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Abstract: A multispectral backscattering LiDAR (Light detection and range) system (hereafter Ocu- 9 

lus) was integrated into a wave glider and used to estimate the scattering order (i.e., single vs mul- 10 

tiple collisions), inherent optical properties (IOPs) and characteristics of particulate scatterers (i.e., 11 

relative size, composition and motion) on shelf waters of South East Florida. Oculus has a dual- 12 

wavelength configuration (473 and 532 nm) and two detection geometries (off- and on-axis). Char- 13 

acteristics of scatterers were investigated based on two complementary LiDAR-derived proxies (the 14 

Structural Dissimilarity Index and the spectral slope of LiDAR backscattering). In March 2017, field 15 

measurements showed a covariation between direct and diffuse backscattering contributions dur- 16 

ing morning hours and away from shore. LiDAR attenuation coefficients explained up to 57% of 17 

IOPs variability. The analysis of LiDAR-derived proxies suggested higher turbidity and larger par- 18 

ticulates near the coast  19 
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 21 

1. Introduction 22 

The characterization of underwater scatterers based on light and range detection (Li- 23 

DAR) measurements has been fundamental in studies related to mapping of turbidity 24 

plumes [1] and thin scattering layers [2]. The main finding of these contributions was the 25 

differentiation of scattering layers in terms of vertical (e.g., nepheloid vs water column) 26 

and horizontal distributions (e.g., plankton patchiness). In that regard, the composition of 27 

scattering layers has been largely unknown during more than one decade due in part to 28 

the poor spectral resolution of LiDAR systems for water applications. To cope with this 29 

limitation, different techniques based on hybrid information (e.g., spectral reflectance and 30 

LiDAR backscattering) [3], relationships between optical properties derived from LiDAR 31 

waveforms [4], spatial statistics of LiDAR backscattering magnitude [5], signal thresholds 32 

(e.g., detection of fish schools) [6] and complementary use of hydrodynamic model simu- 33 

lations (e.g., Langmuir cells) [7] have been reported. 34 

The accurate detection and identification of relatively large scatterers (i.e., size pa- 35 

rameter = π D/ >>1,where D is the scatterer diameter and  is the wavelength) [8] highly 36 

relies on how well the ‘background’ scattering of the optical medium is removed. This 37 

baseline signal is determined by the inherent optical properties (IOPs) of the waters under 38 

investigation and is critical for optimizing LiDAR-based imagers of underwater features 39 

[9]. Also, LiDAR-derived IOPs (e.g., beam attenuation coefficient) can be used in models 40 

for estimating signal scattering orders (i.e., single vs multiple collisions) [10] and apparent 41 

optical properties (e.g., Kd or diffuse attenuation coefficient of downwelling irradiance, 42 

Table 1) needed on image denoising [4].     43 
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The use of autonomous robotic platforms such as gliders has a major potential for 44 

mapping large-scale (i.e., 500 km) distributions of optical properties (e.g., total backscat- 45 

tering coefficient (bb)) and derived biogeo-optical variables (.e.g, chlorophyll a concentra- 46 

tion, phytoplankton composition) in marine waters at high spatial resolution (i.e., cm) 47 

[11].Despite their scientific value, these glider-based optical determinations may be influ- 48 

enced by the light field (e.g., upward measurements near the surface during daytime) and 49 

glider-associated turbulence. Likewise, existing glider-based optical sensors do not pro- 50 

vide range-resolved information and are unable to distinguish relatively large scatterers.  51 

Here, a multi-FOV (Field-Of-View) and dual-wavelength LiDAR system (hereafter 52 

Oculus) is evaluated for characterizing IOPs and large scatterers in shelf waters of SE Flor- 53 

ida. Oculus was developed for NOAA (National Oceanic and Atmospheric Administra- 54 

tion) for studying the behavior of marine life and can be deployed in wave gliders (i.e., 55 

wave-propelled robotic platforms) [12]. Main advantages of using Oculus for detecting 56 

and discriminating scatterers are high spatial/temporal resolution (i.e., 100 waveforms per 57 

s, vertical resolution = 5.625 cm) [10] and the existence of two receivers (on- and off-axis) 58 

for estimating direct and diffuse scattering contributions to the total backscattering signal.    59 

This study has three main goals: 1)to determine diel changes of direct and diffuse scatter- 60 

ing components with respect to the distance to the shore, 2) to examine relationships be- 61 

tween LiDAR optical properties (e.g., LiDAR or system attenuation coefficient, Ksys) and 62 

IOPs for shelf waters of South Florida having a wide range of turbidity (i.e., range of beam 63 

attenuation coefficient, c at a wavelength of 532 nm 0.02-0.5 m-1), and 3) to evaluate two 64 

LiDAR-based and complementary proxies (the Structural Dissimilarity Index, SDI [13] 65 

and the spectral slope of LiDAR backscattering, mk [14)for discriminating different scat- 66 

terers in terms of motion, relative size and composition. This contribution is organized in 67 

three main sections. In section I, LiDAR scattering contributions (direct and diffuse) are 68 

estimated based on Independent Component Analysis (ICA) [15] of waveforms arriving 69 

to off- and on-axis receivers. Also, the variability of these contributions in our study area 70 

was interpreted with respect to environmental factors. In section II, Oculus-derived Ksys 71 

values were related to c and total absorption coefficients (a) in relatively clear and turbid 72 

waters (i.e., ~c z =  3 optical depths, where z is the water depth in m). Lastly in section III, 73 

scatterers were classified based on 2-D structure patterns (spatial and temporal) and spec- 74 

tral backscattering changes linked to particle size spectra and organic/inorganic content 75 

of suspended particulates. 76 

Table 1. Summary of acronyms 77 

 Definition Units 

FOV Field-of-View  

IOP Inherent optical property  

ICA Independent Component Analysis  

SSI Structural Similarity Index dimensionless 

SDI Structural Dissimilarity Index dimensionless 

SDIct SDI contrast dimensionless 

lum Luminance dimensionless 

ct Contrast dimensionless 

St Structure dimensionless 

 Wavelength of LiDAR source Nm 

A Total absorption coefficient m-1 

c Beam attenuation coefficient m-1 

nw Refractive index of seawater dimensionless 

Ksys System attenuation coefficient  m-1 



Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 19 
 

 

Kd Diffuse attenuation coefficient of 

downwelling irradiance 

m-1 

Xmix Backscattering power Relative units 

mk Spectral slope of Xmix dimensionless 

S Source signal Relative units 

Srec Reconstructed source signal Relative units 

2. Materials and Methods 78 

2.1. The LiDAR system  79 

The instrument has two non-scanning lasers with wavelengths centered in the blue 80 

( = 473 nm) and green ( = 532 nm) spectral range (Figure 1) [10]. The laser beams are 81 

parallel and were oriented at a nadir angle (i.e. perpendicular to the surface of the water 82 

and down-looking) (Figure 2). 83 

laser beam

off-axis receiver

on-axis receiver

 84 

Figure 1. The Oculus system. The laser beam at each wavelength has the same origin. 85 

The receivers have an angular separation of 174.5 mrad and a similar FOV of 34.9 86 

mrad. This geometry enhances the detection and discrimination of optical targets by al- 87 

lowing a real-time baseline correction by measuring direct and diffuse backscattered pho- 88 

tons (i.e., path-radiance) in a concurrent way. The beam divergence is 17.5 mrad and the 89 

source-receiver separation is 0.0606 m for both telescopes. This source-receiver (S-R) ge- 90 

ometry is an important design feature as high frequencies (i.e., >108 Hz) and associated 91 

dephasing of backscattered photons are sensitive to changes on S-R distance [16]. Oculus 92 

has an averaged laser power of 10 mW and 23.1 mW at 473 nm and 532 nm, respectively, 93 

a pulse repetition rate of 100 Hz and a pulse length of 1.27 and 1.12 ns (blue and green 94 

channels, respectively). The sampling frequency (i.e., digitization rate) during all experi- 95 

ments was 0.5 GHz. 96 

2.2. Field experiments  97 

Optical measurements were made on March 10, 2017 during daytime conditions. Sur- 98 

veys were done over shelf waters off Fort Lauderlade, Florida (26.1224° N, 80.1373° W). 99 

LiDAR measurements were obtained from a rotating pole attached to the stern of the ship 100 

(Newton 40) (Figure 2). LiDAR surveys were complemented with vertical profiles of c and 101 

a coefficients as derived from an absorption-attenuation meter (ac-9, accuracy ±0.001 m-1, 102 

sampling rate = 3 Hz, Wetlabs, Inc) at 9 wavelengths ( = 412, 443, 488, 510, 532, 555, 650, 103 



Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 19 
 

 

676 and 715 nm). Protocols describing processing and signal corrections applied to raw 104 

ac-9 measurements are reported in previous studies [17].  105 

The sampling design encompassed a time series over relatively deep waters (i.e., bot- 106 

tom depth range = 13.2-30.5 m, 26.065°N, -80.077°W) and during the morning (9:36:10:03). 107 

Two transects (12:10-12:29 pm and 13:04-14:26 pm) perpendicular to the shore and over 108 

shallower areas (bottom depth range = 7.4-14.7 m, 26.09°N, -80.09°W and 26.085°N, - 109 

80.095°W, respectively) were done during the afternoon. In order to detect substantial 110 

changes (spatial and temporal) on scatterers characteristics, only the first second of each 111 

capture (i.e., the first 100 shots per radiometric channel) were used.  112 

a)

c)

b)

 113 
Figure 2. Oculus deployment. Standby position (a), operational position (b), optical package launch (c) 114 

2.3. Direct and diffuse scattering components 115 

The backscattering signals arriving to on- and off-axis receivers can be interpreted as 116 

a linear sum of two variable backscattering contributions (direct and diffuse) associated 117 

to single and multiple scattering collisions, respectively. In that regard, ICA deals with 118 

the partition of a mixed signal that is composed by linear contributions terms. Unlike prin- 119 

cipal components, ICA is assuming latent variables having ‘non-Gaussian’ distributions 120 

and independent components that are not necessary orthogonal. Another important as- 121 

sumption of ICA is the independence between parameters that originated the mixed sig- 122 

nal. The initial step of ICA is the whitening (i.e., the covariance of decorrelated variables 123 

is an identity matrix) of the original data [15]. The calculation of ICA signal sources is 124 

performed by rotating the whitened matrix in order to minimize the Gaussian distribution 125 

behavior (‘Gaussianity’) between variables. Indeed, the central limit theorem states that a 126 

mixed signal is expected to be more Gaussian than its members.  127 

In this study, ICA calculations were performed by assuming two receivers (i.e., on- 128 

and off-axis) for measuring two mixed LiDAR signals (X1mix and X2mix) with a variable con- 129 

tribution of direct and diffuse backscattering components: 130 
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1 1,1 1 1,2 2( ) ( ) ( )mixX t a S t a S t= +                                            (1) 131 

2 2,1 1 2 2( ) ( ) ( )mixX t a S t a S t= +                                             (2) 132 

where S1 and S2 are original signal sources with a dominant direct and diffuse backscat- 133 

tering contribution, respectively, a1,1, a1,2, a2,1 and a2,2 are weighting coefficients that are 134 

influenced by the relative position and orientation of the receivers, and the type of photon 135 

interactions with the optical medium. The ICA analysis was restricted to three specific 136 

times (hereafter time bin = 110, 160 and 270 or time lags of 55,80 and 135 ns with respect 137 

to the receiver, respectively) representing the leading, descending (i.e., exponential atten- 138 

uation of power) and trailing portions of each waveform (Figure 3, Table 2). These por- 139 

tions correspond to different ‘energy attenuation regions’ where a and bb have different 140 

contribution to Ksys (e.g.,bb>>a and a>>bb in leading and trailing portions, respectively). In 141 

other words, LiDAR waveforms are sensitive to different IOPs and energy attenuation 142 

processes (e.g., dominance of direct and diffuse scattering in the leading and trailing por- 143 

tions, respectively) depending on range. Actually, the importance of scattering compo- 144 

nents (i.e., direct/diffuse) and IOPs (i.e., a and bb) for determining Ksys is more balanced as 145 

Xmix exponentially decreases with distance from the receiver.    146 

Table 2. Segmentation of LiDAR measurements based on time-resolved power variation 147 

 (nm) Receiver Waveform portion Time bin range 

473 On-axis Leading 107-142 

 Off-axis  100-113 

 On-axis Exponential 

attenuation 

138-300 

 Off-axis  115-200 

 On-axis Trailing 240-363 

 Off-axis  139-290 

    

532 On-axis Leading 104-146 

 Off-axis  105-115 

 On-axis Exponential 

attenuation 

146-300 

 Off-axis  117-200 

 On-axis Trailing 250-350 

 Off-axis  142-280 

Two case studies are presented showing the dominance of ‘soft’ backscattering fea- 148 

tures (i.e, np approximates to nw) at all detection times (Figure 3a) and the signal pertur- 149 

bation due to ‘hard’ backscattering features (np>> nw) at detection times between 100 and 150 

150 ns (Figure 3b). The ICA algorithm used here, also known as FastICA [15], has four 151 

major processing steps: data centering by subtracting the mean (1), whitening of centered 152 

data based on singular vector decomposition (2), maximization of ‘non-Gaussianity’ of 153 

whitened mixed signals based on kurtosis (3), and normalization/decorrelation of weights 154 

used to obtain the ICA signal sources (4). The ICA analysis is unable to extract the ampli- 155 

tude of the signal sources, thus the arithmetic mean (μ) and standard deviation () of X1mix  156 

and X2mix were used to reconstruct the magnitude of S1 and S2, respectively, by applying a 157 

z-scores transformation: 158 

, , ,( ) ( ( )) ( ) ( ( ))rec mix mix

k k k kS t X t IC t X t   = +                        (3) 159 
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where IC is the independent component and Sk,rec is the reconstructed signal for the signal 160 

source S with a dominant scattering contribution k. The proportion of variability of Sk,rec 161 

explained by X1mix and X2mix was quantified using the coefficient of determination (r2). 162 
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 164 

Figure 3. Mean range-resolved waveforms per capture. a) 9:36 am, b) 12:58 pm. Time bins 110, 160 and 270 (vertical magenta lines). 165 

2.4. Relationships between Ksys and IOPs 166 

Optical measurements derived from the ac-9 sensor were useful to interpret the scat- 167 

tering processes determining the LiDAR attenuation coefficient and the identity of Li- 168 

DAR-derived scatterers.. Indeed, the magnitude of Ksys varies between c and Kd or the 169 

diffuse attenuation coefficient of downwelling irradiance [4,18,19]. As c and/or FOV de- 170 

creases, the light field is expected to be less diffuse and Ksys tends to be c. Conversely, Ksys 171 

tends to be Kd when the water becomes more turbid, the FOV becomes larger and/or the 172 

laser beam divergence increases. The final outcome of reducing Ksys to Kd is a greater con- 173 

tribution of multiple photon collisions to total scattering and a light field that is more dif- 174 

fuse [19]. For each wavelength and detection geometry, Ksys values were computed for on- 175 

and off-axis receivers (hereafter Ksys(on-axis) and Ksys(off-axis), respectively) as the slope 176 

of log-transform (e-base) backscattering power (Xmix) as function of range (z): 177 
2 /

( ) sys wK z nmix

LX z A e
−

=                                                  (4) 178 

where AL is a constant related to the LiDAR system and nw is the mean refractive index of 179 

seawater (i.e., 1.44).  180 
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The range used for Ksys calculations was always within the exponential decay phase 181 

of the waveforms and differed between channels (i.e., 8.5-10.7 m and 10.03-12.3 m for on- 182 

and off-axis, respectively). For each Ksys estimate, the mean Xmix was computed based on 183 

the arithmetic average of the first 100 waveforms (i.e., 1 capture). The slope of each aver- 184 

aged waveform subset was derived by applying a linear regression model type-I [20] to 185 

Xmix changes as a function of range in m. Waveforms with the presence of strong backscat- 186 

tering features disrupting the exponential decrease of the LiDAR power with range were 187 

excluded from the regression analysis. The comparison of LiDAR attenuation coefficients 188 

with IOPs-derived from ac-9 measurements was made based on the arithmetic mean of a 189 

and c determinations within the water depths matching the LiDAR vertical range used for 190 

estimating Ksys. To avoid negative backscattering values, an offset of +100 was added to 191 

all signals (on- and off-axis) and the signal-to-noise ratio (S/N) was computed as the ratio 192 

of Xmix(on-axis)/Xmix(off-axis). The response of Ksys due to changes on IOPs was quantified 193 

by the coefficient of determination (r2) after adjusting a linear regression model type I. 194 

2.5. SDI 195 

The 2-D structure of Oculus-derived backscattering provides unique information re- 196 

garding temporal changes on scatterers distributions that can be mainly attributed to re- 197 

location of optical features due to passive or active motion. Notice that these changes may 198 

be associated to variations on backscattering intensity and/or blue/green ratios. The Struc- 199 

tural Similarity index (SSI) is a technique widely used in image processing for measuring 200 

the similarity between images or 2-D matrices [13]. In our case, the 2-D array is a lidargram 201 

or matrix composed by 100 consecutive LiDAR waveforms. Thus, it was assumed that local 202 

temporal variability was small with respect to spatial changes of Xmix along the boat sam- 203 

pling track and as a function of water depth. Thus, the magnitude of SSI is representative 204 

of 200 waveforms (i.e., 100 profiles per lidargram) or 2 seconds (~5.1 m along the boat di- 205 

rection) and is computed for each element i,j of the lidargram (i.e., horizontal and vertical 206 

component, respectively). For each i,j element corresponds to the anomaly of each wave- 207 

form computed with respect to the median of backscattering values between time bin 110 208 

and 250 (i.e., range = 6.7-14 m). The SSI index was computed as the product of three metrics 209 

(luminance,lum, contrast,ct, and structure,st) that apply to each element i,j of lidargrams 210 

to be compared (i.e., L1 and L2): 211 

, ,( 1 , 2 )i j i j kSSI L L
k k klum ct st

  

=                                      (5) 212 

1 2
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− +
=

+
                                              (8) 215 

where k is the capture time during the survey, ,  and  are weights set to 1, 
2  is the 216 

variance of element x (i.e., i or j) and 2

,i j  is the covariance between element i and j, 217 

respectively. c1, c2, and c3 are constants used to avoid a very small denominator and are 218 

affected by the dynamic range. SSI is affected by the size and type of the local window 219 

used to smooth the lidargram. In our study, the dynamic range was 256 and the local 220 

window was a Gaussian low-pass filter with a size of 11 and a standard deviation of 1.5.  221 
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The absence or presence of scattering features between lidargrams was quantified 222 

based on two parameters derived from SSI: 223 

, ,

,

( 1 , 2 )i j i j k

i j

i j

SSI L L

k n n
SSI =

+


                                      (9) 224 

1 kSSI
kSDI = −                              (10) 225 

k
on axis k off axis k

on axis k off axis k

SDI SDI

ct SDI SDI
SDI − −

− −

  −  
=
  +  

                           (11) 226 

where ni and nk are the sum of i and j elements, respectively, <SDI> is the arithmetic aver- 227 

age of the structural dissimilarity index. For each wavelength, SDIctin equation (11) is 228 

equivalent to the relative contrast of the backscattering signal between on-axis and off- 229 

axis receivers. The range of values for <SDI> and SDIct is 0-1. 230 

2.6. The spectral slope of LiDAR backscattering 231 

The benefits of using a LiDAR with multiple wavelengths in oceanographic applications 232 

has been already discussed by Gray et al [21]. Given their spectral emission and wave- 233 

length-dependency on water optical composition, the penetration depth of these systems 234 

can be optimized in environments with a variable turbidity. Likewise, LiDARs having a 235 

spectral resolution allows the identification of scatterers in terms of second-order prop- 236 

erties (e.g., mineral-content of particulates). This later advantage was explored here by 237 

calculating the spectral slope of LiDAR backscattering (mk): 238 

,473 ,532( ) ln( ( ) / ( )) / ln(473/ 532)mix mix

k k km t X t X t= −                 (12) 239 

where k is the receiver (on- or off-axis) with a centered wavelength . Notice that mk varies 240 

with range or time, thus spectral slopes were analyzed at those time bins described in 241 

section 2.3 and encompassing different ‘energy attenuation regions’ along the waveforms. 242 

Expression (12) was derived by applying a log-transformation to a hyperbolic function 243 

proposed for modeling IOPs [22].  244 

3. Results 245 

3.1. Scattering processes and shape of waveforms 246 

Examples of waveforms obtained by Oculus at two wavelengths were shown in Figure 3. 247 

The common backscattering volume peak associated to the ‘blue’ and ‘green’ on-axis 248 

channels was not totally coincident (i.e., photons arriving sooner at the ‘blue’ receiver). 249 

This shift was attributed to the asymmetry of viewing sensor angles making photons to 250 

arrive first at off-axis receivers (25.2 and 27.3 ns for ‘blue’ and ‘green’ channels, respec- 251 

tively) (Figure 3a). Notice that this arrival time difference varied with the water optical 252 

properties (e.g., turbidity) and the presence of ‘large-sized’ scatterers (i.e., ‘strong’ 253 

backscattering features present in on- and off-axis at the leading portion of the waveforms 254 

(e.g., 20.3 and 22.4 ns, respectively, Figure 3b). Despite the existence of these ‘high’ scat- 255 

tering events and differences between detectors in terms of gain and dynamic range (e.g., 256 

larger and wider for the green channel), no sensor saturation effects were observed. In a 257 

logarithmic space, the beginning of the leading portion of waveforms for on- and off-axis 258 

measurements was commonly visualized at 50 ns. For on-axis signals, the exponential de- 259 

cay phase was extended up to 210 ns after which the tail was characterized by a change of 260 

slope due likely to a greater contribution of multiple scattering. Conversely, time-resolved 261 

backscattering signals for off-axis waveforms were extinct (i.e., S/N<1) earlier (~195 ns). 262 

Perturbations on LiDAR backscattering measurements by a ‘hard’ scatterers can be seen 263 

as a large bulge on the arriving signal (see second peak at time bin 110 in Figure 3b). In 264 
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general, the overall impact of this disturbance was related to an increase of signal attenu- 265 

ation after the scattering event and subsequent backscattering oscillations at longer arrival 266 

times due to larger contributions of photons having multiple collisions. These oscillations 267 

must not be confused with the ‘ringing’ of the signal (i.e., periodic noise variations after a 268 

backscattering saturation event). 269 

The discrimination of time-resolved diffuse and direct backscattering photon contri- 270 

butions to Xmix was investigated here based on a subset of waveforms obtained during 271 

different times of the day and distances to the shore. As expected, the raw signal for on- 272 

axis and off-axis channels was associated to direct- and diffuse-dominated backscattering 273 

contributions, respectively (Figure 4). In general, the signal reconstruction was larger (i.e., 274 

larger explained variability by the response variable) at time bin 160 followed by time bin 275 

110 and 270 (r2 up to 0.99, 0.98 and 0.03 with P<0.001). In the leading portion of the wave- 276 

forms, the signal reconstruction of direct backscattering returns was higher with respect 277 

to that associated to diffuse photon contributions (e.g., explained variability difference up 278 

to 13% at  = 473 nm, Figure 4a-b), and this difference decreased at longer . At interme- 279 

diate detection times (i.e., time bin 160), the direct and diffuse backscattering contributions 280 

to Srec were comparable and not influenced by spectral changes. The ICA reconstruction 281 

of direct and diffuse backscattering components was at the tail of the waveforms was very 282 

poor or null (Figure 4e-f). 283 
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Figure 4. Reconstructed S sources.  = 473 nm (left panels),   = 532 nm (right panels), time bin 110 (top panels),  285 

160 (middle panels) and 270 (bottom panels); 1:1 relationships (solid line), r2 for direct (magenta) and diffuse (black) ICA components. 286 

 287 

The spatio-temporal variability of ICA components is depicted in Figure 5. In general, 288 

ICA values for direct and diffuse scattering contributions were less variable during morn- 289 

ing hours (i.e., shots 1-800). Also, ICA suggested that ‘direct and diffuse photons’ covaried 290 

positively in the leading portion of the waveforms (Figure 5a-b), a phenomenon that was 291 

no longer observed at larger distances from the receiver. 292 

 293 
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Figure 5. ICA components associated with direct- and diffuse-dominated backscattering components.  = 473 nm (left panels),   = 532 nm (right 295 

panels), time bin 110 (top panels), 160 (middle panels) and 270 (bottom panels). 296 

3.2. Response of Ksys to IOPs 297 

The attenuation of the LiDAR backscattering signal as a function of range of on-axis 298 

waveforms was substantially influenced by changes on water optical properties (Figure 299 

6). This influence was more remarkable with c and within the blue spectral range (P = 0.57, 300 

one-tailed t-Student, P = 0.004Figure 6a). At  = 473 nm, the a coefficient only explained 301 

one-third of attenuation changes on LiDAR backscattering (r2 = 0.30, P = 0.005, Figure 6b) 302 

and no clear relationships were established at the longer wavelength (r2 = 0.07, P = 0.126). 303 

Statistical relationships between Ksys(off-axis) and a values were weaker with respect to c- 304 

Ksys comparisons made at = 473 nm and 532 nm (P >0.05).Covariations between Ksys(on- 305 

axis) and Ksys(off-axis) values were present (r2 up to 0.32) for waveforms measured within 306 

the ‘blue’ and ‘green’ spectral range (P = 0.004 and 0.003, respectively, Figure 6c). In gen- 307 

eral, Ksys(on-axis) was larger than Ksys(off-axis) (twice in average and up to 2.7-fold at  = 308 

473 nm).  309 
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Figure 6. Relationships between Ksys and IOPs. a) c vs Ksys(on-axis), b) a vs Ksys(on-axis),  311 

and c) Ksys(off-axis) vs Ksys(on-axis). Regression functions (solid lines). 312 

3.3. Structural dissmilarity 313 

For on-axis measurements, the structural dissimilarity was highly variable between 314 

captures obtained in relatively deep waters (<SDI> = 0.08 ± 0.005, =473 nm, and 0.08 ± 315 

0.006,  = 532 nm, 9:36-10:03 am) and shallow (<SDI> 0.09 ± 0.005, =473 nm, and 0.08 ± 316 

0.006,  = 532 nm, 12:10-14:26 pm, arithmetic mean ± 2 standard errors) (Figure 7(a)-(b)) 317 

waters. However, maximum <SDI> values (>0.11) were always observed over areas near 318 

the coast and with smaller bottom depths.  319 
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Figure 7. Structural dissimilarity of lidargrams as a function of time. <SDI> (upper panels, circles), SDIct 321 

(lower panels, triangles).  = 473 nm (left panels),  = 532 nm (right panels), on-axis (solid circles), off-axis (empty 322 
circles); black (9:36-10:03 am), grey (12:10-13:27) and red (14:11-14:21). 323 

 324 

Morning LiDAR measurements were performed in waters having relatively low tur- 325 

bidity as inferred from c values (e.g., c(488) and c(532) up to 0.34 m-1 and 0.32 m-1, respec- 326 

tively). Conversely, during the noon and afternoon surveys (i.e., those in shallower areas), 327 

the water turbidity was higher (i.e., c(488) and c(532) up to 0.38 m-1 and 0.37 m-1, respec- 328 

tively) and lidargrams between consecutive captures were less alike. As expected, the 329 

mean structural dissimilarity values of waveforms obtained by off-axis receivers were rel- 330 

atively low (<SDI> range = 0.05 ± 0.03, arithmetic mean ± 2 standard errors) with respect 331 

to those computed for on-axis measurements (t-Student = 13.46 and 11.55 for =473 nm 332 

and 532 nm, respectively, two-tailed, P<0.001, N = 22, Figure 7(a)-(b)). Similar to on-axis 333 

receivers, off-axis measurements did not show clear spectral differences on <SDI> as val- 334 

ues for each wavelength were within the lower and upper bounds of two standard errors 335 

(i.e., 95% confidence level). Consistent with <SDI> variations, the SDI contrast between 336 

off-axis and on-axis signals tended to have relatively high and more variable values dur- 337 

ing the noon-afternoon hours (i.e., as high as 0.35) even though these changes were not 338 

statiscally significat(e.g., SDIct(morning) vs SDIct(afternoon), t-Student = -1.82, two-tailed 339 

P = 0.083) (Figure 7(c-d)).  340 

3.4. Spectral slopes of LiDAR backscattering 341 

The probability distribution function of mk values for on- and off-axis measurements 342 

obtained during the whole survey and at different detection times are presented in Figure 343 

8. In general, the magnitude of the spectral backscattering slope for on-axis waveforms 344 

was substantially larger (i.e., more 100-fold for some samples) and more variable with 345 

respect to those corresponding to off-axis measurements. 346 
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Figure 8. Normalized probability distribution function of mk. (a) on-axis, (b) off-axis. tb is the time bin.  348 

 349 

Most mk values with a probability higher than 50% varied from -4.7 to 6.4 and from - 350 

0.5 to 1.3 for on- and off-axis receivers, respectively. For on-axis measurements, the distri- 351 

bution of mk values approximated a Gaussian function for time bin 110 and 270 (Figure 352 

8a). Conversely, the normalized PDF of spectral backscattering slopes for time bin 160 was 353 

clearly left-skewed. Likewise, the magnitude of mk values at time bin 160 indicated a de- 354 

crease of backscattering at longer wavelengths. For off-axis measurements the shape of 355 

the normalized PDF was comparable between different detection times (Figure 8b). For 356 

time bins 110, 160 and 270, the arithmetic averages of mk during afternoon surveys were 357 

more positive (i.e., weaker decay of Xmix with range) with respect to those computed dur- 358 

ing morning hours (Table 4). In general, the S/N values for mk calculations were higher at 359 

time bin 160 followed in descending order by time bin 110 and 270.  360 

Table 4. Mean spectral slopes for different times of the day. <mk> arithmetic average of mk 361 

Time bin Receiver  morning noon-afternoon 

  <mk> S/N <mk> S/N 

110 on-axis 1.84 2.2 3.92 2.8 

 off-axis 0.64  1.20  
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160 on-axis -3.16 17.8 0.06 12.5 

 off-axis 0.16  0.42  

      

270 on-axis -0.38 1.6 1.40 1.4 

 off-axis -0.04  0.18  

 362 

4. Discussion 363 

The interpretation of results is organized in four main sections encompassing the 364 

following topics: the advantages of using ICA for estimating direct and diffuse LiDAR- 365 

derived scattering components (1), the physical meaning of Ksys in terms of IOPs (2),the 366 

impact of environmental conditions (i.e., turbidity and water depth) on temporal and 367 

spatial variability of different types of LiDAR-derived scatterers (3), and interpretation 368 

of spectral backscattering variations in terms of size distribution and composition of sus- 369 

pended particulates based on published studies (4).  370 

4.1. Direct/diffuse backscattering components 371 

The ICA algorithm was a useful technique to separate direct and diffuse scattering 372 

contributions at different time bins and wavelengths. Overall, ICA is a faster and more 373 

accurate technique for quantifying scattering sources than traditional Monte Carlo (MC) 374 

[9] and PCA (Principal Component Analysis) [23], respectively. Indeed, ICA does not 375 

need to follow the trajectory of each photon to elucidate its origin as MC simulations do 376 

and unlike PCA methods is capable to uncouple correlated interactions by discriminat- 377 

ing different probability distributions as derived from higher moments around the 378 

mean. In this study, direct and diffuse backscattered photons were mainly associated to 379 

signals detected by on- and off-axis receivers, respectively. This can be explained by the 380 

larger proportion of photon collisions inside and outside the FOV, respectively. In terms 381 

of detection times, the largest reconstruction of direct and diffuse backscattering compo- 382 

nents corresponded to the exponential decay portion of waveforms where the S/N of 383 

backscattered photons was higher with respect to those values characteristics of the 384 

leading and tail waveform sections. Also, the better discrimination of direct and diffuse 385 

components at time bin 160 was attributed to the greater ‘Gaussianity’ of probability 386 

distribution functions for photons arriving at time bin 110 and 270 (i.e., where multiple 387 

scattering contributions increase). 388 

4.2. LiDAR vs ac-9 optical properties 389 

The exponential decay of LiDAR backscattering power with range showed system- 390 

atic differences among waveforms captured by off-axis and on-axis receivers. In general, 391 

the signal attenuation was more remarkable for on-axis waveforms and this was at- 392 

tributed to the dominance of single scattering (backscattering + forward-scattering). As 393 

multiple scattering increases and the light field becomes more diffuse (i.e., off-axis meas- 394 

urements), the magnitude of Ksys decreases approaching Kd [4,18,19]. For on-axis meas- 395 

urements, Ksys had a stronger covariation with c values and suggests that scattering ra- 396 

ther than absorption is the driving process modulating Ksys in our measurements. As 397 

expected, this effect was more pronounced in the blue spectral range where backscatter- 398 

ing of particulates and water generally increases with respect to green wavelengths. 399 

The apparent insensitivity of Ksys(off-axis) to changes on IOPs distributions was 400 

likely attributed to the uncoupling of two important factors determining multiple scat- 401 

tering: path-length and water turbidity. For a constant c, multiple photon collisions are 402 
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anticipated to augment at longer distances from the receiver. This multiple scattering 403 

regime is usually identified as a change on the backscattering slope (i.e., ln(Xmix) as a 404 

function of range). As c increases, this slope break is expected to move with the maxi- 405 

mum path-radiance or common backscattering volume toward earlier detection times 406 

[23]. In fact, additional backscattering due to higher c values and greater contribution of 407 

multiple scattering leads to a shape deformation in the original waveform that is mainly 408 

characterized by backscattering slope changes in the leading and trailing sections and 409 

concurrent non-linear variations on Ksys. The optical configuration of the Oculus system 410 

is consistent with Ksys values that approximate c rather than Kd. Indeed, the composite 411 

product cR [19], where R is the illuminated spot at a specific range (e.g., 6.2, 9 and 15.1 m 412 

for time bins of 110, 160 and 270, respectively) was always very small (0.07 to 0.19) com- 413 

pared to 1. Likewise, light scattering was the dominant process determining LiDAR 414 

backscattering attenuation in our study and explained two important findings: (1) the 415 

response of Ksys(on-axis) to c changes was larger with respect to that associated to a vari- 416 

ations, and (2) the larger magnitude of Ksys(on-axis) with respect to Ksys(off-axis). In the 417 

last case, the difference between Ksys values suggests that Ksys(on-axis) has an additional 418 

attenuation term due to scattering as Ksys(off-axis) is mainly driven by light absorption. 419 

4.3 Diel and spatial patterns of scatterers  420 

A consistent pattern revealed by ICA at all detection times was the relatively low 421 

variability of ICA components during morning hours. This phenomenon was likely re- 422 

lated to the sampling design and environmental differences regarding water types. In 423 

the first case, morning surveys were part of a time series and explain why transects (i.e., 424 

noon-afternoon profiles) were characterized by having larger changes on ICA values as 425 

spatial measurements include two sources of physical variability (local + advective). In 426 

the second case, the water optical properties of the morning dataset were different from 427 

those measured during the noon-afternoon datasets. Indeed, the water turbidity as in- 428 

ferred from c suggested a predominant oceanic (coastal) water type during morning 429 

(noon-afternoon) profiles. Since the average size of particulates increases with turbidity 430 

[17,24], larger backscattering features were likely more abundant late during the day 431 

when surveys were closer to the shore. 432 

Assuming a negligible spatial variability between captures, the comparison of 433 

<SDI> and SDIct values for different sampling locations and times of the day suggested 434 

changes on mobility of scatterers during our surveys. Indeed, maximum values of simi- 435 

larity between lidargrams were found offshore. This observation was confirmed based 436 

on contrast index calculations (i.e., maximum SDIct values near the coast). The lack of 437 

coherence between LiDAR backscattering profiles near the coast was associated to 438 

higher water turbidity levels as inferred from c and associated changes on particle char- 439 

acteristics as discussed above. However, the motion of large-sized scatterers due to ac- 440 

tive swimmers (e.g., fish)[25] was likely another influencing factor. Reef fish along the 441 

south Florida shelf are known to be highly aggregated near the coast [26], thus it is likely 442 

that observed LiDAR backscattering patterns were partially related to fish distribution 443 

differences across the shelf. In general, <SDI> values associated to off-axis measurements 444 

were smaller with respect to those derived from on-axis measurements. This is not unex- 445 

pected as off-axis measurements are dominated by diffuse scattering contributions that 446 

are less influenced by the presence of relatively ‘strong’, ‘large-sized’ and less common 447 

backscattering features (e.g., jellyfish)[27]. These relatively rare optical features were in 448 

part responsible of augmenting <SDI> associated to on-axis waveforms and preferen- 449 

tially those obtained nearshore and at shorter wavelengths.  450 

4.4. Spectral backscattering variations 451 
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In general, on-axis waveforms were characterized by having a greater proportion of 452 

positive mk values (i.e., Xmix increases at longer wavelengths) with respect to those de- 453 

rived from off-axis measurements. This phenomenon was attributed to the greater sensi- 454 

tivity of on-axis measurements to ‘large-sized’ optical features (i.e., geometric cross sec- 455 

tion much larger than LiDAR wavelength). Time-series off the Massachusetts coast have 456 

shown consistent differences on spectral backscattering between different particle size 457 

distributions as derived from backscattering meters [14]. Indeed, Slade et al. found more 458 

negative spectral backscattering slopes (= 488-715 nm) when suspended particulates 459 

within the size range 5-50 μm were dominated by finer size fractions. Loisel et al. [28] 460 

computed the spectral backscattering slopes for different marine regions around the 461 

globe based on satellite observations and concluded that most estimates vary between 0 462 

and -3.5 with more positive values associated to eutrophic zones where suspended par- 463 

ticulates are larger. Lastly, tank experiments using LiDAR [21] found thatspectral 464 

backscattering slopes of  Arizona dust (mean diameter = Dm = 4.5 μm) were generally 465 

smaller (-1.72 to 0.57) with respect to those (-0.24 to 2.17) derived from large-sized or- 466 

ganic particles associated to a phytoplankton culture of I. galbana (Dm = 6.5 μm). Notice 467 

that LiDAR measurements made in [21] correspond to a biaxial geometry (i.e., detector 468 

and source are non-collocated), thus their resulting waveforms were more alike to our 469 

off-axis backscattering determinations.     470 

The spectral composition of backscattered photons differed between relatively shal- 471 

low and deep water locations (i.e., predominantly coastal and oceanic conditions, re- 472 

spectively) as mk values become more positive closer to the shore and during the after- 473 

noon (Table 4). This spatial trend was likely related to the greater proportion of ‘large- 474 

sized’ particulates and higher water turbidity near the shore. Spatial patterns on spectral 475 

beam attenuation, an optical proxy for particle size distribution [14], supports this hy- 476 

pothesis as high c(488)/c(532) ratios (i.e., a greater contribution of ‘small-sized’ particu- 477 

lates) tended to decrease closer to the shore (i.e., morning samples)(Figure A1, Appendix 478 

A). Gray et al. [21] pointed out a substantial increase of mk (e.g., -1.7 to -0.24 and 0.57 to 479 

2.17 in clear and turbid waters, respectively) in turbid waters (i.e., up to 6.5-fold increase 480 

of c(550)). Also, results on [21] showed composition effects on mk with more positive and 481 

negative values associated to organic-dominated (-0.24 to 2.17) and mineral-dominated 482 

(-1.72 to 0.57) particulates, respectively. In this study, the range of mk values derived 483 

from off-axis receivers suggest that particles assemblages had an intermediate chemical 484 

composition between inorganic-rich and organic-rich case studies. Likewise, the increase 485 

of mk values toward the coast in our surveys indicates that particle composition effects 486 

on mk were secondary with respect to those associated to PSD and/or turbidity changes.  487 

5. Conclusions 488 

The discrimination of underwater optical features and characterization of scatterers 489 

by standard LiDAR configurations is limited due to their relatively poor spectral resolu- 490 

tion and low signal/noise ratios. In this study, Oculus, a new multispectral LiDAR sys- 491 

tem was applied to understand scattering sources and their relationships with IOPs and 492 

scatterer types in shelf waters off the Southern Florida coast. In general, ICA suggested a 493 

more defined separation between direct and diffuse scattering contributions along the 494 

exponential decay of Xmix due to a higher S/N and the ‘non-Gaussianity’ behavior of the 495 

probability distribution function. This waveform region is commonly used to compute 496 

Ksys (range or non-range resolved LiDAR attenuation coefficient) and estimate IOPs. In 497 

our case, Ksys variability was linked to c as supported by in situ measurements and theo- 498 

retical considerations. The complimentary use of SDI/SDIct and mk was useful to identify 499 

scatterers in terms of their properties and distribution patterns. Indeed, structure dissim- 500 

ilarity indexes suggested a greater mobility of scatterers near the coast where mk also 501 
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indicated a greater predominance of relatively large-sized particulates and more turbid 502 

conditions.  503 

Author Contributions: Conceptualization, Martin Montes (M.M.) and Annu Vuorenkoski (A.V.); 504 
methodology, M.M.; software, Bryan Botson; validation, Ben Metzer.; formal analysis, M.M.; inves- 505 
tigation, M.M.; resources, A.V.; data curation, M.M.; writing—original draft preparation, M.M.; 506 
writing—review and editing, M.M. and A.V.; visualization, M.A..; supervision, A.V.; project admin- 507 
istration, A.V.; funding acquisition, A.V.  508 

Funding: This work was supported by the NOAA award NA140AR4320260 to the Cooperative In- 509 
stitute for Ocean Exploration,Research and Technology. The authors gratefully acknowledge sup- 510 
port from the NOAA CIOERT at HBOI/FAU. 511 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 512 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu- 513 
script,or in the decision to publish the results. 514 

References 515 

1. F.E. Hoge, C.W.; Wright., W.B.; Krabill, R.R.; Buntzen, G.D.; Gilbert, R.N.; Swift, R.N.; Yungel, J.K.; Berry, R.E. Airborne 516 
lidar detection of subsurface oceanic scattering layers. App. Opt. 1998, 27, 3969-3977. 517 

2. Churnside, J.H.., Donaghay, P.L. Thin scattering layers observed by airborne lidar. ICES J. Mar. Sci. 2009, 66, 778–789.  518 
3. Montes-Hugo, M.A. Churnside, J.H.,Gould, R.W.,Arnone, R.A.,Foy, R. Spatial coherence between remotely sensed ocean 519 

color data and vertical distribution of lidar backscattering in coastal stratified waters. Remote Sens. Environ. 2010, 114, 2584– 520 
2593.  521 

4. Montes, M.A., Churnside, J., Lee,Z., Gould, R., Arnone, R.,Weidemann, A. Relationships between water attenuation coef- 522 
ficients derived from active and passive remote sensing: a case study from two coastal environments. Appl. Opt. 2011, 50, 523 
2990–2999. 524 

5. Montes, M.A., Vuorenkoski, A.K., Dalgleish, F.R., Ouyang, B. Characterization of underwater scattering layers based on 525 
variance components of LiDAR backscattering. Opt. Exp. 2019, 27, A1084-A1108. 526 

6. Brown, E.D.,Churnside, J.H., Collins, R.L.,Veenstra, T.,Wilson, J,J., Abnett, K. Remote sensing of capelin and other biolog- 527 
ical features in the North Pacific using lidar and video technology. ICES J. of Mar. Sci., 2002, 59, 1120-1130. 528 

7. Churnside, J.H., Marchbanks, R.D., Donaghay, P.L., Sullivan, J.M., Graham, W.M., Wells, R.J.D. Hollow aggregations of 529 
moon jellyfish (Aurelia spp.). J. of Plank. Res., 2016, 38, 122–130.  530 

8. Clavano, W.J., Boss, E.S., Karp-Boss, L. Inherent optical properties of non-spherical marine-like particles -from theory to 531 
observation. Oceanogr Mar Biol. 2007,245, 11–38. 532 

9. Montes, M., Carder, K. Monte Carlo simulations as a tool to optimize target detection by AUV/ROV laser line scanners. 533 
Proceedings of SPIE - The International Society for Optical Engineering, 2005, 5799. 534 

10. Strait, C., Twardowski, M., Dalgleish, F., Tonizzo, A., Vuorenkoski, A. Development and assessment of lidar modeling to 535 
retrieve IOPs. Proceedings of SPIE: Ocean Sensing and Monitoring X, 2018, 10631.  536 

11. Montes-Hugo, M.A.,Gould, R.,Arnone, R.,Ducklow, H., Carder, K., ;English, D., Schofield, O., Kerfoot, J. Beyond the first 537 
optical depth: fusing optical data from ocean color imagery and gliders. Proceedings of SPIE 7459, Ocean Remote Sensing: 538 
Methods and Applications, 2009, 74590N.  539 

12. Aulicino, G., Cotroneo, Y., Lacava, T.,Sileo,G., Fusco, G., Carlon, R.,Satriano, V.,Pergola, N.,Tramutoli, V.,Budillon, G.Re- 540 
sults of the first Wave Glider experiment in the Southern Tyrrhenian Sea. Advances in Oceanography and Limnology,2016, 541 
7,16-35. 542 

13. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE 543 
Trans. Image Process. 2004, 13, 600–612. 544 

14. Slade, W.H., Boss, E. Spectral attenuation and backscattering as indicators of average particle size. App. Opt. 2015, 54, 7264- 545 
7277. 546 

15. Hyvärinen, A.,Oja,E. Independent Component Analysis: Algorithms and Applications. Neural Networks 2000, 13,411-430. 547 
16. Luchinin,A.G., Kirillin, M.Y.,Dolin, L.S. Backscatter signals in underwater lidars: temporal and frequency features. App.  548 

533 Opt. 2018, 57,673-677. 549 
17. Mohammadpour, G.,Gagné, J.P.,Larouche, P.,Montes-Hugo, M. Optical properties of size fractions of suspended particu- 550 

late matter in littoral waters of Quebec. Biogeosc., 2017,14, 5297-5312. 551 
18. Walker,R.E., McLean,J.W. Lidar equations for turbid media with pulse stretching. Appl. Opt., 1999,38, 2384–2397. 552 
19. Gordon, H.R. Interpretation of airborne oceanic lidar: effects of multiple scattering. Appl. Opt.,1982, 21, 2996–3001. 553 
20. Sokal, R.R.,Rohlf, J. Biometry: The Principles and Practices of Statistics in Biological Research. 2009, Third edition, ISBN- 554 

10: 0716724111, 880 p. 555 
21. Gray, D.,Anderson, J.,Nelson, J., J. Edwards. Using a multiwavelength LiDAR for improved remote sensing of natural 556 

waters. Appl Opt.,2015,54, F232-F242. 557 



Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 19 
 

 

22. Boss,E., Pegau,W.S.,Lee, M., Twardowski, M.,Shybanov, E., Korotaev, G., Baratange, F. Particulate backscattering ratio at 558 
LEO 15 and its use to study particle composition and distribution. J. of Geophys. Res. Atm. 559 
2004,109,DOI:10.1029/2002JC001514. 560 

23. Montes, M, Vuorenkoski, A.K., Dalgleish, F.R., Ouyang, B. Weibull approximation of LiDAR waveforms for estimating the 561 
beam attenuation coefficient. Opt. Expr. 2016, 24, 22670-22681. 562 

24. Boss, E., Twardowski, M.S., Herring, S. Shape of the particulate beam attenuation spectrum and its inversion to obtain the 563 
shape of particulate size distribution. Appl. Opt. 2001, 40, 4885–4893. 564 

25. Dubrovinskaya, E.,Dalgleish, F.,Ouyang, B.,Casari, P. Underwater LiDAR Signal Processing for Enhanced Detection and 565 
Localization of Marine Life. In: MTS/IEEE OCEANS 2018, 28-31 May 2018, Kobe, Japan. 566 

26. Lindeman, K.C. Development of grunts and snappers of southeast Florida; crossshelf distributions and effects of beach 567 
management alternatives. 1997, Ph.D. dissertation (unpublished). University of Miami. 568 

27. Van der Zande, D., Green,J., Ruddick, K., JellySpec: feasibility study for determining the spectral characteristics of jellyfish 569 
from Belgian waters. Ocean Optics XXII conference, 2014, Portland, USA, 26-31 October 2014. 570 

28. Loisel, H., Nicolas,J.M., Sciandra, A., Stramski, D.,Poteau, A. Spectral dependency of optical backscattering by marine par- 571 
ticles from satellite remote sensing of the global ocean. J. Geophys. Res., 2006, 111, C09024, doi:10.1029/2005JC003367.  572 

 573 
 574 

Appendix A 575 
 576 

Local time

  09:00:00   11:00:00   13:00:00   15:00:00

S
p
ec

tr
al

 s
lo

p
e

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

c

a

 577 
 578 
 579 

Figure A1. Temporal variability of spectral slopes for IOPs derived from ac-9 and based on Boss et al. [22]. 580 
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