

Thermochemical Degradation of HfSiO₄ by Molten CMAS

Jamesa L. Stokes¹, Narottam P. Bansal¹, Valerie L. Wiesner² ¹NASA Glenn Research Center ²NASA Langley Research Center

> Acknowledgments NASA Transformational Tools and Technologies Program

46'

• CMC turbine engine components offer high temperature stability, but recess in high temperature water vapor environments

46'

- Si metal
 - Melting temperature ~1414°C
- HfO₂-Si Composite Bondcoats
 - Higher temperature capability
 - Similar oxidation rate to Si at low HfO₂ content
 - Higher oxidation rate with high HfO_2 content

R. Anton et al., Acta Materialia 183 (2020)

- Si metal
 - Melting temperature ~1414°C
- HfO₂-Si Composite Bondcoats
 - Higher temperature capability
 - Similar oxidation rate to Si at low HfO_2 content
 - Higher oxidation rate with high HfO₂ content
- Hafnon, HfSiO₄
 - Reaction product of SiO₂ TGO and HfO₂
 - Similar CTE to Si-based CMCs

46TH INTERNATIONAL CONFERENCE AND EXPOSITION ON ADVANCED CERAMICS

Introduction – Experimental Procedure – Results and Discussion – Summary

• HfO₂

• SiO₂

APS YSZ

Aygun et al., *Acta Materialia* **55** (2007) **EB-PVD YSZ**

→ m-ZrO₂ + YO_{1.5} leaching into glass Krämer et al., *Journal of the American Ceramic* Society 89 (2006) $4RE_2Si_2O_7+2CaO \rightarrow Ca_2RE_8(SiO_4)O_2+2SiO_2$

Poerschke et al., Acta Materialia 145 (2018)

- HfO₂ anisotropic CTE, higher CTCE than EBC materials
- Excess SiO₂ results in greater consumption of the coating materials needed to achieve melt saturation

- Hot pressed HfSiO₄
- AFRL-02 CMAS, \sim 35 mg/cm² in drilled wells
 - 34 wt.% quartz (SiO₂), 30 wt.% gypsum (CaSO₄·2H₂O), 17 wt.% aplite (SiO₂ + KAlSi₃O₈), 14 wt.% dolomite (CaMg(CO₃)₂), 5 wt.% salt (NaCl)
 - $21.85CaO-6.27MgO-6.08AlO_{1.5}-61.25SiO_2-4.02Na_2O-0.49K_2O-0.04FeO_{1.5}$ (mol.%)
- Samples heat treated at 1200°C, 1300°C, 1400°C, and 1500°C for 1, 10 and 50 hours
- Reaction products and infiltration depth measured using SEM/EDS

Results – CMAS Infiltration

Introduction – Experimental Procedure – Results and Discussion – Summary

JANUARY 23 – 28, 2022 | Hilton Daytona Beach Resort and Ocean Center | Daytona Beach, Florida, USA | ceramics.org/icacc2022

46TH INTERNATIONAL CONFERENCE AND EXPOSITION ON

ADVANCED CERAI

AND COMPOSI

Results – CMAS Infiltration

Introduction – Experimental Procedure – Results and Discussion – Summary

JANUARY 23 – 28, 2022 | Hilton Daytona Beach Resort and Ocean Center | Daytona Beach, Florida, USA | ceramics.org/icacc20

46TH INTERNATIONAL CONFERENCE AND EXPOSITION ON ADVANCED CERAMICS

AND COMPOSITES

Results – CMAS Infiltration

Introduction – Experimental Procedure – Results and Discussion – Summary

JANUARY 23 – 28, 2022 | Hilton Daytona Beach Resort and Ocean Center | Daytona Beach, Florida, USA | ceramics.org/icacc20.

46TH INTERNATIONAL CONFERENCE AND EXPOSITION ON ADVANCED CERAMICS

AND COMPOSITES

9

46[™] INTERNATIONAL COM

- Discontinuous interaction layer former at 1200°C increased in thickness with time
- Clusters of HfSiO₄ remain in interaction region

Introduction – Experimental Procedure – Results and Discussion – Summary

- Discontinuous interaction layer former at 1200°C increased in thickness with time
- Clusters of HfSiO₄ remain in interaction region

Introduction – Experimental Procedure – Results and Discussion – Summary

JANUARY 23 – 28, 2022 | Hilton Daytona Beach Resort and Ocean Center | Daytona Beach, Florida, USA | ceramics.org/icacc2022

46[™] INTERNATIONAL CONFERENCE AND EXPO

46'

- Discontinuous interaction layer former at 1200°C increased in thickness with time
- Clusters of HfSiO₄ remain in interaction region

Introduction – Experimental Procedure – Results and Discussion – Summary

46"

• Cyclosilicate phase was observed at longer times at 1300°C but not after 1 hour

Introduction – Experimental Procedure – Results and Discussion – Summary

 Thermodynamic assessment of CaO-ZrO₂-SiO₂ system at 1300°C

Kwon et al., *Journal of the European Ceramic Society* **37** (2017)

Gibbs Free Energy Reaction

• CMAS Interaction with HfO₂

Holgate et al., Journal of the European Ceramic Society 41 (2021)

Introduction – Experimental Procedure – Results and Discussion – Summary

46TH INTERNATIONAL CONFERENCE AND EXPOSITION (

 Thermodynamic assessment of CaO-ZrO₂-SiO₂ system at 1300°C

Kwon et al., *Journal of the European Ceramic Society* **37** (2017)

Gibbs Free Energy Reaction

Holgate et al., *Journal of the European Ceramic Society* **41** (2021)

Introduction – Experimental Procedure – Results and Discussion – Summary

46[™] INTERNATIONAL CONFERENCE AND EXPOSITION

46[™] INTERNATION

• EDS maps of CaO distribution at 1300°C

Introduction – Experimental Procedure – Results and Discussion – Summary

46[™] INTERNATION

Introduction – Experimental Procedure – Results and Discussion – Summary

JANUARY 23 – 28, 2022 | Hilton Daytona Beach Resort and Ocean Center | Daytona Beach, Florida, USA | ceramics.org/icacc2022

17

- Hot pressed HfSiO₄ was reacted with CMAS at 1200°C, 1300°C, 1400°C, and 1500°C.
- At temperatures above 1200C, CMAS rapidly infiltrates HfSiO₄ through grain boundaries
- A slow growing cyclosilicate (Ca₂HfSi₄O₁₂) phase crystallizes at 1200°C and 1300°C, but was not beneficial in halting CMAS ingress

Stokes, J.L., Bansal, N.P., Wiesner, V.L., "Thermochemical Degradation of $HfSiO_4$ by Molten CMAS", Accepted, Ceramics International (2022)

Introduction – Experimental Procedure – Results and Discussion – Summary

Thank You!

