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7 Abstract: It is important to quantify human heat exposure in order to evaluate and mitigate the 
 

8 negative impacts of heat on human well-being in the context of global warming. This study 
 

9 proposed a human-centric framework to examine human personal heat exposure based on 
 

10 anonymous GPS trajectories data mining and urban microclimate modeling. The mean radiant 
 

11 temperature (Tmrt) that represents the human body’s energy balance was used to indicate human 
 

12 heat exposure. The meteorological data and high-resolution 3D urban model generated from 
 

13 multispectral remotely sensed images and LiDAR data were used as inputs in urban microclimate 
 

14 modeling to map the spatio-temporal distribution of the Tmrt in the Boston metropolitan area. The 
 

15 anonymous human GPS trajectory data collected from fitness Apps was used to map the spatio- 
 

16 temporal distribution of human outdoor activities. By overlaying the anonymous GPS trajectories 
 

17 on the generated spatio-temporal maps of Tmrt, this study further examined the heat exposure of 
 

18 runners in different age-gender groups in the Boston area. Results show that there is no significant 
 

19 difference in terms of heat exposure for female and male runners. The female runners in the age 
 

20 of 45-54 are exposed to more heat than female runners of 18-24 and 25-34, while there is no 
 

21 significant difference among male runners. This study proposed a novel method to estimate human 
 

22 heat exposure, which would shed new light on mitigating the negative impacts of heat on human 
 

23 health. 
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28 1. Introduction 
 

29 Extreme heat has become one of the most serious human health threats to urban residents in 
 

30 the context of global climate change and the urban heat island effect (Li et al., 2019; Reidmiller et 
 

31 al., 2018; Stone et al., 2010; Venter et al., 2020). One-fifth of hazard deaths are caused by extreme 
 

32 heat events in the United States (Borden and Cutter, 2008). The number of deaths caused by 
 

33 extreme heat is almost as large as the deaths caused by flooding and hurricanes combined (National 
 

34 Weather Service, 2018). Studying how humans are exposed to heat is thus important for mitigating 
 

35 the negative impacts of heat exposure on human health and building resilience to more and more 
 

36 frequent and intensive heat events. 
 

37 Traditionally, the ambient temperature from fixed-site weather stations is usually used to 
 

38 represent the intensity of heat events (Gasparrini et al., 2015; Noelke et al., 2016; Ho and Wong, 
 

39 2019; Wang et al., 2018). However, the ambient temperature cannot fully indicate human personal 
 

40 heat exposure without considering the human travel patterns and the indoor and outdoor 
 

41 environment (Kuras et al., 2017; Milà et al., 2020). In addition, the ambient temperature measured 
 

42 at those sparsely distributed weather stations cannot represent the spatial variations of urban heat. 
 

43 With the virtue of large and seamless coverage, the land surface temperature derived from satellite- 
 

44 based thermal imageries was also widely used to indicate the distribution of heat and investigate 
 

45 the impacts of heat on human well-being (Harlan et al., 2013; Jenerette et al., 2016; Pearsall, 2017; 
 

46 Wang et al., 2019). However, the land surface temperature derived from remotely sensed data 
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47 represents the temperature of the tops of tree canopies, building roofs, and the ground surface, 
 

48 which cannot fully indicate the actual heat that humans exposed on the ground (Li and Ratti, 2019). 
 

49 The land surface temperature derived from thermal imageries that are captured at certain points in 
 

50 time cannot represent those spatially and temporally varying factors that impact human heat stress, 
 

51 such as, air temperature, humidity, shade, wind, etc. The land surface temperature has also been 
 

52 proved not to have strong associations with human health conditions (Stone et al., 2019). In 
 

53 addition, it would be difficult to estimate human personal heat exposure without considering 
 

54 human travel patterns. 
 

55 Using wearable sensors to measure human heat exposure is a promising method to measure 
 

56 personal heat exposure in real-time (Milà et al., 2020; Muller et al., 2015). Individuals going about 
 

57 their daily lives using small and portable sensors is a relatively objective way to measure more 
 

58 personalized heat exposure (Bailey et al., 2020; Basu and Samet, 2002; Bernhard et al., 2015; Hass 
 

59 and Ellis, 2019; Milà et al., 2020). However, the accuracy of the wearable sensor-based method is 
 

60 sensitive to the placement of the sensors and the continuous repositioning of the sensors while 
 

61 users moving would also impact the measured results (Kuras et al., 2015). In addition, the sensor- 
 

62 based method is only able to measure the heat exposure for those people with sensors, which limits 
 

63 the sensor-based method to a small sample population and a small geographical area. 
 

64 The model simulation-based method provides an indirect way estimate personal heat exposure 
 

65 at a large scale (Gasparetto and Nesseler, 2020; Honjo et al., 2018; Middel et al., 2017; Li et al., 
 

66 2019; Vanos et al., 2018). Gasparetto and Nesseler (2020) used historical weather data to calculate 
 

67 the marathon runner’s heat exposure index and evaluated the impact of the thermal environment 
 

68 on the performance of runners in New York City. However, the calculated heat exposure index 
 

69 doesn’t consider the spatial variations of heat exposure, which are significantly different street by 
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70 street because of the shadow and other microclimate factors caused by urban structures. Honjo et 
 

71 al (2018) modeled and evaluated the thermal comfort along the Tokyo Olympic marathons coure, 
 

72 which would aid in taking actions for mitigating the heat stress. Middel et al (2017) used RayMan 
 

73 model to generate thermal comfort maps and implemented an optimized routing to maximize 
 

74 pedestrian’s thermal comfort. Li et al. (2019) estimated the spatio-temporal distribution of sun 
 

75 exposure using the hemispherical images generated from the Google Street View images to 
 

76 simulate the solar radiation at the street canyon levels. Although the method shows the potentials 
 

77 to estimate human sunlight exposure, however, the method is focused on the spatio-temporal 
 

78 distribution of sunlight exposure within street canyons, and personal level heat exposure was not 
 

79 considered. 
 

80 This study proposed a framework to estimate human personal heat exposure by combining 
 

81 urban microclimate modeling and human travel patterns that are in the form of GPS trajectories at 
 

82 the fine level. The anonymous trajectories of anonymous fitness app users in the Boston area were 
 

83 used to indicate human travel patterns. The fine-level LiDAR data, building footprint map, and 
 

84 multispectral remotely sensed imageries were used to build the urban three-dimensional model 
 

85 and simulate the solar radiation fluxes in street canyons at the same time of those trajectories. This 
 

86 study mapped the spatio-temporal distributions of mean radiant temperature (Tmrt), which is an 
 

87 objective indicator of the human body’s energy balance with consideration of the solar and 
 

88 terrestrial radiation, humidity data, and wind based on urban microclimate modeling. By 
 

89 overlaying the anonymous runner’s GPS trajectories on the spatio-temporal distributions of Tmrt, 
 

90 this study calculated the human personal heat exposure level for anonymous runners and examined 
 

91 the different heat exposures among different age-gender groups of runners. 

 

92 
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93 2. Study area and datasets 
 

94 The study area is located in the Boston metropolitan area (Fig. 1), which majorly includes the 
 

95 city of Boston, Cambridge, and nearby towns. The Boston area has a humid continental climate 
 

96 that features cool summers and wild cold winters. July and early August are usually the hottest 

 

97 months of one year with an average temperature of 23 C. 
 

98 The datasets used in this study include anonymous runner’s GPS trajectories, meteorological 
 

99 data, Light Detection and Ranging (LiDAR) cloud point data, multispectral satellite imageries, and 
 

100 building footprint map. The GPS trajectory data were collected from a popular fitness App during 
 

101 2014-2015. The trajectory data includes GPS locations, trajectory mode (running, cycling, and 
 

102 walking), and age-gender information of anonymous users. The meteorological data that includes 
 

103 the weather condition, air temperature, direct and diffuse radiation, wind speed, and humidity, 
 

104 were collected from the National Renewable Energy Laboratory database 
 

105 (https://maps.nrel.gov/nsrdb-viewer/). The LiDAR data was collected from NOAA Digital coast 
 

106 datasets (https://coast.noaa.gov/dataviewer/#/) and used to generate the digital surface model 
 

107 (DSM) and the digital terrain model (DEM) using the spatial resolution of 1m. The National 
 

108 Agriculture Imagery Program (NAIP) satellite imageries with a spatial resolution of 0.6m and four 
 

109 bands (red, green, blue, and near-infrared) were used to generate the vegetation cover of the study 
 

110 area. The building footprint map was collected from the Microsoft building footprint database 
 

111 (https://github.com/microsoft/USBuildingFootprints). Fig. 1 shows the location of the study area 
 

112  
 

113  

and the collected datasets in the study area. 

 

114 Figure 1 

 

115 3. Methodology 
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116 3.1 Building height model and tree canopy height model generation 

 

117 A high resolution three-dimensional urban model is required for modeling how solar radiation 
 

118 fluxes being obstructed and reaching the ground. The building height model and the tree canopy 
 

119 model are needed for modeling the obstructions of the building blocks and tree canopies on 
 

120 incoming solar radiation. In this study, the building height model was generated by overlaying the 
 

121 building footprint map (Fig. 1 (a)) on the digital surface model (DSM) (Fig. 1 (c)). 
 

122 In order to generate the tree canopy height model, this study first generated the vegetation 
 

123 cover map from the NAIP multispectral imagery using the thresholding method based on the NDVI 
 

124 (normalized difference vegetation index). Since the NDVI-based thresholding method cannot 
 

125 differentiate the tree canopies from grassland, therefore, this study further excluded those 
 

126 vegetation pixels with the height lower than 3m based on the DSM to generate the tree canopy 
 

127 map. Validation results based on randomly selected samples show that the accuracy of the 
 

128 generated tree canopy cover map is as high as 95%, which makes it suitable for the following 
 

129 analyses. The tree canopy height model was then created by multiplying the binary tree canopy 
 

130  
 

131  

cover and the DSM. 

 

132 3.2 Map-matching of GPS trajectories 

 

133 The raw GPS trajectories are not aligned to streets well because of the noise and the block of 
 

134 GPS signal by obstructions in street canyons. Therefore, map-matching is needed to correct those 
 

135 trajectories to the corresponding streets (Li et al., 2018; Malleson et al., 2018). In this study, the 
 

136 widely used Hidden Markov Chain method was implemented to do the map-matching (Newson 
 

137 and Krumm, 2009). The reference street map was firstly planarized into short street segments. The 
 

138 probabilities of each GPS coordinate point along one trajectory to nearby street segments are 
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139 determined by the distances to nearby street segments and the probabilities are higher to closer 
 

140 street segments. The possibility of one GPS trajectory to a matching path is the multiplication of 
 

141 all the possibilities of all GPS trajectory points to connected street segments of the matching path. 
 

142 The optimal matched path of the GPS trajectory is the matching path that has the largest possibility. 
 

143 The Open Street Map (OSM) was used as the reference street map for the map-matching because 
 

144 the OSM covers complete streets and includes those small roads used by runners. Those highways 
 

145 and motorcycle ways, which are not accessible for pedestrians and runners, were excluded from 
 

146 the OSM in the map-matching. The map-matching results show that more than 85% of the 
 

147 trajectories can be matched successfully to the corresponding  streets. Fig. 2 shows a comparison 
 

148  
 

149  

of several raw trajectories and the map-matched trajectories in the study area. 

 

150 Figure 2 

 

151 3.3 Human heat exposure estimation 

 

152 The mean radiant temperature (Tmrt) that indicates the human body’s energy balance by 
 

153 considering the solar and terrestrial radiation, wind, humidity is a standard method to indicate 
 

154 human thermal comfort (Mayer and Höppe, 1987; Ali-Toud- ert and Mayer, 2007). The Tmrt is 
 

155 strongly related to heat related mortalities (Thorsson et al., 2014). Therefore, in this study, the Tmrt 

 

156 was used to indicate human heat exposure. As one of the most accurate models that have been 
 

157 validated worldwide, the SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG) 
 

158 model was used to calculate and map the spatio-temporal distributions of the Tmrt based on the 
 

159 building height model, tree canopy height model, and the meteorological data in the study area 
 

160 (Lindberg et al., 2008; Lindberg and Grimmond, 2011; Lindberg et al., 2014). Fig. 3 shows the 
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161 process of Tmrt estimation based on the tree canopy height model, building height model, and 
 

162  
 

163  

meteorological data. 

 

164 Figure 3 
 

165 Based on the spatio-temporal distributions of the estimated Tmrt, the accumulated heat exposure 
 

166  

 
167  

for each trajectory can be estimated as, 
 

𝐻𝑒𝑎𝑡𝐸𝑥𝑝𝑜 = ∫
!!  𝑇!(𝑙𝑜𝑛! , 𝑙𝑎𝑡!, 𝑡)𝑑𝑡 

 

 
(1) 

 

168 where HeatExpo is the accumulated heat exposure, t0 is the starting time of a trajectory, t1 is 
 

169 the ending time for the trajectory, Tt is the Tmrt at the time t and coordinate (lont, latt). Because of 
 

170 the computational intensity to calculate Tmrt for the whole study area, therefore, this study 
 

171 estimated the Tmrt every 10 minutes from July 15th to August 15th, 2015 during sunny and clear 
 

172 weather, which are usually considered as the hottest days in one year, since the SOWEIG model 
 

173 is better to model human thermal comfort during the clear and hot season. Only those trajectories 
 

174 from July 15th to August 15th, 2015 in sunny and clear weather time windows were kept for the 
 

175 following analysis. Each trajectory was then split into different segments for the time windows of 
 

176 Tmrt maps and then overlaid on the Tmrt map of the same time (Fig. 3). Then the accumulated heat 
 

177  
 

178  

exposure (°C·min) would be, 
 

𝐻𝑒𝑎𝑡𝐸𝑥𝑝𝑜 = ∑#
 

 
 

𝑑" ∙ 𝑇" 

 

 
(2) 

 

179 where n is the number of 10-minute segments along one trajectory, the di is the duration of the 
 

180 runner staying in the ith segment, Ti is the average Tmrt along the ith segment for one trajectory. 
 

181 The SOLWEIG is very time consuming for city-scale modeling, therefore, in this study, the input 
 

182 building height model and tree canopy height model were chopped into numbers of small tiles. 
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183 The SOLWEIG model was then run on those small tiles to calculate the Tmrt of different times on 
 

184 high performance computers and the results were then mosaiced to cover the whole study area. 

 

185  
 

186 4. Results 
 

187 There are 3,401 walking and running trajectories matched during the sunny and clear time from 
 

188 July 15th to August 15th, 2015. Fig. 4 (a) shows the spatial distribution of the number of runner’s 
 

189 trajectories at the street level in the study area. It can be seen clearly that roads along the Charles 
 

190 River are the most popular for runners in the study area. Cambridge and the downtown of Boston 
 

191 are also popular places for runners. In addition, runners prefer to run along water bodies. Among 
 

192 the finally chosen 3,401 anonymous trajectories, there are 1,603 trajectories of male runners and 
 

193 1,798 trajectories of female runners. Fig. 4 (b) shows the distribution of the number of running 
 

194 trajectories for male and female runners in different age-groups. Most of the trajectories are from 
 

195  
 

196  

runners in the age of 25-34 for both female and male runners. 

 

197  
 

198  

Figure 4 

 

199 Fig. 5 shows the distribution of running duration and running distance of the running 
 

200 trajectories in the study area. It can be seen that most running trajectories last 20-40 minutes with 
 

201  
 

202  

distance of 1000 to 2000 meters. 

 

203  
 

204  

Figure 5 
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205 Fig. 6 shows the distributions of running distance and running duration for different age-gender 
 

206 groups from July 15th, 2015 to August 15th, 2015 in the study area. Generally, female runners in 
 

207 age-groups of 18-24 and 25-34 run longer distance and time than male runners in the same age- 
 

208 groups, while male runners in the age groups of 35-44 and 45-54 run longer distance and time than 
 

209 female runners of the same age groups. The numbers of runners in other age groups are too small 
 

210  
 

211  

for the comparison (Fig. 6). 

 

212  
 

213  

Figure 6 

 

214 Fig. 7 (a) presents the spatial distribution of the Tmrt on July 20th, 2015 at different times for a 
 

215 portion of the study area. The Tmrt is impacted significantly by the shadow distribution cast by the 
 

216 buildings and tree canopies at different times. By overlaying the anonymous trajectories on the 
 

217 Tmrt of the same time in the study area, this study estimated the accumulated heat exposure for each 
 

218 trajectory. Fig. 7 (b) shows the heat exposure along an anonymous trajectory on July 20th, 2015 in 
 

219  
 

220  

the study area. 

 

221  
 

222  

Figure 7 

 

223 For all the trajectories, descriptive analysis results show that the mean accumulated heat 
 

224 exposure is 1486.59 (°C·min) with the standard deviation of 921.23 (°C·min). Fig. 8 shows the 
 

225 boxplot of the heat exposure for runners of different age groups in the study area. The Kruskal- 
 

226 Wallis test shows that the heat exposure for runners of age 45-54 is significantly higher than 
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227 runners in ages of 18-24 (p<0.05) and 25-34 (p<0.05). There is no significant difference in terms 
 

228  
 

229  

of heat exposure among other age groups. 

 

230  
 

231  

Figure 8 

 

232 Fig. 9 shows the histograms of the accumulated heat exposure for runners of different age- 
 

233 gender groups in the study area. It can be seen clearly that for both female and male runners, the 
 

234 accumulated heat exposure of most runners falls into the range of 1000 (°C·min) to 2000 (°C·min). 
 

235 Fig. 10 shows the boxplots of the heat exposure for female and male runners of different age 
 

236 groups. For female runners, the heat exposure in the age group of 45-54 is significantly higher than 
 

237 runners in the age groups of 18-24 (p<0.05) and 25-34 (p<0.05) (Fig. 10 (a)). There is no 
 

238 significant difference in terms of heat exposure among other age groups. For male runners, there 
 

239 is no significant difference in terms of heat exposure for runners in different age groups (Fig. 10 
 

240 (b)). Kruskal-Wallis test results show that for female and male runners of the same age groups, 
 

241  
 

242  

there is no significant difference in terms of heat exposure. 

 

243 Figure 9 
 

244  
 

245  

 
246  

 

 

 
5. Discussion 

Figure 10 

 

247 Extreme heat increasingly becomes a major public health risk for urban residents especially in 
 

248 the context of global warming and urban heat island. This study proposed a novel framework to 
 

249 estimate human outdoor heat exposure based on fine scale urban microclimate modeling and 



12  

250 anonymous human GPS trajectories mining. The high-resolution multispectral remotely sensed 
 

251 imagery and LiDAR data were used to generate the building height model and the tree canopy 
 

252 height model, both of which were further used as inputs for modeling the dynamic urban thermal 
 

253 environment with consideration of the solar and terrestrial radiation, humidity, air temperature, 
 

254 and wind. Different from previous coarse resolution land surface temperature derived from 
 

255 remotely sensed thermal imageries and the air temperature from sparsely distributed fixed-site 
 

256 weather stations, this study estimated the spatio-temporal distributions of the mean radiant 
 

257 temperature (Tmrt) every ten minutes with a spatial resolution of 1m in Boston area using the 
 

258 SOLWEIG model. Compared with the land surface temperature and air temperature, the Tmrt that 
 

259 considers solar and terrestrial radiation, humidity and wind is more reasonable to indicate human 
 

260 heat exposure (Lindberg and Grimmond, 2011; Thorsson et al., 2014). The high spatio-temporal 
 

261 resolution Tmrt maps estimated in this study make it possible to indicate the temporal variations of 
 

262 the urban thermal environment caused by changing solar radiation and meteorological conditions 
 

263 in one day. In addition, the fine level Tmrt maps with the spatial resolution of 1m make it possible 
 

264 to consider the spatial variations of thermal environment streets by streets caused by the shadow 
 

265 cast by buildings and tree canopies. 
 

266 This study collected anonymous runner’s running GPS trajectories and map-matched those 
 

267 trajectories to the corresponding road segments to represent the runner’s heat exposure paths. Each 
 

268 runner’s personal heat exposure was estimated by overlaying the matched GPS trajectory 
 

269 coordinates on the corresponding Tmrt maps of the same time. This study is the first large scale 
 

270 study examining human personal heat exposure, which is usually related to potential heat-related 
 

271 health issues. Based on the proposed framework, this study also examined the different heat 
 

272 exposure for runners of different age-gender groups. The heat exposures of different age-gender 
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273 groups are different. Most runner’s heat exposure falls into the range of 1000 (°C·min) and 2000 
 

274 (°C·min). For female runners, the heat exposure for runners of age 45-54 is significantly higher 
 

275 than runners in ages of 18-24 (p<0.05) and 25-34, while for male runners there is no significant 
 

276 difference in terms of heat exposure for different age groups. There is no significant difference 
 

277 between female and male runners in terms of heat exposure. 
 

278 This study provides a novel framework and practice to estimate personal heat exposure with 
 

279 consideration of human movement along streets and high spatio-temporal resolution dynamic 
 

280 thermal environment. The proposed framework that combines human GPS trajectories and urban 
 

281 microclimate  modeling  based  on  high-resolution  three-dimensional  urban  models  makes  it 
 

282 possible to investigate human personal heat exposure at a large spatial scale and fine temporal 
 

283 resolution and would benefit heat-exposure related research. The developed method is scalable 
 

284 based on the publicly accessible fine urban spatial data and weather data. The developed 
 

285 framework would also provide a general method for understanding the impact of the urban thermal 
 

286 environment on human well-being at a fine level. Although this study examined the runner’s heat 
 

287 exposure, this developed framework can be directly applied to any other groups of people. The 
 

288 proposed framework can also evaluate the potential threat of too much heat exposure, which would 
 

289 be helpful to reduce heat-related mortality. 
 

290 While the proposed framework provides a new method to estimate human heat exposure at a 
 

291 large scale, there are still some limitations that should be addressed in future applications. Firstly, 
 

292 the anonymous GPS trajectories may not be able to represent the travel patterns of the whole 
 

293 population of the study area. This may bring some biases to the representation of the results to a 
 

294 large population. The trajectories represent those people doing outdoor running, not the daily 
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295 diaries, therefore future studies should think about using more objective travel diaries to better 
 

296 represent human daily heat exposure. 
 

297 In addition, although the trajectories can indicate the human activities at the street level, the 
 

298 GPS trajectories and the map-matching algorithm are only able to match the trajectories to the 
 

299 centerlines of streets, which are different from the actual heat exposure paths. Therefore, the 
 

300 proposed method cannot fully indicate the internal variations inside of the street canyons. In this 
 

301 study, a buffer distance of 10m was used and the average Tmrt was used to indicate the human 
 

302 exposure to minimize the uncertainty. Future studies should incorporate the sidewalk map for map- 
 

303 matching in order to indicate pedestrian travel patterns. 
 

304 This study assumes people are running at a constant velocity and only select the time with little 
 

305 cloud or clear day for the analysis. Using the weather and the time to filter out the trajectories 
 

306 would make the dataset cannot fully represent all runners. Because of the computational intensity, 
 

307 this study only simulated the weather condition and the Tmrt at a resolution of 10 minutes, and for 
 

308 one month. Future studies would consider using more advanced computing techniques to estimate 
 

309 the Tmrt in a longer term. Since many procedures in the SOLWEIG model is parallelable, therefore, 
 

310 using parallel computing would be a good option to accelerate the raster operations in SOLWEIG 
 

311 model and increase the efficiency. 
 

312 In this study, the mean radiant temperature (Tmrt) was used to represent human heat exposure. 
 

313 Although the Tmrt is an objective indicator of the human body’s energy balance, however, different 
 

314 people  may  have  different  resilience  levels  to  heat  exposure  because  of  different  personal 
 

315 characteristics. Future studies should also consider more personal characteristics to better indicate 
 

316 the potential heat exposure. Future study would also study the connection of personalized heat 
 

317 exposure with heat and solar radiation exposure related health issues. 
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318 Although microclimate modeling and GPS trajectory mining make it possible to scale up and 
 

319 investigate the human heat exposure at a large scale at any time and any location, future studies 
 

320 should also validate the estimated heat exposure at the personal level. Using wearable devices 
 

321 would be a good way to more objectively evaluate human heat exposure estimation and validate 
 

322 the results. 

 

323  
 

324 6. Conclusion 
 

325 This study proposed a novel framework to investigate personal heat exposure based on 
 

326 anonymous GPS trajectories and urban microclimate modeling-based weather data and fine-level 
 

327 urban 3D models. The developed scale framework provides a new way to understand more 
 

328 personalized heat exposure, which would benefit heat related public health and heat-resilience 
 

329 building in cities. Based on the framework, this study investigated the heat exposure of anonymous 
 

330 runners in Boston based on the GPS trajectories and the microclimate modeling at the individual 
 

331 level. Results show that there is no significant difference in terms of heat exposure between the 
 

332 male and female runners. In different age groups, the female runners in the age group of 45-54 are 
 

333 significantly exposed to more heat than female runners of 18-24 and 25-34, while the heat exposure 
 

334 is not significantly different for males in different age groups. This study would provide us a new 
 

335 understanding of the different impacts of heat exposure on different genders and age groups of 
 

336 people for outdoor activities, which would provide new insight for investigating the impacts of 
 

337 outdoor heat exposure on human health and mitigating the negative impacts of heat exposure. 

 

338  
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443  
 

444 Fig. 1. The location of the study area and the datasets used in this study, (a) the open street map 

445 and the building footprint map, (b) the GPS trajectories and the multispectral NAIP imageries, (c) 

446 the generated digital surface model from LiDAR data. 
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452 
 

453 Fig. 2. The comparison of the four raw GPS trajectories (red) and the map-matched trajectories 

454 (green) in the study area. 
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458 

459 Fig. 3. Human heat exposure estimation based on GPS trajectory and the estimation of mean 
460 radiant temperature (Tmrt) using the SOLWEIG model based on building height model, canopy 

461 height model, and meteorological data. 

462 
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464 

465 Fig. 4. The spatial distribution of the human fitness activities during sunny and clear time from 

466 July 15th  to August 15th, 2015 in the Boston area, (a) the number of runners on each street, (b) the 

467 distribution of the numbers of runners of different age groups. 

468 
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470  

471 Fig. 5. The distribution of running time duration and running distance of anonymous trajectories 

472 in the study area, (a) the histogram of the running time duration, (b) the histogram of the running 

473 distance. 
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476 

477 Fig. 6. The running distance and duration for different age-gender groups in the study area from 

478 July 15th to August 15th in 2015, (a) the distribution of running distance of female runners, (b) the 

479 distribution of the running distance of male runners, (c) the distribution of the running duration in 

480 minute of female runners, (d) the distribution of running duration in minute of male runners. 
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483 

484 Fig 7. The spatio-temporal distribution of the Tmrt  and a runner’s heat exposure, (a) the spatio- 
485 temporal distribution of the Tmrt on July 20th, 2015 at different time points, (b) the overlay of an 

486 anonymous trajectory on Tmrt maps for estimating the accumulated heat exposure. 
487 
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488 

489 Fig. 8. The boxplot of the accumulated heat exposure (°C·min) among different age groups. 

490 

 

491 

 

492  

493 Fig. 9. The distribution of the accumulated heat exposure for female and male runners. 
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495 

496 Fig. 10. The boxplots of the heat exposure for female (a) and male runners (b) of different age 

497 groups. 

498 


