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Abstract
Recent work suggests to explain trade-offs between
soft goals in terms of their conflicts, i. e., minimal
unsolvable soft-goal subsets. But this does not ex-
plain the conflicts themselves: Why can a given
set of soft-goals not be jointly achieved? Here we
approach that question in terms of the underlying
constraints on plans in the task at hand, namely re-
source availability and time windows. In this con-
text, a natural form of explanation for a soft-goal
conflict is a minimal constraint relaxation under
which the conflict disappears (“if the deadline was
1 hour later, it would work”). We explore algo-
rithms for computing such explanations. A baseline
is to simply loop over all relaxed tasks and com-
pute the conflicts for each separately. We improve
over this by two algorithms that leverage informa-
tion – conflicts, reachable states – across relaxed
tasks. We show that these algorithms can exponen-
tially outperform the baseline in theory, and we run
experiments confirming that advantage in practice.

1 Introduction
Imagine planning the next Mars Rover Mission. Due to the
rovers’ limited resources and timing constraint for data col-
lection and uploads, only some of the rovers’ tasks can be
planned. Recent work by Eifler et al. [2020a; 2020b] sug-
gests to explain trade-offs between such soft goals in terms of
conflicts, i. e., minimal unsolvable soft-goal subsets. How-
ever, this does not give further insights into why the soft-
goals can not be jointly achieved. Understanding the cause
of these conflicts and possible resolutions are crucial to rea-
soning about different options and finding the best trade-offs.

Here, we explore the question of what causes soft-goal
conflicts in tasks with constraints such as resource avail-
ability and time windows. In this context, soft-goal con-
flicts can naturally be explained by identifying the mini-
mal constraint relaxations under which the conflict disap-
pears. For example the conflict {x-ray image, soil sample}
could be explained by :“The rover needs 2 more units of en-
ergy or the upload window to relay X needs to be 3 time
units longer, to perform both tasks”. A similar approach is
used in constraint programming [Lauffer and Topcu, 2019;

Senthooran et al., 2021], where they introduce soft con-
straints, to provide suggestions on how to modify an infea-
sible subset of constraints to make it feasible. We investigate
algorithms for computing such explanations based on mini-
mal relaxations in a set of given relaxations, which we instan-
tiate with resource and time window constraint relaxations.

Eifler et al. [2020b] introduced an algorithm which com-
putes all minimal unsolvable goal subsets of a task by ex-
panding the whole search space while tracking all maximal
solvable goal subsets. To reduce the search space size they
prune all states from which, according to a given heuristic, no
superset of the current incumbent solution is reachable. The
basic adaption of this procedure is to iteratively call it for each
relaxed task separately and compute the minimal relaxed task
where each conflict disappears in a post processing step.

We introduce two algorithms which improve over this
baseline by taking advantage of the fact that information like
reachable goal subsets and states can be propagated from one
relaxed task to another if the latter is more relaxed. The
first algorithm, Internal Constraint Reuse (ICR), iteratively
computes the conflicts for each increasingly relaxed plan-
ning task, and reuses the reachable subgoals from less re-
laxed tasks. This provides the pruning function with a grow-
ing set of reachable subgoals that it can use to prune parts of
the search space that do not contain any subgoals that have
not yet been achieved. The second algorithm, Search Space
Reuse (SSR), reduces duplicate work by iteratively increasing
one search space instead of generating a new one per relaxed
task. This is done by storing the search frontier of unreach-
able states for each task, and using it as the starting point for
more relaxed tasks. Thus for each relaxed task only the newly
reachable states are generated.

We show that these algorithms can exponentially outper-
form the baseline, with respect to number of generated states,
in theory. Experiments on 4 resource-centric domains and
3 domains with time windows show that both algorithms per-
form significantly better than the baseline in practice, and that
they are complementary to each other with respect to finding
explanations on resource- and time- centric domains.

2 Related Work
Sreedharan et al. [2019] explain the unsolvability of a task
by identifying a necessary subgoal of a relaxed task, which
is unachievable in the original task. They use relaxations



based on projections on subsets of the state variables. Thus,
this approach is not suited to quantify the relaxation neces-
sary to make the task solvable. An ‘excuse’ for unsolvabil-
ity, as defined by [Göbelbecker et al., 2010], is a series of
value changes in the initial state and addition of objects to
make a task solvable. Their approach is not aimed at pro-
viding an intuitive explanation of why the task is not solv-
able, but rather to point out errors in the model descrip-
tion. The automated scheduling system by Agraval et al.
[2020] is able to provide information on constraint relax-
ations for activities that could not be scheduled. Their main
focus is to identify all unsatisfied constraint of an activity
and present them alongside the schedule to help the user to
inspect them. So far, their analysis does not include any
reasoning on the extent to which a constraint needs to be
relaxed to schedule the activity. The unsolvability certifi-
cates provided by the proof system of Eriksson et al. [2017;
2018] are not intended to be human readable and do not pro-
vide information on how the task could be rendered solvable.

3 Preliminaries
3.1 Planning Formalism
A finite-domain representation (FDR) [Bäckström and Nebel,
1995] planning task with soft-goals is a tuple τ =
(V,A, I,Gsoft, Ghard), where V is a finite set of state vari-
ables v with domain D(v), A is a finite set of actions, and
I is a complete assignment to V called initial state. Gsoft

and Ghard are disjoint partial assignment to V called soft and
hard-goal. A state is a complete assignment to V . Variable-
value pairs v = d are referred to as facts, and (partial) vari-
able assignments are identified by sets of facts. The value
of v in the (partial) variable assignments s is referred to
as s(v). Each action consists of a precondition and effect
(prea, effa) defined as partial assignments to V . A action a
is applicable in a state s (appl(a, s) if prea ⊆ s. Apply-
ing a to s, denoted by s[[a]] = s′, changes the values of s
to s′(v) := effa(v) if effa(v) is defined and leaves them the
same s′(v) := s(v) otherwise. The resulting state of an it-
eratively applicable action sequence π is denoted by s[[π]].
A plan is an action sequence where Ghard ⊆ I[[π]]. Π(τ)
denotes the set of all possible plans for task τ . The prefix
a0 · · · ai of plan π = a0 · · · ai, aj · · · an up to action aj is
denoted by prefix(π, aj).
Running Example Our running example is based on the
IPC Rovers domain. One rover must collect up to three sam-
ples S0, S1, S2 and upload the data to a relay satellite. The
rover can perform three different actions: move between two
locations, take a sample if it is at the corresponding location,
and uploading the collected data at l0 or l3. The road map
and the initial location of the rover are depicted on the left in
Figure 1.
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Figure 1: Running Example

3.2 Planning with Consumed Resources
A consumed resource ρ with domain D(ρ) = [0, ρmax] ⊂ N
has an initial value initρ ∈ D(ρ) and a function δρ : A 7→ N
that maps each action to the amount of resource consumed
by that action. A state represents a complete assignment to
V ∪ {ρ}. An action a is applicable in a state s if prea ⊆ s
and the remaining value of ρ is sufficient to execute the action
s(ρ) ≥ δρ(a). Applying a in state s decreases the resource
by δρ(a): s[[a]](ρ) = s(ρ) − δρ(a). The amount of resource
ρ consumed by an action sequence π is given by con(π) =∑
a∈π δρ(a). An extension to multiple resources is defined

accordingly, where the set of all resources is denoted byR. In
our running example there is one resource B, battery energy.

3.3 Planning with Simple Time Windows
We restrict ourselves to an extension with a concept of time
that can be compiled to classical planning. This means dis-
crete time units and no parallel execution of actions.

A (start) time window is a tuple W = (AW , o, c) with
0 ≤ o ≤ c ≤ tmax. The application of the actions in
AW ⊂ A is constrained by the opening time o and closing
time c. The function δt : A 7→ N maps each action to its exe-
cution duration. The passed time units are represented by the
variable t with domain D(t) = [0, tmax]. A state represents a
complete assignment to V ∪ {t}. An action a is applicable in
a state s if prea ⊆ s and if a ∈ AW then o ≤ s(t) ≤ c holds.
Applying an action a in state s increases the passed time
by δt(a): s[[a]](t) = s(t) + δt(a). The execution duration
of an action sequence π is given by dur(π) =

∑
a∈π δt(a)

and the execution time point of action a in π is given by
exec(π, a) = dur(prefix(π, a)). An extension to multiple
time windows is defined accordingly, where the set of all time
windows is denoted withW . In the running example there is
one time window WU = ({upload(Si) | i ∈ {1, 2, 3}}, 4, 6)
which allows to upload data to the relay satellite only between
the time points 4 and 6.

3.4 Explanation Framework
In Eif20 framework Gsoft represents a set of plan properties,
specifically LTLf plan-preference formulas compiled into
(soft-)goal facts [Baier and McIlraith, 2006; Edelkamp, 2006;
Eifler et al., 2020b]. The explanation facility uses exclusion
dependencies between these plan properties to generate an-
swers to the users question. The soft-goals X,Y ⊆ Gsoft

exclude each other if all plans of τ that achieve all g ∈ X ,
do not achieve all g ∈ Y . The strongest dependencies of
this kind are given by the minimal unsolvable goal subsets
(MUGS) X ∪ Y = G ⊆ Gsoft where G cannot be achieved
but every G′ ( G can. The set of all MUGS for a task τ is
denoted by MUGS(τ).

4 Conflict Explanation Through Relaxations
We provide explanations for a soft-goal conflict based on
minimal constraint relaxations under which the conflict dis-
appears. In the following sections we define the relaxations
that are considered and how we identify explanations based
on a given set of relaxed tasks.



4.1 Relaxation Orders
In planning, the most general property of an abstraction or
relaxation T ′ of a planning task T is that all plans of T are
preserved [Culberson and Schaeffer, 1998; Edelkamp, 2001;
Seipp and Helmert, 2013]. This gives the most general defi-
nition of a relaxed task as:

Definition 1 (Relaxed Task). Let T be a planning task. Then
T ′ is a relaxed task of T (denoted by T v T ′) iff Π(T ) ⊆
Π(T ′).

Our explanation approach and algorithms make no further
assumptions about the specific implementation of relaxation.

To compute the explanation for a conflict in task T , we
assume a finial set of relaxed tasks T for T , where T ∈ T
and for all T ′ ∈ T : T v T ′, is given.

ForT the relation Ti v Tj represents a partial order, which
we will use to define a minimal relaxed task that resolves a
conflict. The partially ordered set T̂ = (T,v) we call in the
following a relaxation order for T .

The functions CU (T ) and CL(T ) denote the upper and
lower covers of T within T̂ . Given a partially ordered set
S then the upper cover of an element e ∈ S is the set
CU (e) = {e′ ∈ S | e′ > e ∧@e′′ ∈ S : e′ > e′′ > e}, and the
lower cover the set CL(e) = {e′ ∈ S | e′ < e ∧ @e′′ ∈ S :
e′ < e′′ < e}. One of our algorithms additionally assumes,
that T̂ has a supremum.

4.2 Resource and Time Constraint Relaxations
Now we instantiate the above with Resource and Time Win-
dow Constraint Relaxations.

Resource Constraint Relaxations
A task with consumed resources can be relaxed by increasing
the initial resource value.

Definition 2 (Resource Relaxed Task). Let T = (τ,R) be
a planning task τ with resources R. Then a resource re-
laxed task with respect to a resource ρ ∈ R is defined as
T ′ = (τ,R′) where ρ is replaced by resource ρ′ with D(ρ) =
D(ρ′) = [0, ρmax], δρ′ = δρ and ρmax ≥ initρ′ ≥ initρ.

A resource relaxed task indeed represents a relaxed task
according to Definition 1:

Proposition 1. Let T ′ be a resource relaxed task of T . Then,
Π(T ) ⊆ Π(T ′).

Proof sketch: Π(T ) ⊆ Π(T ′), because every action se-
quence π = a0 · · · an applicable in I of T is also applicable
in I ′ of T ′. For all actions ai ∈ π with πi = prefix(π, ai),
s = I[[πi]], s′ = I ′[[πi]] and c = con(πi), ai is applicable
in s′ because ai is applicable in s and s(V ) = s′(V ) and
initρ − c = s(ρ) < s′(ρ′) = initρ′ − c.

Making the application of an action cheaper by reducing
δρ is another option to relax a task with respect to a resource.
This is almost equivalent to increasing the initially available
resource, given that the resource is depletable and the action
appears once in the plan. We use increasing resource avail-
ability as a proxy for any reduction in resource consumption.

Using the set Tρ of all resource relaxed tasks of task T
with respect to ρ, we get a well defined relaxation order

T̂ρ = (Tρ,<) for T . Since all Ti ∈ Tρ are exclusively distin-
guished by initρi we have T < T ′ iff initρ < initρ′ , which re-
sults in a total order forTρ. The task T ′ where initρ′ = ρmax
represents the supremum of T̂ρ. The upper/lower cover of
T ′ ∈ Tρ is the relaxed task where the initial resource value is
one unit larger/smaller than in T ′.

For our running example we have four relaxed tasks for the
battery TB = {Ti | i ∈ {7, 8, 9, 10}}, where in Ti the initial
battery level is i.

Time Constraint Relaxations
A task with simple time windows can be relaxed by increas-
ing the time window, either by decreasing the open time or by
increasing the closing time.
Definition 3 (Time-Window Relaxed Task). Let T = (τ,W)
be a planning task τ with simple time windows W . Then a
relaxed task with respect to time window W = (AW , o, c) ∈
W is defined as T ′ = (τ,W ′) where W is replaced by W ′ =
(AW , o

′, c′) with 0 ≤ o′ ≤ o ≤ c ≤ c′ ≤ tmax.
A time-window relaxed task indeed represents a relaxed

task according to Definition 1:
Proposition 2. Let T ′ be a time-window relaxed task of T .
Then, Π(T ) ⊆ Π(T ′).

Proof sketch: Π(T ) ⊆ Π(T ′), because every action se-
quence π = a0 · · · an applicable in I of T is also applicable
in I ′ of T ′. For all actions ai ∈ π, exec(π, ai) is the same
in both tasks and with πi = prefix(π, ai), s = I[[πi]] and
s′ = I ′[[πi]], ai is applicable in s′ because ai is applicable in
s and if ai ∈ AW then o′ ≤ o ≤ exec(π, ai) ≤ c ≤ c′.

An alternative approach to relax a task with respect to time
constraints is the reduction of the execution time of an action
by decreasing δt. However, in addition to managing the in-
fluence on multiple time windows, handling the explosion of
possible relaxed tasks is not trivial, which is why we leave
this for future work.

The subsumption relation of the intervals [o′, c′] for time
window W yields the partial order for T̂W = (TW ,v),
where TW is the set of all time-window relaxed tasks of T
with respect to to W . The task with W ′ = (AW , 0, tmax) is
the supremum of T̂W . The upper/lower cover of T ′ ∈ TW
are the relaxed tasks where either o is decreased/increased or
c is increased/decreased by one compared to T ′.

For our running example we have 25 different relaxed tasks
for the upload windowTWU

= {Ti,j | i ∈ {0, 1, 2, 3, 4}∧j ∈
{6, 7, 8, 9, 10}}, where in Ti,j the open time is at i and the
closing time at j.

4.3 Conflict Explanation
We aim to generate explanations for the MUGS of T . Given a
relaxation order, we can now define for each MUGS whether
a task is minimal relaxed with respect to the MUGS.

Definition 4 (Minimally Relaxed Task). Let T̂ = (T,v) be
a relaxation order for task T . Then T ′ ∈ T is minimally
relaxed for conflict G /∈ MUGS(T ′) if for all T ′′ ∈ T : T ′′ <
T ′ → G ∈ MUGS(T ′′).

So a minimally relaxed task for conflict G is a minimally
relaxed task where G is no conflict anymore. All MUGS in



{MUGS(T ′′) | T ′′ ∈ T}, for which T ′ is minimally re-
laxed with respect to the relaxation order T̂ are denoted by
mr-MUGS(T̂ , T ′). The explanation for a conflict in T can
then be defined as:

Definition 5 (Conflict Explanation). Let T be a task with con-
flict G ∈ MUGS(T ). Given a relaxation order T̂ for T , then
the set of all minimally relaxed tasks for G, E(T̂ , G) = {T ′ |
G ∈ mr-MUGS(T̂ , T ′)}, is the set of conflict explanations
for G.

To illustrate the explanation for conflict G = {S0, S2}
in our running example we use the diagram in Figure 2.
The minimal relaxed tasks and therefore the explanations are
given as E = {T1,6, T4,7}: “Sample S0 and S2 can not both
be uploaded, because the upload window, needs either to start
3 units earlier or end 1 unit later”.
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Ti,j ∈ E(T̂ , G)

Figure 2: Part of hasse diagram for time relaxed tasks of running ex-
ample. [i1, j1] → [i2, j2] means Ti1,j1 ≤ Ti2,j2 . T3,7 /∈ E(T̂ , G)
because T4,7 < T3,7.

5 Internal Constraint Reuse (ICR)
In the following we introduce two algorithms which given
a relaxation order T̂ compute the mr-MUGS for each task.
Thereby, the mr-MUGS are not directly computed, but via
the maximal solvable goal subsets (MSGS) of each task.

From MSGS to mr-MUGS A MSGS is a soft-goal subset
G ⊆ Gsoft whereG can be achieved but everyG′ ) G cannot.
They serve as the foundation to compute mr-MUGS(T̂ , T ′)
for each task T ′ ∈ T in two post-processing steps. In a
first step, we compute the MUGS for every T ′ by perform-
ing a bottom up tree search over all subsets of Gsoft and use
the MSGS as a fast solvability check as introduced by Eif20.
Then, the MUGS for which T ′ is minimally relaxed are com-
puted as mr-MUGS(T̂ , T ′) = (

⋂
T ′′∈CL(T ′) MUGS(T ′′)) \

MUGS(T ′).

MSGS Computation Eifler et al. [2020b] compute the
MSGS for a task by exhaustively exploring the state space
while tracking all reached MSGS. To reduce the search space
size they introduce a pruning function, which prunes all states
from which no superset of the current MSGS is reachable.

Extending this algorithm, given a relaxation order T̂ =
(T,v) for T , we compute the MSGS for all T ′ ∈ T by it-
erating over T according to the partial ordering, starting with
T , and computing the MSGS for each task individually.

Since all plans are preserved when relaxing a task, for all
Ti, Tj ∈ T with Ti v Tj , all soft-goals G ⊆ Gsoft that are
reachable in Ti are also reachable in Tj . Thus, the MSGS of
Ti can be propagated to Tj .

Pseudo Code of ICR The pseudo code of the Internal Con-
straint Reuse (ICR) algorithm is given in Algorithm 1. The
underlying search algorithm for the state space exploration
of one task is depth first search (DFS) guided by a heuristic
(see [Eifler et al., 2020b]). This is abstracted by the func-
tion NEXT(O, h) which mimics the expansion order of DFS.
M (line 3) is a map from task to a set of soft-goal subsets
storing the MSGS for each visited task. The aforementioned
propagation of MSGS is achieved by initializingM[T̂ ] with
all MSGS reached in the lower cover of T̂ (line 6). Iterat-
ing over the relaxed tasks according to the partial ordering
is represented by the functions HASNEXT(T̂ ) and NEXT(T̂ ).
The order of incomparable elements is resolved randomly.
In order to take the already reached MSGS for a given
task into account when updating M (line 11), the function
EXTEND(M,G) returns M if there is a G′ ∈ M : G ⊆ G′

and {G′ ∈ M |G′ * G} ∪ {G} otherwise. The generation of
successor states of state s according to the semantics of task
T (SUCC(T, s)) is based on standard progression (see Sec-
tions 3.2 and 3.3). States are pruned (line 15) if no superset
of soft-goals or the hard goal cannot be reached based on the
heuristic estimation. This means PRUNE(T ′,M, h, s) returns
true if Ghard * R ∨ ∃G ∈ M : R ∩ Gsoft ⊂ G, where R is
the set of facts reachable from state s in task T ′ according to
heuristic h and false otherwise. For possible implementations
we refer to [Eifler et al., 2020b]. If a state satisfies all hard
and soft goals the search space exploration for the current re-
laxed task can be terminated early (line 13). All more relaxed
tasks than the current task are also solvable and their MSGS
are updated accordingly (line 14). Tasks whose MSGS have
already been determined are skipped by HASNEXT/NEXT.

Algorithm 1 Internal Constraint Reuse (ICR)

1: Given: relaxation order T̂ , heuristic h
2: function COMPUTEMSGS(T̂ , h)
3: M← {} .map of MSGSs
4: while HASNEXT(T̂ ) do
5: T̂ ← NEXT(T̂ ) .current relaxed task
6: M[T̂ ]←

⋃
T̂ ′∈CL(T̂ )M[T̂ ′] .propagate MSGS

7: O ← {INIT(T̂ )} .initial state of relaxed task
8: while |O| 6= 0 do
9: s← NEXT(O, h) .next state acording to expansion order

10: ifGhard ⊆ s then .update MSGS
11: M[T̂ ]← EXTEND(M[T̂ ], s ∩Gsoft)

12: if (Ghard ∪Gsoft) ⊆ s then .check and propagate solvability
13: ∀T ′ ∈ T̂ ∧ T̂ v T ′ :M[T ′]← Ghard ∪Gsoft

14: break
15: O ← O ∪ {s′ ∈ SUCC(T̂ , s) | ¬PRUNE(T̂ ,M[T̂ ], h, s′)}
16: returnM

6 Search Space Reuse (SSR)
The algorithm introduced in the previous section has an over-
head, because equivalent states are generated multiple times
in the separate search spaces. Instead of only reusing the
MSGS it can be beneficial to also reuse the search space.

As all plans are preserved in the relaxation of a task, for all
T ′ ∈ T and maximal relaxed task Ts = supremum(T̂ ) holds
(
⋃
T ′′∈CL(T ′) ST ′′) ⊆ ST ′ , where ST ′ are the states reach-

able from the initial state Is of Ts by plans of T ′. Thus, we



can base the computation of the MSGS for all relaxed tasks on
the search space of Ts. We start with exploring the reachable
state space with respect to T . All states that are generated in
the meantime, but which are not reachable in T , are stored in
a search frontier. To decide whether a state s is reachable in
a task T ′ or not, we check whether the action sequence π(s)
leading to s is applicable in T ′ (APPL(T ′, π(s))). In the fol-
lowing iterations the search frontier of less relaxed tasks are
further extended for more relaxed tasks. This limits the states
generated for each task to the newly reachable states.

Pseudo Code of SSR The pseudo-code of our Search Space
Reuse (SSR) algorithm is depicted by Algorithm 2. If not
mentioned explicitly, the algorithm parts work as described
for Algorithm 1. The map F (line 5) stores for each task T̂
the states which were generated during the search for T̂ but
were not reachable (line 17). In the first iteration the openlist
is initialized with the initial state of the maximal relaxed task
(line 6). In each further iteration it is initialized with the states
in F of all tasks in the lower cover of T̂ that are reachable
in T̂ (line 23-25). States are pruned by following the same
approach as in Algorithm 1 (line 16/23). However, instead of
basing the pruning on the current relaxed task T̂ it is based on
the maximal relaxed task Ts, because otherwise states which
could be reachable in more relaxed tasked, would be pruned.

Algorithm 2 Search Space Reuse (SSR)

1: Given: relaxation order T̂ , heuristic h
2: function COMPUTEMSGS(T̂ , h)
3: Ts ← SUPREMUM(T̂ ) .maximal relaxed task
4: M← {} .map of MSGSs
5: F ← {} .map of search frontiers
6: O ← INIT(Ts) .initial state of maximally relaxed task
7: T̂ ← NEXT(T̂ ) .current relaxed task
8: while True do
9: while |O| 6= 0 do

10: s← NEXT(O, h) .next state acording to expansion order
11: ifGhard ⊆ s then .update MSGS
12: M[T̂ ]← EXTEND(M[T̂ ], s ∩Gsoft)

13: if (Ghard ∪Gsoft) ⊆ s then .check and propagate solvability
14: ∀T ′ ∈ T̂ ∧ T̂ v T ′ :M[T ′]← Ghard ∪Gsoft

15: break
16: Ssuc ← {s′ ∈ SUCC(Ts, s) | ¬PRUNE(Ts,M[T̂ ], h, s′)}
17: F [T̂ ]← F [T̂ ] ∪ {s′,∈ Ssuc | ¬APPL(T̂ , π(s′))}
18: O ← O ∪ {s′ ∈ Ssuc | APPL(T̂ , π(s′))}
19: if ¬HASNEXT(T̂ ) then
20: returnM
21: T̂ ← NEXT(T̂ ) .current relaxed task
22: M[T̂ ]←

⋃
T̂ ′∈CL(T̂ )M[T̂ ′] .propagate MSGS

23: FC ←
⋃

T̂ ′∈CL(T̂ ){s
′ ∈ F [T̂ ′] | ¬PRUNE(Ts,M[T̂ ], h, s′)}

24: F [T̂ ]← {s′ ∈ FC | ¬APPL(T̂ , π(s′))}
25: O ← {s′ ∈ FC | APPL(T̂ , π(s′))}

7 Theoretical Comparison
The propagation of the MSGS can improve the pruning func-
tion, which is beneficial to both ICR and SSR. Although
reusing the search space in SSR reduces duplicate work, it
prunes states only with respect to their reachability in the
maximal relaxed task, not the current relaxed task. In the
following we compare the overall number of generated states
by each algorithm as a measure to decide whether they are ex-
ponentially separated. As the baseline algorithm we consider

ICR without the propagation of MSGS.
Definition 6 (Exponential Separation). Let {Tn|n ∈ N} be a
family of planning tasks of size (number of facts and actions)
polynomially related to n and S(X) the number of states gen-
erated by search method X. Then, search method X is expo-
nentially separated from search method Y iff |S(Y )− S(X)|
is exponential in n.

To give a family of planning tasks to prove the exponential
separations of the algorithms we use the following domain:
Domain Consider a planning task, where a robot has to visit
different locations. The robot’s movement is restricted by the
resource ρ, which can have the values {0, 1, 2}, with initial
value 1. Moving between connected locations consumes the
amount of resources depicted in the map in Figure 3. There
is one location annotated with K which holds a set of n keys.
The robot can pick up one key at a time (without using any
resources) if it is in the same location as the key. To take
the dashed connection the robot has to hold all keys. Since
the robot can pick up any combination of keys, there can be
exponentially many search states.
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R
L1 L2

L3 K

1
1

2

0 L0

R
L1

K

L2
1

1

1

Figure 3: left: Map of example for exponential separation of ICR
and SSR from baseline. Initial location L0, locations to visit L1 and
L2. right: Map of example for exponential separation of ICR from
SSR. Initial location L0 , goal visit L3.

In the following examples the pruning function uses the h2
heuristic [Haslum and Geffner, 2000] to decide reachability.
Theorem 1. ICR and SSR are exponentially separated from
the baseline.
Example Consider the map depicted on the left in Figure 3.

In the first iteration with initρ = 1 ICR and the baseline
generate 2 states (R at L0 and L1). SSR, with initρ = 2,
generates the same two states and 2 additional states (R at L2

and L3), which are not reachable and stored in the frontier.
For both ICR and SSR MSGS = {{L1}} is propagated. In
the next iteration of ICR (initρ = 2), moving to L3 is pruned
because no new locations are reachable from there. The same
holds for SSR. This leads to 2 + 3 and 4 + 1 states for ICR
and SSR respectively. For the baseline, reachability of L1 is
not propagated and moving to L3 is not pruned. Thus, we get
2 + 3 + 2 ∗ 2n states, for picking up any combination of keys.
Theorem 2. ICR is exponentially separated from SSR.
Example Consider the map depicted on the right in Fig-
ure 3. In the first iteration with initρ = 1, ICR generates only
one state. Moving to L1 is pruned because h2 recognizes that
L2 is not reachable with ρ = 1. In SSR, initρ = 2 prevents
pruning L1 and picking up any combination of keys. Thus,
1+2n reachable and 2n (at L2 with any combination of keys)
unreachable states are generated. In the last iteration in ICR
with initρ = 2 visiting L2 via the upper connection and ex-
tending the MSGS to {{L2}} leads to an early termination.
The same holds for SSR. This results in 1 + 3 states for ICR
and 1 + 2 ∗ 2n for SSR.



8 Experiments
We implemented both algorithms in the Fast Downward plan-
ning system [Helmert, 2006], extending the code base of Ei-
fler et al. [2020b]. The experiments were run on Intel E5-
2660 machines running at 2.20 GHz, with a time (memory)
limit of 2h (4GB) per benchmark instance.

8.1 Benchmark
Our benchmark consists of 4 resource-constraint domains
(Blocksworld, NoMystery, Rovers R, TPP) and 3 do-
mains (Parent’s Afternoon, Rovers T, Satellite) with time-
constraints. The former part builds on a subset of the resource
constraint benchmark by Eifler et al. [2020b]. In each in-
stance there are 2 individual resources R. For each resource
ρ ∈ R we generated one benchmark instance, scaling initρ
between 0 and two times the initial value in the original task.

Rover T and Satellite are extension of the corresponding
IPC domains with data upload windows for Rovers and time
windows to take the images for Satellite. Parents’Afternoon
is a new domain, that models a parent’s afternoon routine, in-
cluding shopping and various family member activities. The
execution of these activities is partially constraint by time
windows. For each time window W ∈ W we generated one
benchmark instance. For Parent’s Afternoon and Satellite,
each time window is relaxed between its original size and
the maximal value of the time variable domain in the orig-
inal task. For Rovers the relaxation of a upload window is
additionally bounded by the other upload windows.

Each benchmark instance has up to 5 plan properties that,
for example, restrict the order in which two goal facts are to
be achieved. All plan properties and the original goal facts of
the instance are soft goals. There are no hard goals.

8.2 Evaluation
The coverage results for the baseline (ICR without MSGS
propagation), ICR and SSR are given in Table 1. An instance
is considered to be solved, when the MUGS for all relaxed
tasks are computed. Comparing the ICR to the baseline shows
propagating the MSGS increases the coverage in 5 domains,
while not decreasing it in any. SSR solves more instances in 4
domains, while it is worse than the baseline in 2. ICR clearly
has the advantage over SSR in the resource domains, while it
is the other way around for the time constraint domains.

domain # base ICR SSR

re
so

ur
ce Blocksworld 40 18 18 19

NoMystery 50 12 24 9
Rovers R 40 20 20 15
TPP 30 11 19 9

tim
e

Parent’s A. 72 35 37 53
Rovers T 138 47 53 96
Satellite 198 123 130 144

Table 1: Coverage (number of instances solved); ICR and SSR: al-
gorithms introduced in Section 5 and 6; base: ICR without propaga-
tion of MSGS. Best result for each domain is highlighted in bold.

The increase in reachable states achieved by relaxing a time
window is typically much smaller than the increase by relax-
ing a resource constraint. Increasing a time window only adds
few more times at which a single action a ∈ AW could start.
However, as a is also constrained by all other time dependent

actions, there may not be many added reachable states. By
contrast, relaxing a resource allows you to add new actions
and increases the number of action orderings, which would
otherwise be constrained by too few resources. This is in fa-
vor for SSR, because it only considers the newly reachable
states. Comparing the number of expansions needed by each
algorithm per relaxed task, as depicted in Figure 4, confirms
this assumption. In the time constraint domains SSR expands
more states than ICR in the first task, but has much fewer ex-
pansions than ICR from then on. For the resource-constraint
task, the stronger pruning function in ICR is advantageous for
a wider span of relaxed tasks, such that SSR only needs fewer
expansions in more relaxed tasks.
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Figure 4: Comparison of average number of expansions over com-
monly solved relaxed task for each algorithm. Error bars represent
the 95% confidence intervals. top: resource constraint domains, x
value corresponds to number of available resource units; bottom:
time constraint domains, x value corresponds to size difference of
the relaxed time window to the original one.

Problems may not be solved either due to the exhaustion of
the time limit or the memory limit. For Blocksworld and all
time constraint domains, all algorithms ran out of time. For
the other resource constraint domains SSR failed due to the
memory limit. In TPP ICR failed due to the time limit and
in rovers due to the memory. Nomystery is the only domain
with a mixed reason for failure of ICR, with about 25% time-
outs and 75% memory limit exhaustion. Overall, timeout is
most common. This could be addressed by parallelizing the
computation of MSGS which have no strict order.

9 Conclusion
Our approach addresses the question why soft-goal conflicts
exist by identifying the minimal relaxation under which a
conflict disappears. Combined with the work of Eifler et
al.[2020a], this provides an explanation framework that can
explain trade-offs between soft goals by identifying not only
conflicting soft goals, but also options for resolving them.
This not only helps to better understand why a conflict ex-
ists, but also whether it can be resolved. In addition it enables
the user to evaluate the trade-offs and benefits of a relaxation.

Future work includes the evaluation in an application set-
ting and automatically identifying relevant relaxations for a
user and conflict.
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[Göbelbecker et al., 2010] Moritz Göbelbecker, Thomas
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