
Publishing, Cham, 2019, pp. 421–431.

15. Baumeister, J.; Finkbeiner, B.; Schirmer, S.; Schwenger, M.; and Torens, C.: RTLola
Cleared for Take-Off: Monitoring Autonomous Aircraft. Computer Aided Verification,
S. K. Lahiri and C. Wang, eds., Springer International Publishing, Cham, 2020, pp.
28–39.

16. Biewer, S.; Finkbeiner, B.; Hermanns, H.; Köhl, M. A.; Schnitzer, Y.; and Schwenger, M.:
RTLola on Board: Testing Real Driving Emissions on your Phone. Tools and Algorithms
for the Construction and Analysis of Systems, J. F. Groote and K. G. Larsen, eds.,
Springer International Publishing, Cham, 2021, pp. 365–372.

17. Reinbacher, T.; Rozier, K. Y.; and Schumann, J.: Temporal-Logic Based Runtime
Observer Pairs for System Health Management of Real-Time Systems. Tools and Algo-
rithms for the Construction and Analysis of Systems, E. Ábrahám and K. Havelund,
eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 357–372.

18. Moosbrugger, P.; Rozier, K. Y.; and Schumann, J.: R2U2: monitoring and diagnosis
of security threats for unmanned aerial systems. Formal Methods in System Design,
vol. 51, no. 1, 2017, pp. 31–61.

19. Lúcio, L.; Rahman, S.; Cheng, C.-H.; and Mavin, A.: Just Formal Enough? Automated
Analysis of EARS Requirements. NASA Formal Methods - 9th International Symposium,
NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, May 2017, pp.
427–434.

20. Fifarek, A.; Wagner, L. G.; Hoffman, J. A.; Rodes, B. D.; Aiello, M. A.; and Davis,
J. A.: SpeAR v2.0: Formalized Past LTL Specification and Analysis of Requirements.
NASA Formal Methods - 9th International Symposium, NFM 2017, Moffett Field, CA,
USA, May 16-18, 2017, Proceedings, 2017, pp. 420–426.

21. Ghosh, S.; Elenius, D.; Li, W.; Lincoln, P.; Shankar, N.; and Steiner, W.: ARSENAL:
Automatic Requirements Specification Extraction from Natural Language. NASA Formal
Methods - 8th International Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9,
2016, Proceedings, S. Rayadurgam and O. Tkachuk, eds., Springer, vol. 9690 of Lecture
Notes in Computer Science, 2016, pp. 41–46.

22. Lignos, C.; Raman, V.; Finucane, C.; Marcus, M.; and Kress-Gazit, H.: Provably
Correct Reactive Control from Natural Language. Auton. Robots, vol. 38, no. 1, jan
2015, p. 89–105.

23. Boteanu, A.; Howard, T.; Arkin, J.; and Kress-Gazit, H.: A model for verifiable grounding
and execution of complex natural language instructions. 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2649–2654.

15

24. Jeannet, B.; and Gaucher, F.: Debugging Embedded Systems Requirements with
STIMULUS: an Automotive Case-Study. 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), Toulouse, France, Jan. 2016.

25. Cohen, D.; Feather, M. S.; Narayanaswamy, K.; and Fickas, S. S.: Automatic monitoring
of software requirements. Proceedings of the 19th International Conference on Software
Engineering , 1997, pp. 602–603.

26. FRET: Formal Requirements Elicitation Tool - User Manual. https://github.com/
NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/userManual.md. See
Section “Exporting for Analysis”. Accessed Oct 04, 2021.

27. Halbwachs, N.; Caspi, P.; Raymond, P.; and Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE , vol. 79, no. 9, 1991, pp. 1305–
1320.

28. Wilmot, J.: A Core Flight Software System. Proceedings of the 3rd IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’05, ACM, New York, NY, USA, 2005, pp. 13–14.

29. Elliott, C.: On Example Models and Challenges Ahead for the Evaluation of Complex
Cyber-Physical Systems with State of the Art Formal Methods V&V, Lockheed Martin
Skunk Works. Safe & Secure Systems and Software Symposium (S5), A. F. R. Laboratory,
ed., 2015.

30. Elliott, C.: An Example Set of Cyber-Physical V&V Challenges for S5, Lockheed Martin
Skunk Works. Safe & Secure Systems and Software Symposium (S5), A. F. R. Laboratory,
ed., 2016.

31. Mavridou, A.; Bourbouh, H.; Giannakopoulou, D.; Pressburger, T.; Hejase, M.; Garoche,
P.-L.; and Schumann, J.: The Ten Lockheed Martin Cyber-Physical Challenges: Formal-
ized, Analyzed, and Explained. 2020 IEEE 28th International Requirements Engineering
Conference (RE), 2020, pp. 300–310.

32. Mavridou, A.; Bourbouh, H.; Garoche, P. L.; and Hejase, M.: Evaluation of the FRET
and CoCoSim tools on the Ten Lockheed Martin Cyber-Physical Challenge Problems.
TM-2019-220374, National Aeronautics and Space Administration, February 2020.

33. Claessen, K.; and Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM Sigplan Notices, vol. 46, no. 4, 2011, pp. 53–64.

34. Perez, I.; Goodloe, A.; and Edmonson, W.: Fault-tolerant swarms. 2019 IEEE Interna-
tional Conference on Space Mission Challenges for Information Technology (SMC-IT),
IEEE, 2019, pp. 47–54.

35. Perez, I.; and Goodloe, A. E.: Fault-tolerant functional reactive programming (extended
version). Journal of Functional Programming , vol. 30, 2020.

36. Perez, I.; and Nilsson, H.: Runtime verification and validation of functional reactive
systems. Journal of Functional Programming , vol. 30, 2020, p. e28.

16

https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/userManual.md
https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/userManual.md

37. Perez, I.; Mavridou, A.; Pressburger, T.; Goodloe, A.; and Giannakopoulou, D.: Artifact
for Automated Translation of Natural Language Requirements to Runtime Monitors.
https://doi.org/10.5281/zenodo.5888956.

38. Champion, A.; Mebsout, A.; Sticksel, C.; and Tinelli, C.: The Kind 2 model checker.
International Conference on Computer Aided Verification, Springer, 2016, pp. 510–517.

39. Gacek, A.; Backes, J.; Whalen, M.; Wagner, L.; and Ghassabani, E.: The JK ind model
checker. International Conference on Computer Aided Verification, Springer, 2018, pp.
20–27.

40. Schumann, J.; Moosbrugger, P.; and Rozier, K. Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. Runtime Verification, Springer, 2015, pp.
233–249.

17

https://doi.org/10.5281/zenodo.5888956

Appendix

7.1 FSM Specification

1 {
2 "FSMSpec": {
3 "Internal_variables": [

4 {
5 "name": "autopilot",

6 "type": "bool",

7 "assignmentLustre": "(! standby) & supported & (! apfail)",

8 "assignmentCopilot": ""

9 },
10 {
11 "name": "htlore3_autopilot",

12 "type": "bool",

13 "assignmentLustre": "HT(3,0,autopilot)",

14 "assignmentCopilot": ""

15 },
16 {
17 "name": "htlore3_notpreprelimits",

18 "type": "bool",

19 "assignmentLustre": "HT(3,0,(false -> pre (false -> not pre_limits)))",

20 "assignmentCopilot": ""

21 },
22 {
23 "name": "pre_autopilot",

24 "type": "bool",

25 "assignmentLustre": "false -> pre autopilot",

26 "assignmentCopilot": ""

27 },
28 {
29 "name": "pre_limits",

30 "type": "bool",

31 "assignmentLustre": "false -> pre limits ;",

32 "assignmentCopilot": ""

33 }
34],

35 "Other_variables": [

36 {
37 "name": "apfail",

38 "type": "bool"

39 },
40 {
41 "name": "limits",

42 "type": "bool"

43 },
44 {
45 "name": "standby",

46 "type": "bool"

47 },
48 {
49 "name": "supported",

50 "type": "bool"

51 },

18

52 {
53 "name": "pullup",

54 "type": "bool"

55 }
56],

57 "Functions": [],

58 "Requirements": [

59 {
60 "name": "FSM -001v1",

61 "ptLTL": "(H ((limits & (! standby) & (! apfail) & supported) -> pullup))",

62 "CoCoSpecCode": "(H(((limits and not standby and not apfail and supported) =>

pullup)))",

63 "fretish": "FSM shall always satisfy (limits & !standby & !apfail &

supported) => pullup"

64 },
65 {
66 "name": "FSM -001v2",

67 "ptLTL": "(H (((autopilot & pre_autopilot & pre_limits) & ((Y (! (autopilot &

pre_autopilot & pre_limits))) | (! (Y TRUE)))) -> (pullup)))",

68 "CoCoSpecCode": "(H((((autopilot and pre_autopilot and pre_limits) and (false

-> pre (not (autopilot and pre_autopilot and pre_limits)))) or ((

autopilot and pre_autopilot and pre_limits) and FTP)) => (pullup)))",

69 "fretish": "if autopilot & pre_autopilot & pre_limits FSM shall immediately

satisfy pullup"

70 },
71 {
72 "name": "FSM -001v3",

73 "ptLTL": "(H (((htlore3_autopilot & htlore3_notpreprelimits & pre_limits) &

((Y (! (htlore3_autopilot & htlore3_notpreprelimits & pre_limits))) | (!

(Y TRUE)))) -> (pullup)))",

74 "CoCoSpecCode": "(H(((htlore3_autopilot and htlore3_notpreprelimits and

pre_limits) and ((pre (not (htlore3_autopilot and htlore3

_notpreprelimits and pre_limits))) or FTP)) => (pullup)))",

75 "fretish": "if htlore3_autopilot & htlore3_notpreprelimits & pre_limits

FSM shall immediately satisfy pullup"

76 }
77]

78 }
79 }

7.2 FSM Manager Specification

1 {
2 "FSM_AutopilotSpec": {
3 "Internal_variables": [

4 {
5 "name": "ap_maneuver_state",

6 "type": "real",

7 "assignmentLustre": "2.0;",

8 "assignmentCopilot": ""

9 },
10 {
11 "name": "ap_nominal_state",

12 "type": "real",

13 "assignmentLustre": "1.0;",

14 "assignmentCopilot": ""

15 },
16 {
17 "name": "ap_standby_state",

18 "type": "real",

19 "assignmentLustre": "3.0;",

20 "assignmentCopilot": ""

21 },
22 {
23 "name": "ap_transition_state",

19

24 "type": "real",

25 "assignmentLustre": "0.0;",

26 "assignmentCopilot": ""

27 }
28],

29 "Other_variables": [

30 {
31 "name": "apfail",

32 "type": "bool"

33 },
34 {
35 "name": "good",

36 "type": "bool"

37 },
38 {
39 "name": "standby",

40 "type": "bool"

41 },
42 {
43 "name": "state",

44 "type": "real"

45 },
46 {
47 "name": "supported",

48 "type": "bool"

49 },
50 {
51 "name": "STATE",

52 "type": "int"

53 }
54],

55 "Functions": [],

56 "Requirements": [

57 {
58 "name": "FSM -002",

59 "ptLTL": "(H ((standby & state = ap_transition_state) -> STATE =

ap_standby_state))",

60 "CoCoSpecCode": "(H(((standby and state = ap_transition_state) => STATE =

ap_standby_state)))",

61 "fretish": "FSM_Autopilot shall always satisfy (standby & state =

ap_transition_state) => STATE = ap_standby_state"

62 },
63 {
64 "name": "FSM -005",

65 "ptLTL": "(H ((state = ap_nominal_state & standby) -> STATE =

ap_standby_state))",

66 "CoCoSpecCode": "(H(((state = ap_nominal_state and standby) => STATE =

ap_standby_state)))",

67 "fretish": "FSM_Autopilot shall always satisfy (state=ap_nominal_state &

standby) => STATE = ap_standby_state"

68 },
69 {
70 "name": "FSM -003",

71 "ptLTL": "(H ((state = ap_transition_state & good & supported) -> STATE =

ap_nominal_state))",

72 "CoCoSpecCode": "(H(((state = ap_transition_state and good and supported)

=> STATE = ap_nominal_state)))",

73 "fretish": "FSM_Autopilot shall always satisfy (state = ap_transition_state &

good & supported) => STATE = ap_nominal_state"

74 },
75 {
76 "name": "FSM -008v1",

77 "ptLTL": "(H ((state = ap_standby_state & ! standby) -> STATE =

ap_transition_state))",

78 "CoCoSpecCode": "(H(((state = ap_standby_state and not standby) => STATE =

ap_transition_state)))",

79 "fretish": " FSM_Autopilot shall always satisfy (state = ap_standby_state & !

standby) => STATE = ap_transition_state"

20

80 },
81 {
82 "name": "FSM -009",

83 "ptLTL": "(H ((state = ap_standby_state & apfail) -> STATE =

ap_maneuver_state))",

84 "CoCoSpecCode": "(H(((state = ap_standby_state and apfail) => STATE =

ap_maneuver_state)))",

85 "fretish": "FSM_Autopilot shall always satisfy (state = ap_standby_state &

apfail)=> STATE = ap_maneuver_state"

86 },
87 {
88 "name": "FSM -004v2",

89 "ptLTL": "(H ((state = ap_nominal_state & ! good & ! standby) -> STATE =

ap_maneuver_state))",

90 "CoCoSpecCode": "(H(((state = ap_nominal_state and not good and not standby

) => STATE = ap_maneuver_state)))",

91 "fretish": "FSM_Autopilot shall always satisfy (state = ap_nominal_state & !

good & ! standby) => STATE = ap_maneuver_state"

92 },
93 {
94 "name": "FSM -008v2",

95 "ptLTL": "(H ((state = ap_standby_state & ! standby & ! apfail) -> STATE =

ap_transition_state))",

96 "CoCoSpecCode": "(H(((state = ap_standby_state and not standby and not

apfail) => STATE = ap_transition_state)))",

97 "fretish": "FSM_Autopilot shall always satisfy (state = ap_standby_state & !

standby & ! apfail) => STATE = ap_transition_state"

98 },
99 {

100 "name": "FSM -007",

101 "ptLTL": "(H ((state = ap_maneuver_state & supported & good) -> STATE =

ap_transition_state))",

102 "CoCoSpecCode": "(H(((state = ap_maneuver_state and supported and good) =>

STATE = ap_transition_state)))",

103 "fretish": "FSM_Autopilot shall always satisfy (state = ap_maneuver_state &

supported & good) => STATE = ap_transition_state"

104 },
105 {
106 "name": "FSM -004",

107 "ptLTL": "(H ((! good & state = ap_nominal_state) -> STATE =

ap_maneuver_state))",

108 "CoCoSpecCode": "(H(((not good and state = ap_nominal_state) => STATE =

ap_maneuver_state)))",

109 "fretish": "FSM_Autopilot shall always satisfy (! good & state =

ap_nominal_state) => STATE = ap_maneuver_state"

110 },
111 {
112 "name": "FSM -007v2",

113 "ptLTL": "(H ((state = ap_maneuver_state & supported & good & ! standby) ->

STATE = ap_transition_state))",

114 "CoCoSpecCode": "(H(((state = ap_maneuver_state and supported and good and

not standby) => STATE = ap_transition_state)))",

115 "fretish": "FSM_Autopilot shall always satisfy (state = ap_maneuver_state &

supported & good & ! standby) => STATE = ap_transition_state"

116 },
117 {
118 "name": "FSM -006",

119 "ptLTL": "(H ((state = ap_maneuver_state & standby & good) -> STATE =

ap_standby_state))",

120 "CoCoSpecCode": "(H(((state = ap_maneuver_state and standby and good) =>

STATE = ap_standby_state)))",

121 "fretish": "FSM_Autopilot shall always satisfy (state = ap_maneuver_state &

standby & good) => STATE = ap_standby_state"

122 }
123]

124 }
125 }

21

7.3 FSM Sensor pecification

1
2 {
3 "FSM_SensorSpec": {
4 "Internal_variables": [

5 {
6 "name": "sen_fault_state",

7 "type": "real",

8 "assignmentLustre": "2.0",

9 "assignmentCopilot": ""

10 },
11 {
12 "name": "sen_nominal_state",

13 "type": "real",

14 "assignmentLustre": "0.0",

15 "assignmentCopilot": ""

16 },
17 {
18 "name": "sen_transition_state",

19 "type": "real",

20 "assignmentLustre": "1.0",

21 "assignmentCopilot": ""

22 }
23],

24 "Other_variables": [

25 {
26 "name": "limits",

27 "type": "bool"

28 },
29 {
30 "name": "request",

31 "type": "bool"

32 },
33 {
34 "name": "senstate",

35 "type": "real"

36 },
37 {
38 "name": "MODE",

39 "type": "bool"

40 },
41 {
42 "name": "SENSTATE",

43 "type": "real"

44 }
45],

46 "Functions": [],

47 "Requirements": [

48 {
49 "name": "FSM -010",

50 "ptLTL": "(H (((senstate = sen_nominal_state) & limits) -> SENSTATE =

sen_fault_state))",

51 "CoCoSpecCode": "(H((((senstate = sen_nominal_state) and limits) =>

SENSTATE = sen_fault_state)))",

52 "fretish": "FSM_Sensor shall always satisfy (senstate = sen_nominal_state &

limits) => SENSTATE = sen_fault_state"

53 },
54 {
55 "name": "FSM -011v1",

56 "ptLTL": "(H (((senstate = sen_nominal_state) & (! request)) -> SENSTATE =

sen_transition_state))",

57 "CoCoSpecCode": "(H((((senstate = sen_nominal_state) and not request) =>

SENSTATE = sen_transition_state)))",

58 "fretish": "FSM_Sensor shall always satisfy (senstate = sen_nominal_state &

(! request)) => SENSTATE = sen_transition_state"

59 },

22

60 {
61 "name": "FSM -011v2",

62 "ptLTL": "(H (((senstate = sen_nominal_state) & (! request) & (! limits))

-> SENSTATE = sen_transition_state))",

63 "CoCoSpecCode": "(H((((senstate = sen_nominal_state) and not request and

not limits) => SENSTATE = sen_transition_state)))",

64 "fretish": "FSM_Sensor shall always satisfy (senstate = sen_nominal_state &

(! request) & (! limits)) => SENSTATE = sen_transition_state"

65 },
66 {
67 "name": "FSM -012",

68 "ptLTL": "(H (((senstate = sen_fault_state) & (! request) & (! limits))

-> SENSTATE = sen_transition_state))",

69 "CoCoSpecCode": "(H((((senstate = sen_fault_state) and not request and not

limits) => SENSTATE = sen_transition_state)))",

70 "fretish": "FSM_Sensor shall always satisfy (senstate = sen_fault_state &

(! request) & (! limits)) => SENSTATE = sen_transition_state"

71 },
72 {
73 "name": "FSM -013",

74 "ptLTL": "(H (((senstate = sen_transition_state) & request & MODE) ->

SENSTATE = sen_nominal_state))",

75 "CoCoSpecCode": "(H((((senstate = sen_transition_state) and request and

MODE) => SENSTATE = sen_nominal_state)))",

76 "fretish": "FSM_Sensor shall always satisfy (senstate = sen_transition_state

& request & MODE) => SENSTATE = sen_nominal_state"

77 }
78]

79 }
80 }
81 i

7.4 Regulators Specification

1
2 {
3 "RegulatorSpec":

4 {
5
6 "Internal_variables":

7 [

8 {
9 "name": "count_roll_output_exceeding_50",

10 "type": "int",

11 "assignmentLustre": "0",

12 "assignmentCopilot": "0"

13 },
14 {
15 "name": "count_pitch_output_exceeding_50",

16 "type": "int",

17 "assignmentLustre": "0 -> if (mcvdt_cmd_fcs_dps2 > 50.0) then pre

count_pitch_output_exceeding_50 + 1 else 0",

18 "assignmentCopilot": "mux (mcvdt_cmd_fcs_dps2 > 50.0) (([0] ++

count_pitch_output_exceeding_50) + 1) 0"

19 },
20 {
21 "name": "count_yaw_output_exceeding_50",

22 "type": "int",

23 "assignmentLustre": "0 -> if (ncvdt_cmd_fcs_dps2 > 50.0) then pre

count_yaw_output_exceeding_50 + 1 else 0",

24 "assignmentCopilot": "mux (ncvdt_cmd_fcs_dps2 > 50.0) (([0] ++

count_yaw_output_exceeding_50) + 1) 0"

25 },
26 {
27 "name": "count_airspeed_output_exceeding_32",

23

28 "type": "int",

29 "assignmentLustre": "0 -> if (xcvdt_cmd_fcs_fps2 > 32.0) then pre

count_airspeed_output_exceeding_32 + 1 else 0",

30 "assignmentCopilot": "mux (xcvdt_cmd_fcs_fps2 > 50.0) (([0] ++

count_airspeed_output_exceeding_32) + 1) 0"

31 },
32 {
33 "name": "count_height_output_exceeding_32",

34 "type": "int",

35 "assignmentLustre": "0 -> if (hcvdt_cmd_fcs_fps2 > 32.0) then pre

count_height_output_exceeding_32 + 1 else 0",

36 "assignmentCopilot": "mux (hcvdt_cmd_fcs_fps2 > 50.0) (([0] ++

count_height_output_exceeding_32) + 1) 0"

37 },
38 {
39 "name": "roll_command_acceleration",

40 "type": "real",

41 "assignmentLustre": "0.0 -> (lcvdt_cmd_fcs_dps2 - pre lcvdt_cmd_fcs_dps2) * 1

00.0",

42 "assignmentCopilot": "mux ftp (constant 0) ((lcvdt_cmd_fcs_dps2 - ([0] ++

lcvdt_cmd_fcs_dps2)) * 100.0)"

43 },
44 {
45 "name": "pitch_command_acceleration",

46 "type": "real",

47 "assignmentLustre": "0.0 -> (mcvdt_cmd_fcs_dps2 - pre mcvdt_cmd_fcs_dps2) * 1

00.0",

48 "assignmentCopilot": "mux ftp (constant 0) ((mcvdt_cmd_fcs_dps2 - ([0] ++

mcvdt_cmd_fcs_dps2)) * 100.0)"

49 },
50 {
51 "name": "yaw_command_acceleration",

52 "type": "real",

53 "assignmentLustre": "0.0 -> (ncvdt_cmd_fcs_dps2 - pre ncvdt_cmd_fcs_dps2) * 10

0.0",

54 "assignmentCopilot": "mux ftp (constant 0) ((ncvdt_cmd_fcs_dps2 - ([0] ++

ncvdt_cmd_fcs_dps2)) * 100.0)"

55 },
56 {
57 "name": "airspeed_command_acceleration",

58 "type": "real",

59 "assignmentLustre": "0.0 -> (xcvdt_cmd_fcs_fps2 - pre xcvdt_cmd_fcs_fps2)

* 100.0",

60 "assignmentCopilot": "mux ftp (constant 0) ((xcvdt_cmd_fcs_fps2 - ([0] ++

xcvdt_cmd_fcs_fps2)) * 100.0)"

61 },
62 {
63 "name": "height_command_acceleration",

64 "type": "real",

65 "assignmentLustre": "0.0 -> (hcvdt_cmd_fcs_fps2 - pre hcvdt_cmd_fcs_fps2) * 1

00.0",

66 "assignmentCopilot": "mux ftp (constant 0) ((hcvdt_cmd_fcs_fps2 - ([0] ++

hcvdt_cmd_fcs_fps2)) * 100.0)"

67 }
68],

69
70 "Other_variables":

71 [

72 {"name":"lcvdt_cmd_fcs_dps2", "type":"real"},
73 {"name":"hcvdt_cmd_fcs_fps2", "type":"real"},
74 {"name":"xcvdt_cmd_fcs_fps2", "type":"real"},
75 {"name":"ncvdt_cmd_fcs_dps2", "type":"real"},
76 {"name":"mcvdt_cmd_fcs_dps2", "type":"real"}
77],

78
79 "Functions":

80 [

81

24

82],

83
84 "Requirements":

85 [

86
87
88 { "name": "REG -004", "ptLTL": "(H (count_airspeed_output_exceeding_32 <= 100))", "

CoCoSpecCode": "(H((count_airspeed_output_exceeding_32 <= 100)))", "fretish": "

Regulator shall always satisfy count_airspeed_output_exceeding_32 <= 100"},
89
90
91
92 { "name": "REG -001", "ptLTL": "(H (count_roll_output_exceeding_50 <= 100))", "

CoCoSpecCode": "(H((count_roll_output_exceeding_50 <= 100)))", "fretish": "

Regulator shall always satisfy count_roll_output_exceeding_50 <= 100"},
93
94
95
96 { "name": "REG -006", "ptLTL": "(H (roll_command_acceleration <= 50))", "CoCoSpecCode"

: "(H((roll_command_acceleration <= 50.0)))", "fretish": "Regulator shall always

satisfy roll_command_acceleration <= 50.0"},
97
98
99

100 { "name": "REG -005", "ptLTL": "(H (count_height_output_exceeding_32 <= 100))", "

CoCoSpecCode": "(H((count_height_output_exceeding_32 <= 100)))", "fretish": "

Regulator shall always satisfy count_height_output_exceeding_32 <= 100"},
101
102
103
104 { "name": "REG -007", "ptLTL": "(H (pitch_command_acceleration <= 50))", "CoCoSpecCode

": "(H((pitch_command_acceleration <= 50.0)))", "fretish": "Regulator shall

always satisfy pitch_command_acceleration <= 50.0"},
105
106
107
108 { "name": "REG -008", "ptLTL": "(H (yaw_command_acceleration <= 50))", "CoCoSpecCode":

"(H((yaw_command_acceleration <= 50.0)))", "fretish": "Regulator shall always

satisfy yaw_command_acceleration <= 50.0"},
109
110
111
112 { "name": "REG -009", "ptLTL": "(H (airspeed_command_acceleration <= 32))", "

CoCoSpecCode": "(H((airspeed_command_acceleration <= 32.0)))", "fretish": "

Regulator shall always satisfy airspeed_command_acceleration <= 32.0"},
113
114
115
116 { "name": "REG -010", "ptLTL": "(H (height_command_acceleration <= 32))", "

CoCoSpecCode": "(H((height_command_acceleration <= 32.0)))", "fretish": "

Regulator shall always satisfy height_command_acceleration <= 32.0"},
117
118
119
120 { "name": "REG -002", "ptLTL": "(H (count_pitch_output_exceeding_50 <= 100))", "

CoCoSpecCode": "(H((count_pitch_output_exceeding_50 <= 100)))", "fretish": "

Regulator shall always satisfy count_pitch_output_exceeding_50 <= 100 "},
121
122
123
124 { "name": "REG -003", "ptLTL": "(H (count_yaw_output_exceeding_50 <= 100))", "

CoCoSpecCode": "(H((count_yaw_output_exceeding_50 <= 100)))", "fretish": "

Regulator shall always satisfy count_yaw_output_exceeding_50 <= 100"}
125
126
127]

128 }
129 }

25

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-01-2022

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Integrating FRET with Copilot: Automated Translation of Natural
Language Requirements to Runtime Monitors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe, Dimitra
Giannakopoulou

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Ames Research Center, Moffett Field, CA 94035
8. PERFORMING ORGANIZATION

REPORT NUMBER

L–

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2022–20220000049

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 59
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

Runtime verification (RV) enables monitoring systems at runtime, to detect property violations early and limit their potential
consequences. To provide the level of assurance required for ultra-critical systems, monitor specifications must faithfully reflect
the original mission requirements, which are often written in ambiguous natural language. This report presents an end-to-end
framework to capture requirements in structured natural language and generate monitors that capture their semantics faithfully.
We leverage NASA’s Formal Requirement Elicitation Tool (FRET), and the RV system COPILOT. We extend FRET with
mechanisms to capture additional information needed to generate monitors, and introduce OGMA, a new tool to bridge the gap
between FRET and COPILOT. With this framework, users can write requirements in an intuitive format and obtain real-time C
monitors suitable for use in embedded systems. Our toolchain is available as open source.

15. SUBJECT TERMS

realizability checking, FRET, requirement analysis, compositional

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

STI Information Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

	Introduction
	Step-by-step Framework Workflow
	FRET Steps
	Ogma Steps
	Copilot Steps
	Preliminary Results
	Conclusion
	FSM Specification
	FSM Manager Specification
	FSM Sensor pecification
	Regulators Specification

