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Abstract 39

Models help decision-makers anticipate the consequences of policies for ecosystems and people; 40

for instance, improving our ability to represent interactions between human activities and 41

ecological systems is essential to identify pathways to meet the 2030 Sustainable Development 42

Goals. However, use of modeling outputs in decision-making remains uncommon. We share 43

insights from a multidisciplinary National Socio-Environmental Synthesis Center working group 44

on technical, communication, and process-related factors that facilitate or hamper uptake of 45

model results. We emphasize that it is not simply technical model improvements, but active and 46

iterative stakeholder involvement that can lead to more impactful outcomes. In particular, trust- 47

and relationship-building with decision-makers are key for knowledge-based decision making. In 48

this respect, nurturing knowledge exchange on the interpersonal (e.g., through participatory 49

processes), and institutional level (e.g., through science-policy interfaces across scales), 50

represent promising approaches. To this end, we offer a generalized approach for linking 51

modeling and decision-making.  52

Key Words: biodiversity-ecosystem function relationships; co-production; ecological modeling; 53

policy relevance; stakeholder engagement 54

Introduction 55

Ecosystems depend on diverse biological attributes to ensure ecological functions and 56

processes that are fundamental to life on Earth. Improving our ability to represent interactions 57

between human activities and ecological systems is essential to identify pathways to meet the 58

2030 Sustainable Development Goals (Kim et al., 2018). Therefore, decision-makers often want 59

to anticipate the consequences of policies for ecosystems and human well-being (Isbell et al., 60

2017). Models are important tools to support such endeavors and can provide a useful way to 61

examine possible outcomes (IPBES et al., 2016). However, examples of modeling outputs that 62

(Rapacciuolo, 2019). 63

While models are often created with the intention of informing decision-makers, there are a 64

number of factors that may hamper or facilitate the use of the models, and research more 65

broadly, in decision-making processes (Dilling and Lemos, 2011; IPBES et al., 2016; Wall et al., 66

2017). 67

Here, we focus on the uptake of biodiversity, ecosystem function, and ecosystem services 68

models. Integrating biodiversity and ecosystem function (BEF) models to improve projections of 69

ecosystem services was one of the main challenges identified in the collective modeling effort 70

that contributed to the IPBES Global Assessment (Rosa et al., 2020), and the insights we share in 71

this paper are drawn from an interdisciplinary SESYNC (The National Socio-Environmental 72

Synthesis Center) working group focused on this challenge. To draw on our collective 73

experience, we informally interviewed working group members that have developed or work 74

extensively with different ecological models about their model use experience.  75

makers are key for knowledgemakers are key for knowledge based decision making. In 
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Working group members have experience with a variety of ecological models with 76

varying levels of uptake in policy processes at different scales, which provided a unique 77

opportunity to compare factors hampering and facilitating model uptake. Models ranged from 78

national fisheries management (e.g., Atlantis in Australia; (Elizabeth A. Fulton et al., 2014)) to 79

regional water management and land use planning (e.g., INVEST; (Daily et al., 2009; Kareiva et 80

al., 2011; Nelson et al., 2009) (See list of models in appendix 1). Nearly half of the models 81

discussed had not yet been used in a specific decision-making process.  82

Drawing on this expert opinion and reflection, we present lessons learned for how to 83

improve ecological model uptake for decision-makers, and go further to emphasize that it is not 84

simply uptake, but active and iterative involvement by stakeholders that can lead to more 85

impactful outcomes. This is especially important as we move into the negotiation of the post-86

2020 Global Biodiversity Framework for the Convention on Biological Diversity (CBD), where 87

there is a huge reliance being placed on the ability of models to identify challenges and to answer 88

key questions, especially in monitoring progress towards specific targets. For example, models 89

are being used to explore possible pathways to reversing biodiversity loss by 2050 (Leclère et al., 90

2020). Here, we present key considerations to ensure that models are better able to meet policy 91

needs. Although many of the concepts we present are not new (e.g., (Rose et al., 2020), there is a 92

persistent need to raise awareness of these issues and potential solutions among the modeling 93

community (Addison et al., 2013; Rapacciuolo, 2019; Saltelli et al., 2020). Enhanced 94

consideration of these issues by ecological modelers may improve the usefulness of modeling 95

results in decision-making - allowing models to reach their full potential by providing decision-96

makers with a stronger evidence basis for making decisions in often highly uncertain contexts. 97

Facilitating and Hampering Factors   98

We categorized the factors facilitating and hampering the use of models into three main 99

categories: technical, communication, and process-based (i.e. related to the social context of 100

decision-making) factors. These mirror the characteristics of actionable information identified by 101

Cash et al. (Cash et al., 2003) -- credible, salient, and legitimate -- but are distinct in that they are 102

specific factors related to modeling, which may or may not lead to information uptake. 103

Technical factors are often the focus of modeling work (e.g., improving model accuracy, 104

precision, and data processing techniques, addressing data gaps). From the technical perspective, 105

issues which can either facilitate or hamper model uptake span the entire modeling process, 106

including the thematic focus or scope of a model, as well as model assumptions, resolution, and 107

scale (spatial and temporal). Model relevance is often more context dependent than discussed, so 108

it is important to assess whether the model is fit for purpose in each context where it is being 109

used (Parker, 2020). Most models that had been used in a policy context had underlying data 110

and/or model results that matched the scale of the decision. Crucially, the general model framing 111

- in terms of implicit or explicit value judgements by the modelers and model designers - may 112

underpin the additional technical barriers outlined below.  113
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While most models did not incorporate BEF relationships, modelers deemed them to be 114

important to include depending on the decision. Better incorporation of these relationships could 115

improve model accuracy, especially over longer time frames where it is important to capture all 116

relevant processes in the model. For example, an Australian ecosystem modeling exercise that 117

ran more traditionally structured marine ecosystem models alongside models including species 118

turnover found very different results under various potential levels of climate change (Fulton and 119

Gorton, 2014). Biodiversity-productivity relationships have also been found to be important for 120

both biodiversity conservation and climate mitigation (Mori et al., 2021). In other cases, the 121

potential imbalance between model complexity and the perceived usefulness of output could act 122

as a hampering technical barrier; for instance, incorporating BEF relationships into INVEST 123

models used for mapping water supply may not be useful, because the policy-driven question 124

may not be directly impacted by this relationship, and including it may make the model 125

unnecessarily complicated. There is a long history of work in fisheries showing that the 126

complexity of models used in decision making must be compatible with the level of available 127

information, with more constrained models containing key relationships leading to more 128

effective management decisions than more complicated models based on sparse information 129

(Ludwig and Walters, 1985). However, it is important to update models as new data and 130

understanding of underlying relationships become available (Myers et al., 2021). Ultimately, our 131

interviews highlighted that the BEF link is currently lacking in most models but would be 132

especially important to better understand the consequences of climate change and other global 133

changes for ecosystem services. A key reason for this is because it is the change in biodiversity 134

over time, within a place, that is expected to impact ecosystem services. BEF experiments assess 135

this relationship, which could otherwise be masked by only comparing ecosystem services 136

between sites (Loreau, 1998; Tilman et al., 2014). 137

Communication and accessibility-related factors facilitating or hampering the uptake of 138

models and their outputs included the accessibility of the model design (e.g., how the model 139

design and assumptions are communicated), the accessibility of the modeling interface (e.g., the 140

steepness of the model interface learning curve), as well as the accessibility of the modeling 141

output (e.g., how difficult the modeling products are to understand, to be updated and to maintain 142

accessibility in time). Models that lack flexibility or are difficult to use can discourage decision-143

makers (Robinson and Freebairn, 2000). Another key factor is transparency or clarity in 144

addressing the uncertainties related to a model -- scientific uncertainty does not necessarily 145

decrease trust (van der Bles et al., 2020), but the way in which it is communicated is influential 146

(Howe et al., 2019). Adding precise numbers to uncertain predictions can lead to a false sense of 147

accuracy in the results (Saltelli et al., 2020). On the decision-maker side, there is also a tendency 148

to confuse uncertainty, where the probability of a situation is unknown, with risk, where the 149

confidence in probabilities is known. This can lead to overconfidence in policy options and 150

business as usual practices (Stirling, 2019). All of these points make communication fraught and 151

the situation is only exacerbated by the incompatibilities in the cultural and communication 152

styles of scientists and decision-makers (Cairney, 2016); this is why knowledge brokers, who can 153

models used for mapping water supply may not be useful, because the policymodels used for mapping water supply may not be useful, because the policy
may not be directly impacted by this relationship, and including it may make the model may not be directly impacted by this relationship, and including it may make the model 
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successfully interpret between the two groups, are such a critical part of modern modeling teams 154

(Cvitanovic et al., 2015). 155

While the majority of available studies on factors facilitating and hampering model 156

uptake in decision making focus primarily on technical and communication factors, this 157

perspective illustrates the key role of process-based factors. These factors have been frequently 158

underestimated or overlooked in different modeling communities. However, their importance has 159

been increasingly recognized (e.g., (Clark et al., 2016)) and warrants deeper consideration, as 160

they represent some of the key barriers to a larger-scale model uptake in decision making. 161

The issues related to the social context of model uptake cover a broad range of process-162

related aspects. On the institutional level, model uptake is determined by how decision-making 163

processes are embedded in institutional structures, as well as by institutional arrangements, 164

bureaucracy and power distribution. Understanding how decisions are made and who is affected 165

by decisions (i.e., identifying stakeholders) is a key part of problem framing in the decision 166

making process, and is important for modelers to understand as they define the modeling 167

problem (Figure 1; (Runge, 2020). On the level of individuals, interpersonal relationships have 168

proved influential in the process of knowledge transfer. Another role of the social setting lies in 169

which and whose objectives define the modeling process, and which and whose values and 170

priorities tend to be incorporated (both on the level of individuals and social groups). For 171

example, a multi-species size spectrum model implemented in MIZER was designed by a team 172

that included scientists working in government agencies to address policy-driven questions, 173

which facilitated its use in identifying large fish indicators for use in the North Sea (Blanchard et 174

al., 2014; Scott et al., 2014). Finally, the skills and capacities of decision-makers to use a 175

particular model and its interface may present additional barriers. Both institutional- and 176

individual-level factors can be exacerbated by the tendency to follow path dependencies and the 177

lack of ability or willingness to change practices (e.g., reliance on models already in use) 178

(Fulton, 2021). 179

Process-based factors can facilitate model uptake by building a sufficient level of 180

understanding of a model and/or its underlying concepts and mitigating the fear of excessive 181

sophistication and complexity, and thus nurturing trust in models and modeling. However, social 182

context and process-based factors can also underlie decision-183

results (e.g., fear of getting less funding in the light of modeling results or making potential 184

management failures more apparent, and mistrust of results that do not align with previously held 185

beliefs; (Pahl-Wostl, 2009)). Conversely, modelers highlighted that a robust participatory 186

process with stakeholders, identifying policy-driven questions that underpinned model 187

development and output, and sufficient capacity to increase model usefulness facilitated model 188

uptake. Identifying shared goals and designing a collaboration process up front can help address 189

these issues (Hallett et al., 2017; Lawson et al., 2017). While there are many benefits to 190

participatory approaches, modelers should also be aware that including decision-makers in the 191

related aspects. On the institutional level, model uptake is determined by how decisionrelated aspects. On the institutional level, model uptake is determined by how decision
processes are embedded in institutional structures, as well as by institutional arrangements, processes are embedded in institutional structures, as well as by institutional arrangements, 
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process could lead to a perception of less objective science, especially if only a small group of 192

stakeholders are involved (Enquist et al., 2017)).  193

 194
Figure 1: Stronger linkages between modeling and decision-making processes can lead to more 195

effective decisions. The upper row represents steps in the decision-making process (D#), and the 196

bottom row shows the modeling process steps (M#). Arrows show connections from the 197

decision-making process (D) to the modeling process steps (M) and vice versa. In a structured 198

decision making process (Runge, 2020), decision-makers can inform the modeling process by 199

defining the problem and objectives, proposing feasible alternative actions, and by providing 200

data to validate models after decisions have been implemented. In turn, model outputs can be 201

used to assess consequences and tradeoffs of proposed actions, identify possible alternative 202

actions that might achieve objectives, and even lead to re-framing or identifying new decision 203

problems. Although presented linearly, the steps in the modeling and decision-making cycle are 204

not necessarily linear. Questions to help guide model development are provided below each step. 205

Although the questions are organized according to the steps in the modeling process, they should 206

be considered at the outset of the modeling work. 207

 208

Lessons learnt for improving the process of model design and use  209

Figure 1: Stronger linkages between modeling and decisionFigure 1: Stronger linkages between modeling and decision
effective decisions. The upper row represents steps in the decisioneffective decisions. The upper row represents steps in the decision
bottom row shows the modeling process steps (M#). Arrows show connections from the bottom row shows the modeling process steps (M#). Arrows show connections from the 

making process (D) to the modeling process steps (M) and vice vemaking process (D) to the modeling process steps (M) and vice ve
decision making process decision making process (Runge, 2020)(Runge, 2020)
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Based on our collective experience, we reflected on what could have been done 210

differently to improve uptake and identified three areas for consideration. We discuss these 211

lessons in light of literature that provides more detailed suggestions of ways to facilitate model 212

uptake. 213

1. Identify and include decision-makers from the beginning and during the entire process 214

Including policy and other decision-makers throughout the research process (i.e., the co-215

production of knowledge) enhances its legitimacy and relevance to decision-making purposes 216

(Meadow et al., 2015), thus helping to reduce the impact of hampering process-based factors. 217

Descriptions of and considerations for applying translational ecology approaches that include 218

relevant decision-makers and interdisciplinary perspectives have been described elsewhere (e.g. 219

(Enquist et al., 2017; Rose et al., 2020; Wall et al., 2017)), but applications in the modeling 220

context remain uncommon ((Rapacciuolo, 2019); but see (Beier et al., 2017) and (Miller et al., 221

2017) for recommended practices for co-producing science in general and models in particular, 222

respectively.  223

Including users who understand the policy environment in the model design ab initio 224

means that the model inputs do not have to be retrofitted for a specific outcome later, thereby 225

saving time and effort. For example, setting up a participatory process with all interested parties 226

from the beginning to get consensus on the technical aspects of the work (data, targets, decision 227

support systems) helped facilitate the successful use of species distribution modeling for forest 228

planning in New South Wales, Australia  (Ferrier et al., 2002a, 2002b; Finkel, 1998). In 229

instances where directly involving stakeholders in the design is not feasible (e.g., when the 230

model is too complicated), another mechanism to bridge the model-decision divide is through the 231

use of a knowledge broker (Chapman et al., 2017; Safford et al., 2017). As a go-between, a 232

knowledge broker will have sufficient knowledge of the model dynamics to be able to feed 233

information and needs to/from stakeholders. Indeed, active participation from stakeholders 234

throughout the modeling process may not always be necessary; there is a spectrum of stakeholder 235

engagement approaches, all of which can lead to actionable science (Bamzai-Dodson et al., 236

2021). 237

Figure 1 presents an example of how modeling and decision-making processes can be 238

linked. Although presented as a linear process, engagement with stakeholders can be initiated at 239

various parts of the modeling cycle depending on the decision-making scale, goals of the 240

modeling exercise, and overall understanding of the modeled processes. For example, when 241

general understanding of our ability to model particular relationships (e.g., BEF relationships) is 242

low, it may be appropriate to engage stakeholders after initial model development has been 243

completed, when preliminary outputs can be used to raise awareness of new or improved 244

information and thus help reframe the decision-making problem. Moreover, decision-making 245

processes and relevant model outputs are different at the global scale, which often focus on the 246

ions of and considerations for applying translational ecology approaches that include ions of and considerations for applying translational ecology approaches that include 
makers and interdisciplinary perspectives have been described elsewhere (e.g. makers and interdisciplinary perspectives have been described elsewhere (e.g. 

applications in the modeling applications in the modeling 
(Beier et al., 2017)(Beier et al., 2017)
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evidence base for setting global targets, versus regional and local scale, where on-the-ground 247

management decisions are made; thus, models or outputs that have been developed for one scale 248

of decision-making may need to be retrofitted for applications at other scales. Stakeholder 249

mapping can be used to determine which decision-making scale and stakeholder groups may be 250

most interested in the model results.  251

2. Communication with decision-makers 252

Communication with key decision-makers, whether they are local managers or 253

government ministers, is vital to any model uptake strategy. First, it is important to create a 254

common understanding of language and culture between modelers and decision-makers (Jackson 255

et al., 2017); techniques like the persona method are useful to characterize user needs and design 256

solutions (Cooper, 1999). For models that are relatively easy to use, seeking opportunities to 257

introduce the model to decision-makers, investing in capacity building, and letting them explore 258

it for themselves is a good way to get a richer understan259

260

higher-level model structure; in particular, modular designs can facilitate model communication 261

and customization. Regardless of model complexity, communication should involve transparent 262

descriptions of model limitations and uncertainty without belaboring the technical details. It is 263

important to be transparent about the assumptions and value judgements made by the modelers in 264

model framing and highlighting how those decisions affect model output (Saltelli et al., 2020). 265

Uncertainty can be communicated verbally rather than numerically; scales such as the 266

-point likelihood scale may be preferable for 267

stakeholders (Rapacciuolo, 2019). These facilitating factors are supported by ensuring that 268

models, or at least model outputs, are open access.  269

3. Iterative learning and model evaluation 270

Continuously improving models as new data becomes available can lead to better 271

decision outcomes (Myers et al., 2021). In retrospect, it is easy to see where research gaps could 272

have been covered by the model if certain aspects had been included, for example analyzing 273

biodiversity impacts outside of protected areas to be able to appreciate the net-outcome for 274

biodiversity of interventions in the New South Wales case (Ferrier et al., 2002a, 2002b; Finkel, 275

1998). Sometimes including different scenarios at an earlier stage in the model can be helpful for 276

exploring a wider set of futures, and extending the models to include multiple drivers of change 277

can also be more relevant for decision-makers. Incorporating diverse user values and objectives 278

into modeled scenarios (e.g., Nature Futures Framework; (Kim et al., 2021; Pereira et al., 2020) 279

and getting feedback on plausible alternative actions can make model outputs more relevant for 280

users.  A critical aspect of the modeling process itself is also to evaluate the model. The extra 281

effort of evaluation is rewarded by increased transparency and credibility of the overall approach 282

and sets up a learning process for later improvements (Dietze et al., 2018). If decision-makers 283

common understanding of language and culture between modelers and decisioncommon understanding of language and culture between modelers and decision
; techniques like the persona method are useful to characterize user needs and ; techniques like the persona method are useful to characterize user needs and 

. For models that are relatively easy to use, seeking opportunities to . For models that are relatively easy to use, seeking opportunities to 
makers, investing in capacity building, and letting them explore makers, investing in capacity building, and letting them explore 

level model structure; in particular, modular designs can facilitate model communication level model structure; in particular, modular designs can facilitate model communication 
f model complexity, communication should involve transparent f model complexity, communication should involve transparent 

descriptions of model limitations and uncertainty without belaboring the technical details. It is descriptions of model limitations and uncertainty without belaboring the technical details. It is 
important to be transparent about the assumptions and value judgements made by the modelers in important to be transparent about the assumptions and value judgements made by the modelers in 

del framing and highlighting how those decisions affect model output del framing and highlighting how those decisions affect model output 
Uncertainty can be communicated verbally rather than numerically; scales such as the Uncertainty can be communicated verbally rather than numerically; scales such as the 

(Rapacciuolo, 2019)(Rapacciuolo, 2019). These facilitating factors are supported by ensuring that . These facilitating factors are supported by ensuring that 
models, or at least model outputs, are open access. models, or at least model outputs, are open access. 

Iterative learning and model evaluationIterative learning and model evaluation
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use model output to select and implement a decision, monitoring decision outcomes can provide 284

useful data for model validation (Figure 1). 285

 286

Box 1. Atlantis-SE: An Example of Successful Model Development and Use 287

Overview 288

The Atlantis modeling framework is a marine ecosystem model that has been used to 289

evaluate management strategies and to inform marine ecosystem-based management decisions. 290

The model includes two-way coupling of all components of the adaptive management cycle, 291

ranging from socioeconomic drivers (market, gear choice) to the biophysical system (climate, 292

mortality) and is intended to be used alongside others to assess system uncertainty. Atlantis has 293

been applied to many management decisions in Australia and the United States. For example, a 294

national-scale project in 2007 aided in the restructuring of south-east Australian federal fisheries. 295

The decision process assessed actions and their consequences, trade-offs between costs and 296

benefits, uncertainty, and the type of monitoring needed.  297

 298

Model Decision and Context 299

 In 2004, it was becoming clear that management measures in place were insufficient to 300

address the poo301

and Eastern Scalefish and Shark Fishery (SESSF). Stakeholders of all backgrounds 302

acknowledged the need to re-evaluate management options. A stakeholder-scientist collaboration 303

s -of-304

305

management strategies using Atlantis Southeast Australia (Atlantis-SE). The strategies tested 306

ranged from status quo to conservation-dominated management. After considering trade-offs 307

between priorities, no single management solution proved beneficial, though a strategy that used 308

a balanced set of actions performed well all around and ultimately inspired the aforementioned 309

restructuring of SESSF and the form of management now in place in the fishery (Elizabeth Ann 310

Fulton et al., 2014)). The approach worked so well that various versions of this Atlantis model 311

have been used over the past decade to explore other issues and options for the fishery (e.g., 312

(Fulton et al., 2016; Pethybridge et al., 2020).  313

 314

Things That Worked Well 315

 The modeling process of Atlantis successfully allowed for analysis of multiple scenarios 316

and drivers of change. The modular nature of Atlantis gave the users choice of model 317

formulation, so they were able to set complexity at their desired level. Despite the large number 318

of possible management options that could be tested, stakeholders established project goals early 319

on; this produced a few feasible strategies rather than overwhelming decision-makers. Model 320

uncertainty was communicated effectively with stakeholders by making the results of model runs 321

ranging from socioeconomic drivers (market, gear choice) to the biophysical system (climate, ranging from socioeconomic drivers (market, gear choice) to the biophysical system (climate, 
ess system uncertainty. Atlantis has ess system uncertainty. Atlantis has 

been applied to many management decisions in Australia and the United States. For example, a been applied to many management decisions in Australia and the United States. For example, a 
scale project in 2007 aided in the restructuring of southscale project in 2007 aided in the restructuring of south--east Australian federal fisheries. east Australian federal fisheries. 

essed actions and their consequences, tradeessed actions and their consequences, trade
benefits, uncertainty, and the type of monitoring needed. benefits, uncertainty, and the type of monitoring needed. 

In 2004, it was becoming clear that management measures in place were insufficient to In 2004, it was becoming clear that management measures in place were insufficient to 

and Eastern Scalefish and Shark Fishery (SESSF). Stakeholders of all backgrounds and Eastern Scalefish and Shark Fishery (SESSF). Stakeholders of all backgrounds 
evaluate management options. A stakeholderevaluate management options. A stakeholder

management strategies using Atlantis Southeast Australia (Atlantismanagement strategies using Atlantis Southeast Australia (Atlantis
ranged from status quo to conservationranged from status quo to conservation
between priorities, no single management solution proved beneficial, though a strategy that used between priorities, no single management solution proved beneficial, though a strategy that used 
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readily accessible. The success of Atlantis was also attributable to consulting often with a broad 322

range of stakeholders from start to finish. The model was calibrated and validated against 323

available datasets for the region (using training and test set approaches), largely catch and effort 324

data sets from the fishery, but also available diet and habitat data and observations of charismatic 325

megafauna (seabirds and marine mammals; (Fulton et al., 2007)). Overall, the Atlantis-SE 326

project successfully aided in the restructuring of Australian fisheries, due to precise model 327

parameters and goals, engagement of stakeholders throughout the project, and communication of 328

findings and uncertainty with decision-makers. The long ongoing collaborative relationship 329

between fisher representatives, managers, NGOs, and scientists in the region, due to the 330

participatory management system used in the fishery, was likely the strongest reason for the 331

success of the work overall. 332

 333
 334

Conclusion 335

Models provide a useful way to assess how policy decisions may impact biodiversity and 336

ecosystem services. However, no model can capture all aspects of a system. As noted by George 337

338

challenge to decision-makers, whose choices affect people's lives and environments. 339

Acknowledging implications of the model being wrong is important; can a robust finding be 340

made even if the model is imperfect, or could there be serious consequences of an incorrect 341

prediction? It is therefore important not just to communicate model uncertainties, but to work 342

actively with the intended users of the model outputs in unpacking assumptions and be open to 343

344

useful.  345

The recent IPBES global assessment highlighted that transformative changes are needed 346

347

of the transformative change, it is important to move towards transdisciplinary work with the 348

active participation of the different stakeholders (Clark et al., 2016; Grumbine and Xu, 2021). 349

While our understanding of how biodiversity contributes to human well-being has grown, many 350

models do not yet fully incorporate this relationship. Nevertheless, focusing only on technical 351

model improvements will not be enough to bring about transformative change for biodiversity. 352

While there is still an important role for traditional modeling approaches (e.g., for improving 353

scientific understanding), investing in the process surrounding a modeling exercise and 354

promoting two-way interactions between modelers and stakeholders is vital for successfully 355

contributing to decision-making processes. In particular, trust-building and establishing 356

relationships with decision-makers have proved key to increase buy-in to modeling as a key 357

element for knowledge-based decision making. In practice, this means working closely with 358

those involved in decision-making on the ground and at community levels, as well as at higher 359

policy-making levels. In this respect, nurturing knowledge exchange on the interpersonal level 360

Models provide a useful way to assess how policy decisions may impact biodiversity and Models provide a useful way to assess how policy decisions may impact biodiversity and 
services. However, no model can capture all aspects of a system. As noted by George services. However, no model can capture all aspects of a system. As noted by George 

makers, whose choices affect people's lives and environments.makers, whose choices affect people's lives and environments.
Acknowledging implications of the model being wrong is important; can a robust finding be Acknowledging implications of the model being wrong is important; can a robust finding be 
made even if the model is imperfect, or could there be serious consequences of an incorrect made even if the model is imperfect, or could there be serious consequences of an incorrect 
prediction? It is therefore important not just to communicate model uncerprediction? It is therefore important not just to communicate model uncer
actively with the intended users of the model outputs in unpacking assumptions and be open to actively with the intended users of the model outputs in unpacking assumptions and be open to 

The recent IPBES global assessment highlThe recent IPBES global assessment highl
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(e.g., through participatory processes), and on the institutional level (e.g., through promoting 361

science-policy interfaces across scales), represent promising approaches.  362
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