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Porous Material Analysis Toolbox @’
based on OpenFOAM (PATO)

OpenFOAM PATO: material response

PATOx exectuable Pyrolysis

libPATOx library Pure conduction

Equilibrium chemistry 1D/2D/3D mapping

Finite-rate chemistry Multi-material

Volume Ablation Fluid coupling

Written in C++

Utilizes finite volume solvers from OpenFOAM
Mutation++ used in computing chemistry
Open source release: https://www.pato.ac/

Main Developer: Jeremie B. E. Meurisse
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https://www.pato.ac/
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Full Heatshield Material Response e
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Simulatién of Arc Jet Tests
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Surface Modeling of
Silicone Based
Coatings (NusSil)

Point of Contact: Jeremie Meurisse
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PICA-f\luéi'I I(/iodeling

NuSil, a silicone-based overcoat, was sprayed onto the ﬂ(]s‘
MSL and Mars 2020 heatshields including their in-depth
temperature instruments (MISP) to mitigate the spread of
phenolic dust from PICA.

The behavior and material response of the PICA-NuSIl
(PICA-N) system consists an open problem in the
literature [1,2].

To better understand the behavior of the NuSil coating, 2200
dedicated experimental campaigns were conducted at g2
NASA:
1. HyMETS at NASA LARC in March 2019 [3,4].
2. AHF at NASA ARC in November 2020.
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[1] Meurisse et. al, Ablation Workshop. (2019). [3] Bessire et. al, IPPW. (2019).
[2] Meurisse et. al, submitted manuscript. (2021). [4] Bessire et. al, Ablation Workshop. (2019). 7
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NusSil
thickness

A novel material response model of PICA-
N was implemented in PATO. The charred
NuSil surface was modeled as pure silica
(SiO,) based on the observations of a
glassy layer on the coated samples post-
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and recession).

Meurisse et. al, Equilibrium model for the ablation response of silicone-coated PICA. Manuscript submitted for publication. (2021).
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The surface mass and energy balance
equations were modified by adding a
constant offset to the char blowing rate (AB/)
and the wall enthalpy (Ah,,) to reproduce the
HyMETS experimental results (temperature

8
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PICA-N Materlal Response
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Meurisse et. al, Equilibrium model for the ablation response of silicone-coated PICA. Manuscript submitted for publication. (2021).
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PICA-N Material Response e
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3D material response of the MSL heatshield using PICA and PICA-NuSil for a fully turbulent
environment from DPLR. The NuSil layer thickness was estimated at 200 um. The PICA-N model gave
lower surface temperature and recession results than the PICA model. The NuSil coating still fully
covered the MSL heatshield.

Meurisse et. al, 3D material response of the MSL heatshield using NuSil-coated PICA. IPPW. (2021). 10
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Mechanical Erosion
Modeling

Point of Contact: Sergio Fraile 1zquierdo
11
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Mechanical Erosion Modeling

Mechanical erosion may lead to additional mass removal of
heatshield material during atmospheric entry, increasing the
total surface recession.

Three main mechanisms identified in the literature:

* | Shear stress induced by the flow |
Shear stress for EEV entry

 Normal stress induced by pyrolysis gas

high-shear

« Thermal stress induced by the material’'s temperature
field

The mechanical erosion model implemented in PATO
accounts for the mass removal induced by high shear

x
.
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mechanical

erosion

conditions.

Schematic of the shear induced
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mass removal.
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Mechanlcal Erosion Modellng
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Hypersonic CFD simulations
are performed using the
DPLR software [1]. The
aerothermal  environment

enthalpy [h,], heat transfer
coefficient [Ch]) and wall
shear stress tensor [T, ]
are extracted.

| The mechanical properties

:(E, G, nu and CTE) are:

| updated as a function of
: the material temperature
| and orientation.

[1] Wright et. al, DPLR Code User Manual: Acadia-Version 4.01.1. (2009).

: These models define the |
| regions where the stress is |
| higher than the ultimate |
: strength and then move the |
|l mesh accordingly. |

| | This solver computes the stress |

|

|

| (Darcy’s flow) and temperature | :
: inside the material as well as the |
|

tensor and the displacement for :

| orthotropic materials using the |
: CFD wall shear stress tensor.
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The model of high :
shear TPS mass |
removal coupled to :
material response |
was added to PATO. :
The total recession |
$ accounts for the :
oxidation and the |
shear-induced I
erosion. :




A
L)

I\

. Heat flux | Pressure
Material | Model | Atmosphere [W/cm?] [kPa]
PICA 12 Mars 126 5.3

Graphite
holder

Thermocouples

PICA assembly

thermocouples
plug

PICA outer
shell

T(K)

I— 2.00e+3

— 1.50e+3

1.00e+3

5.00e+2

PATO thermal response of baby-SPRITE
geometry at 30 sec without recession

Modified 2D mapping BC

= Twx | e __ "X to interpolate from CFD
25— Nty wy—| 259 / (Postflow) to PATO in
— |tl function of time.
'll
1
1
1
1
2.0 1
1
1
1
\
\
LS
g | T
=
1.0
0.5
e 0 s w0 rlfzt;a)zoo 250 300 350 0'00_0 0:5 1.'0 1.'5 2"0 2"5
N X (cm)

Components of the wall shear
stress in function of the Y axis

UNCLASSIFIED — DISTRIBUTION A

Direction and magnitude of
the wall shear stress 14
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Failing Region The recession rate and the mass loss are computed as follows:

D Failing
> Region Area (A)

Moss=p A s At §

N

\ 4

The total mass loss and its ratio with the sample mass are:

Miss = 6.33-107" kg

» Mloss/Msample = 070%
— / Failing region and recession rate 15
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Loose Coupling with
CFD




Coupling via pyrolysis gas blowing at
the heatshield surface:
« Blowing gases computed in PATO

and given to DPLR for use in a
blowing boundary condition.

 Pressure, heat transfer coefficient
and boundary layer edge
enthalpy computed in DPLR and
given to PATO.

ON A

Loose Coupling with CFD e
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PATO

mpyror Pg) Yw ‘

Objective is to utilize this coupling in computing
MSL and Mars 2020 material responses.

17
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In{1 + 2A(B}yro + Benar)}

Couplihg Meih

odology

Use radiative
heating from
previous iteration

Blowing boundary
condition used in DPLR

with species and
blowing rates computed

H=LH ; ’
ZA(BPYFO + Bchar) from PATO.
Y

Radiative Radiative 4- Radiative

Heating |- heating Heating

Computation* converged Computation*
| | N

1- CFD 2- PATO 3-CFD 5- PATO Convergence

No blowing > Fixed blowing > Blowing No blowing of surface
correction from PATO correction temperature

*Using NEQAIR: E. Whiting et al. (1996) NASA RP-1389.
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Uncoupled

Heatshield Surface at 65s [ir: 1
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Summary

OpenFOAM PATO: material response

PATOXx exectuable Pyrolysis

libPATOXx library Pure conduction

Equilibrium chemistry 1D/2D/3D mapping

Finite-rate chemistry Multi-material

Volume Ablation Fluid coupling

PATO release: https://www.pato.ac/ Current Efforts:
« Surface Phenomena Modeling with NuSil Coating
Point of Contact: John M. Thornton * MeChanical ErOSion MOdeIing
john.m.thornton@nasa.gov e Loose Coupling with CFD
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