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Abstract 12 

High-Mountain Asia (HMA) exhibits one of the highest increases in vegetation greenness 13 

on Earth, subsequently influencing the exchange of water and energy between the land surface and 14 

the atmosphere. Given the strong interactions between the hydrosphere, the biosphere, and the 15 

cryosphere, understanding the drivers of greening in this highly complex region with significant 16 

land cover heterogeneity is essential to assess the changes in the regional water budget. Here we 17 

perform a holistic multivariate remote sensing analysis to simultaneously examine the primary 18 

components of the terrestrial water cycle from 2003 to 2020 and decipher the principal drivers of 19 

greening in HMA. We identified three drivers of greening: (1) precipitation drives greening in mid 20 

and low elevation areas covered by evergreen and mixed forests (e.g., Irrawaddy basin), (2) 21 

decreases in snow enhance greening in most of the hydrologic basins, and (3) irrigation induces 22 

greening in irrigated lands (Ganges-Brahmaputra and Indus). 23 

 24 
1. Introduction 25 

Understanding changes in vegetation, a key component of the biosphere, is critical to 26 

improving our ability to predict, mitigate, and adapt to future changes in climate1. Over the past 27 

decades, satellites enabling large-scale vegetation monitoring such as measurements of leaf area 28 

index (LAI) have revealed that our planet is greening2–6. While greening is primarily caused by 29 

CO2 fertilization2,3,7–10 it could also potentially be attributed to or exacerbated locally by land 30 

management and precipitation trends3. Earth’s greening impacts hydrologic connectivity and 31 

fluxes7,11–13 as well as atmospheric dynamics14,15. Therefore, assessing greening drivers is essential 32 

to deepen our understanding of the two-way interactions between the changes in the biosphere and 33 

the hydrosphere, which in turn, is crucial to improving our understanding of the movement and 34 

transfer of water and energy from the subsurface to the atmosphere.  35 
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High Mountain Asia (HMA), a high-elevation geographical area (considered as the region 36 

from 20°N to 46°N, and 60°E to 111°E here), includes the Asian mountain ranges surrounding the 37 

Tibetan Plateau (Figure 1) and hosts the world’s largest reservoirs of glaciers, ice, and snow 38 

outside the polar regions. Multiple processes control its terrestrial water budget including 39 

cryospheric sources of water (snow, glacier, and permafrost melting), monsoon and westerlies 40 

dynamics, and anthropogenic activities such as irrigation and pumping. The region encompasses 41 

many important and large-scale hydrologic basins (e.g., the Ganges-Brahmaputra, the Indus, and 42 

the Yangtze) and is home to over a billion people, who rely on its water towers16,17 for agriculture, 43 

ecosystems preservation, livelihood, and energy. The topography, hydroclimate, and vegetation of 44 

HMA are highly heterogeneous. Elevation ranges from the sea level to the world’s highest point 45 

(i.e., Mount Everest), and the land cover includes evergreen forest, croplands, grasslands, and bare 46 

soil.  47 

HMA is already experiencing the impacts of global warming18,19 which includes both 48 

changes in precipitation and increases in temperature20–25 at an alarming rate. In addition, India 49 

and China have one of the highest rates of greening on Earth20,26–30 that could be attributed to 50 

changes in climate25,31,32, land use, and land cover2,26,28. While ~79% of greening on Earth is 51 

attributed to CO2 fertilization and nitrogen deposition2,3, in HMA, the high increases in vegetation 52 

greenness are moisture-induced49 and are caused by changes in climate and land use2,3. In this 53 

study, we analyze how climatic and anthropogenic factors affect the moisture-induced greening in 54 

HMA. A better understanding of the drivers of greening in HMA will provide insights into its 55 

impacts on water resources as well as the interactions between the land and the atmosphere22,30,33,34. 56 

Here we employ a holistic approach that simultaneously analyzes multiple processes at the 57 

interface of water and vegetation dynamics to identify the principal drivers of greening. We utilize 58 
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a large set of remote sensing products to study the water and energy cycle changes from 2003 to 59 

2020. The increase in vegetation greenness is quantified using the LAI data provided by 60 

MCD15A2H Version 6 Moderate Resolution Imaging Spectroradiometer (MODIS)35. We then 61 

link these changes to the above and below root zone hydrodynamics as well as atmospheric 62 

processes. Specifically, the key land surface processes (snow dynamics by analyzing the snow 63 

cover fraction provided by MODIS MOD10CM36 and soil moisture provided by the European 64 

Space Agency Climate Change Initiative ESA CCI37) and the variations of the terrestrial water 65 

storages measured by the Gravity Recovery And Climate Experiment GRACE38 are examined 66 

here. These changes in water availability enabling greening are then linked to either anthropogenic 67 

activities (i.e., irrigation) or changes in atmospheric conditions (i.e., precipitation and air 68 

temperature) by analyzing gridded surface meteorology products including ECMWF’s fifth 69 

generation of atmospheric reanalysis of the global climate ERA539 and the Final product of the 70 

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement IMERG40. Our study 71 

shows that depending on the elevation, the land cover, and the land use, greening in HMA is driven 72 

by three main factors: intense irrigation, decreases in snow cover, and an increase in precipitation. 73 

The spatial distribution of the relative influence of these factors is captured in Figure 2. 74 

2. Results 75 

The increase in vegetation greenness is highly heterogenous in HMA. Regions located in 76 

low and mid- elevation (< 4000 m) have the highest rates of increase (Supplementary Figure A1). 77 

Changes in LAI also depend on the type of land cover: evergreen and mixed forests representing 78 

around 13% of HMA have an increase in LAI equal to 0.011 m2m-2year-1, croplands covering 79 

~18% of HMA have an increasing trend of LAI equal to 0.01 m2m-2year-1, and grasslands covering 80 

~16% of HMA have an increasing trend of LAI equal to 0.0036 m2m-2year-1on average.  81 
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Irrigation-induced greening 82 

Increases in vegetation greenness stemming from agricultural practices mainly appear in 83 

the Ganges-Brahmaputra and the Indus basins, the two agricultural and densely populated 84 

hydrologic basins in HMA where intense irrigation41 and pumping42 occur. Moreover, croplands 85 

of these two basins show the highest increases in LAI in HMA (up to 0.04 m2m-2year-1 in the 86 

Ganges-Brahmaputra and 0.03 m2m-2year-1 in the Indus), these results are similar to the ones 87 

documented in previous works3,43. Besides, the world’s highest TWS decreases are found in this 88 

area (up to -10 cm/year in the Ganges-Brahmaputra and 4 cm year-1 in the Indus, Supplementary 89 

Figures A2 and A3), similar to the previous works42,44–46. Groundwater provides approximately 90 

60% of the water used for irrigation and over 80% of the rural and urban domestic water supplies 91 

in India originate from groundwater, making India the world’s largest user of groundwater47. 92 

Groundwater withdrawals deplete the aquifers and yield a decrease in TWS whereas irrigation 93 

adds more water in the soil, increasing the soil moisture. Figure 3 shows the unique contributions 94 

of soil moisture and snow cover to TWS and LAI changes using a non-parameteric information 95 

theory analysis (Section 4.2). As shown in Figure 3a, the partial information decomposition of 96 

TWS is strongly linked to the changes in soil moisture, over Indus and Ganges-Brahmaputra. 97 

Increases in soil moisture by irrigation led to more water available to sustain the crops and to 98 

enhance vegetation greenness 26,43,48,49. Consequently, increases in LAI are mainly driven by the 99 

changes in soil moisture as indicated by the unique information of soil moisture (Figures 3a and 100 

b). The low unique and redundant information of precipitation and temperature about the soil 101 

moisture in the area (Figure 4) confirms that the increases in soil moisture at a rate equal to 102 

~2%/year (Supplementary Figures A2 and A3) are neither linked to precipitation nor temperature 103 
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rather the intense water applied through irrigation despite an increasing trend of precipitation equal 104 

to 0.06 mm day-1year-1 (Supplementary Figures A2 and A3) in some gridded products.  105 

Warming-induced greening 106 

Here we refer to warming-induced greening as a consequence of the increase in soil 107 

moisture deriving from the decreases in snow rather than the direct impact from increase in air 108 

temperature. The increase in air temperature in HMA (up to 0.6°C on average in the Tibetan 109 

Plateau and other areas subject to strong interactions with the cryosphere such as the mountain 110 

ranges of the Hindu Kush and Pamir) has led to a decrease in snow cover fraction (> -0.4% year-111 

1) and an increase in soil moisture (up to 1% year-1; Supplementary Figure A2). As a result, there 112 

is more water available for vegetation growth 54–56. Moreover, warming tends to shorten the snow 113 

accumulation time57 which increases the growing season for vegetation. In these basins, changes 114 

in LAI and TWS are due to both the variations of snow cover fraction and soil moisture due to 115 

their interdependence (Figures 3a and b). We attribute greening to the decreases in snow cover as 116 

it causes the soil moisture to increase. As such, the direct impact of temperature on soil moisture 117 

is low. Greening in response to the decreases in snow is observed in eight out of eleven HMA 118 

hydrologic basins. While only a small portion of greening in the Ganges-Brahmaputra and the 119 

Indus is controlled by the decreases in snow cover fraction, increases in vegetation greenness in 120 

the Tibetan Plateau, Hwang Ho, Ili, Amu Darya, Syr Darya, and Tarim are mostly driven by 121 

warming.  122 

TWS at the boundary of the Tibetan Plateau is uniquely controlled by the changes in snow 123 

cover whereas both soil moisture and snow cover contribute to the changes in TWS in the center 124 

portion of the Tibetan Plateau (Figure 3a). The Tibetan Plateau, experiencing one of the highest 125 

rates of warming in the world18,58–62 depicts a decrease in the annual snow cover fraction 126 
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(Supplementary Figure A2), however, only summer and fall snow cover sees a significant decrease 127 

while snow cover fraction in winter tends to increase 63,64. This is due to an increase in precipitation 128 

at a rate varying from between 0.01 to 0.04 mm day-1year-1 (Supplementary Figure A2) on average 129 

depending on the dataset. The observed warming in the Tibetan Plateau is likely not sufficient to 130 

shift the precipitation phase. Because both precipitation and temperature move to a direction 131 

favorable to greening, the small increases in LAI in the Tibetan Plateau are driven by both soil 132 

moisture and snow cover fraction (Figures 3a and b) which create more water available for 133 

vegetation growth and longer growing seasons. As in this work, previous studies have attributed 134 

greening in the Tibetan Plateau to both changes in temperature and precipitation; besides, some 135 

studies have shown that the increases in temperature lead to conditions amenable to the plant 136 

activity in addition to enhancing photosynthesis and leading to a longer growing season25,65,66.  137 

Despite an increase in precipitation in the Yangtze (with an average rate equal to 0.03 mm 138 

day-1year-1; Supplementary information, Figure A1) resulting from an increase in frequency and 139 

intensity of extreme precipitation67,68, snow cover decreases due to increased air temperature 140 

(~0.2°C year-1). Greening in this portion of the Yangtze basin where the elevation is higher than 141 

1500 m is predominantly controlled by the decreases in snow cover as the unique information of 142 

soil moisture about LAI as well as the redundant information between soil moisture and snow 143 

cover are low (Figures 3a and b). This is because summer and fall snow cover in this area covered 144 

by mixed forest has decreased which led to a longer growing season and subsequently an increase 145 

in vegetation greenness.  146 

In the Ganges-Brahmaputra and the Indus, the decrease in TWS in response to the decrease 147 

in the cryospheric storages is restricted to certain elevation ranges (elevation > 3000 m) and 148 

landcover type (a mixture of evergreen and mixed forests). However, the magnitude of the TWS 149 
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trends (~0.1 cm year-1) is lower than in the irrigated lands. Both soil moisture and snow cover 150 

control TWS and LAI as indicated by the partial information decomposition (Figures 3a and b). 151 

The decreases in snow cover fraction and the resulting increases in soil moisture cause the LAI to 152 

increase at a rate equal to 0.02 m2m-2year-1.  153 

The Hwang Ho basin is a high-elevation (elevation greater than 1000 m) basin located in 154 

the eastern part of HMA characterized by a decreasing snow cover fraction (Supplementary Figure 155 

A5). Although the precipitation increases, TWS decreases (~ 1 cm year-1), a consequence of an 156 

increase in air temperature (~0.1°C year-1). The high redundant information of soil moisture and 157 

snow cover about LAI indicates that the decrease in snow leads to an increase in soil moisture 158 

which in turn enhances vegetation growth (Figures 3 a and b). A similar phenomenon is observed 159 

in the Northwestern basins (Ili, Syr Darya, Amu Darya, and Tarim). However, in these basins, the 160 

yearly changes in LAI are low (inferior to 0.01 m2m-2year-1) even though the decreases in snow 161 

cover fraction (superior to -0.4% year-1) are the highest. These changes in cryospheric storages 162 

sustaining the growth of vegetation lead, however, to a decrease in TWS (up to 1 cm year-1) despite 163 

the increase of the westerlies precipitation (~0.05-0.07 mm day-1year-1, Supplementary Figures A2 164 

and A5). 165 

Precipitation-driven greening 166 

Precipitation-driven greening is observed in mid and low elevation areas covered by 167 

evergreen and mixed forests located in the southeast of HMA encompassing some portions of the 168 

non-irrigated lands of the Indus and the monsoon-dominated climate basins (Irrawaddy, Si, and 169 

Song Hong)50,51. In these areas, soil moisture unique information about TWS and LAI is the highest 170 

and snow plays a smaller role (Figures 3a and b). The partial information decomposition also 171 

shows that changes in soil moisture are mostly a result of the variations of precipitation (Figure 4). 172 
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All studied precipitation products show an increasing trend of precipitation in the non-irrigated 173 

lands of the Indus (0.03 mm day-1year-1 to 0.08 mm day-1year-1 depending on the product, 174 

Supplementary Figure A1) which translates into an increase in TWS (<0.1cm year-1). Likewise, 175 

precipitation in the monsoon-dominated climate basins has seen an increase (~1 mm day-1year-1), 176 

however, the TWS has a small decrease that could be attributed to the decreases in TWS in some 177 

years because of anthropogenic activities. In the Si and Song Hong basins, TWS decreases 178 

significantly from 2003 to 2006 (Supplementary Figure A4) likely due to a substantial increase in 179 

groundwater abstraction for agriculture and public water supplies52,50 in addition to the drought 180 

that the region experienced during that period53. In the Irrawaddy basin, a sustained decrease in 181 

TWS is observed, more prominently from 2012 to 2020 (Supplementary Figure A4). As both 182 

precipitation and soil moisture are increasing during that period, the decreases in TWS are likely 183 

related to surface water diversion or pumping. Yearly changes in precipitation and LAI although 184 

nonmonotonic, are similar. For example, LAI decreases from 2003 to 2011 then increases, a 185 

similar pattern is observed with precipitation, soil moisture, and TWS (Supplementary Figure A4). 186 

This reinforces the fact that vegetation changes in these regions are mainly driven by the changes 187 

in precipitation. 188 

3. Discussion 189 

Irrigation-induced greening affects more than 50% of the Ganges-Brahmaputra basin and 190 

around 22% of the Indus basin and leads to the highest increases in LAI in HMA. By altering the 191 

vegetation dynamics, changes in soil moisture induced by intense irrigation could strongly affect 192 

the interactions between the land surface and the atmosphere69 and ultimately the climate 193 

dynamics. A slight decrease (< 0.03°C year-1) in air temperature in the irrigation and precipitation-194 

controlled greening area (Ganges-Brahmaputra, Indus, and Irrawaddy) is observed contrary to the 195 



   
 

10 
 

warming-induced greening zone, likely due to the cooling effects of an increasing vegetation1. 196 

Warming-induced greening areas experience an increase in precipitation likely due to the increase 197 

in temperature18,70–73, which will further enhance greening.  198 

Increasing trends of LAI in China (i.e. the Yangtze basin) have been attributed to 199 

afforestation26,28. Afforestation programs certainly may be contributing to the greening in the 200 

region, yet our study highlights that the main driver of greening in the area is the climate, and 201 

greening is observed in all the four major hydrologic basins characterized by forests (evergreen 202 

and mixed) that comprise the area though these basins are in different countries. While increases 203 

in precipitation can induce vegetation growth, an increase in vegetation greenness could also lead 204 

to an increase in precipitation by altering the interactions between the land surface and the 205 

atmosphere. However, the temporal scale at which vegetation growth from afforestation impacts 206 

the Earth system and the atmospheric dynamics to contribute to an increasing pattern of 207 

precipitation is much longer than the scale at which increasing precipitation impacts the growth of 208 

forests.  209 

Assessing the principal drivers of greening is essential to better understand the interactions 210 

between the hydrosphere, the cryosphere, and the biosphere especially in HMA where these 211 

interactions are strong and steadily govern the water and energy cycles. With the onset of global 212 

warming, greening may lead to both cooling by increasing the evapotranspiration and warming by 213 

decreasing the albedo. This study shows that in the most two populated and heavily irrigated 214 

hydrologic basins of HMA (Ganges-Brahmaputra and Indus), greening is triggered by human 215 

activities.  Proper accounting of these practices to accurately represent their dynamics and impacts 216 

is important in Earth system models and future projections of the changes in water, energy, and 217 

biogeochemical cycles.   218 
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4. Methods 219 

4.1.Selected remote sensing products  220 

We perform a multi-variate analysis of remote sensing products to quantify the changes in 221 

vegetation and their links to the changes in either soil moisture or snow cover. We then study how 222 

irrigation and meteorological conditions (temperature and precipitation) affect the variations of 223 

soil moisture and snow cover.  224 

MODIS LAI 225 

Changes in LAI are good indicators of greening or browning in a given area and have been 226 

previously used to analyze changes in vegetation on Earth3,2,74,6. LAI, defined as the total area of 227 

leaves over a unit of ground area, characterizes the plant canopy and determines the size of the 228 

interface for the exchange of energy and mass between the canopy and the atmosphere. We study 229 

the LAI values provided by the MCD15A2H Version 6 of MODIS35 at a spatial resolution of 500 230 

m and a temporal resolution equal to 8 days.  231 

Gridded surface meteorology datasets 232 

Vegetation dynamics strongly depend on the atmospheric conditions, notably precipitation 233 

and air temperature. Because precipitation, is highly uncertain in HMA 75,76 due to the lack of 234 

adequate ground-based measurements resulting from the difficulty of access, the harsh 235 

environments, and the geographical complexities of the region77, we analyze widely used gridded 236 

datasets derived from reanalysis and/or satellite-based products 78–82: ERA5, IMERG, CHIRPS, 237 

APHRODITE, HAR, and PRINCETON. The fifth-generation ECMWF atmospheric reanalysis of 238 

the global climate ERA5 provides hourly estimates of precipitation by combining satellite and in-239 

situ data into global estimates using advanced modeling and data assimilation systems on a 30 km 240 

grid39. GPM IMERG uses information from the GPM satellite constellation to estimate 241 
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precipitation over the Earth’s surface at a spatial resolution of 10 km40. CHIRPS, a thermal 242 

infrared-based dataset, incorporates both the Tropical Rainfall Measuring Mission Multi-satellite 243 

Precipitation Analysis and gauge products and provides a quasi-global precipitation dataset at a 244 

resolution of 0.05°83. APHRODITE product is a daily gridded precipitation dataset for Asia that is 245 

generated from a dense network of daily rain-gauge data84. HAR is an atmospheric dataset 246 

generated primarily for the Tibetan Plateau by dynamical downscaling of the final operational 247 

global analysis using the Weather Research and Forecasting regional mesoscale model85. The 248 

global meteorological dataset for land surface modeling provided by PRINCETON86 derived from 249 

a reanalysis of land surface models and other terrestrial modeling systems (e.g., the global 250 

precipitation climatology project daily precipitation, the tropical rainfall measuring mission, and 251 

NASA Langley monthly surface radiation budget) provides precipitation at a spatial resolution of 252 

1°. We use ERA5 air temperature to assess the changes in air temperature in the region over the 253 

past two decades.  254 

MODIS Snow Cover fraction 255 

Snow is a critical component of the hydrological system and drives the vegetation 256 

ecosystem in high altitude mountainous regions. To evaluate the impacts of the changes in snow 257 

on vegetation greenness, we use the monthly snow cover fraction estimates provided by MODIS 258 

Snow Cover fraction L3 MOD10CM at a spatial resolution of 0.05°36.  259 

ESA CCI Soil moisture 260 

Soil moisture plays a significant role in vegetation growth and dynamics. To understand 261 

the changes in vegetation greenness, we analyze the daily soil moisture provided by the ESA CCI 262 

v05.2. We use the combined dataset generated by blending the soil moisture retrievals from active 263 

and passive microwave remote sensing instruments.  264 
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GRACE TWS 265 

TWS includes all types of water stored above and below the ground surface such as snow, 266 

ice, groundwater, and surface water storages. Changes in TWS can also be used as a measure of 267 

the interactions between the changes in water storage and vegetation. We quantify changes in TWS 268 

by analyzing GRACE38,87 CSR RL06 mass concentrations (mascons)88 datasets. GRACE provides 269 

changes in TWS on a global scale at a resolution of 300–500 km89,87,90. Although previous studies 270 

have advised using GRACE only over large-scale basins with areas greater than 250,000 km2, 271 

several studies have employed GRACE, often the only data available to study changes in water 272 

storages in HMA, to investigate the dynamics of the water cycle in this region91–93.  273 

4.2. Statistical analyses  274 

We performed statistical analyses at a yearly temporal resolution and at both basin scale 275 

and the resolution of GRACE CSR RL06 mascons (i.e., 0.5°), the coarsest resolution of all remote 276 

sensing products utilized in this study. All the other remote sensing products were then upscaled 277 

to 0.5°. We computed the yearly trends of the LAI, precipitation, temperature, soil moisture, snow 278 

cover, and TWS using the Mann-Kendall test which determines whether a time series has a 279 

monotonic upward or downward trend94–98. The Mann-Kendall test uses the following statistics: 280 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥! − 𝑥"+#
!$%&'

#('
"$'                (1) 281 

where x is the time series variable. The subscript j and k are the observation 282 

time. 𝑠𝑖𝑔𝑛(𝑥! − 𝑥"+ is equal to +1, 0, or -1, which means increasing, no, and decreasing trends, 283 

respectively. In this study, we assumed that there is no significant trend in the data at 95% 284 

confidence level (or at a significant level of 5%). 285 

The analysis of these trends will allow us to quantify the changes of these critical land 286 

surface variables over the past decades. However, a deeper analysis of the factors controlling 287 
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changes in LAI also requires the examination of the dependence between the different variables. 288 

We use the Partial Information Decomposition (PID) to quantify these interactions and 289 

dependencies. The PID, an extension of the Shannon information measures to a multivariate 290 

system, allows the calculation of (1) the amount of information that each control variable uniquely 291 

contributes to the output, (2) the redundant information (that is repeated) between the control 292 

variables, and (3) the synergistic information between the variables. Considering two random 293 

variables 𝑋' and 𝑋)	sources of information of a random variable 𝑌. The total mutual information 294 

𝐼(𝑋; 𝑌)	between the vector of source variables 𝑋 and the target variable 𝑌 is given by: 295 

𝐼(𝑋; 𝑌) = 𝑈(𝑋'; 𝑌) + 	𝑈(𝑋); 𝑌) + 𝑅(𝑋; 𝑌) + 𝑆(𝑋; 𝑌)		           (2) 296 

Where 𝑈,	𝑅, and 𝑆 are the unique, redundant, and synergistic information respectively.  297 

The redundant information, defined as the sum of the minimum value of specific 298 

information 𝐼*+,- provided by each source, is given by: 299 

𝑅(𝑋; 𝑌) = ∑ 𝑝(𝑌 = 𝑦)𝑚𝑖𝑛9𝐼*+,-(𝑋'; 𝑌 = 𝑦), 𝐼*+,-(𝑋); 𝑌 = 𝑦);.∈0          (3) 300 

With 𝑝 being the probability distribution 301 

The specific information quantifying the information associated with a particular outcome 302 

𝑦 of 𝑌 is: 303 

𝐼*+,-(𝑋'; 𝑌 = 𝑦) = ∑ 𝑝(𝑥|𝑦) =𝑙𝑜𝑔 '
+(2)

− 𝑙𝑜𝑔 '
+(.|2)

@2                                  (4) 304 

The unique information is then equal to: 305 

𝑈(𝑋'; 𝑌) = 	𝐼(𝑋'; 𝑌) − 𝑅(𝑋; 𝑌)                                (5) 306 

𝐼(𝑋'; 𝑌)	is the mutual information between 𝑋' and 𝑌  307 

Then the synergistic information 𝑆(𝑋; 𝑌)	is derived from: 308 

 𝑆(𝑋; 𝑌) = 	𝐼(𝑋; 𝑌) − 𝑈(𝑋'; 𝑌) − 𝑈(𝑋); 𝑌) − 𝑅(𝑋; 𝑌)                           (6) 309 

 More details about the computation of these metrics can be found in99,100.  310 
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Because we study the dependence and the relationship between the different variables at a 311 

yearly time scale, the potential lag correlation that could exist between precipitation, LAI, soil 312 

moisture, and snow cover is less important and is ignored here. Moreover, we only show the unique 313 

and redundant information because the synergistic information was non-significant. We first 314 

investigate the contributions of soil moisture and snow cover to the terrestrial water storages and 315 

the changes in vegetation greenness (i.e., LAI). We then analyze the factors (meteorological 316 

conditions or irrigation) governing the changes in soil moisture and snow cover. When soil 317 

moisture is predominantly driving the changes in LAI (i.e., soil moisture unique information about 318 

LAI is the highest) and the changes in soil moisture are related to changes in precipitation (i.e., 319 

precipitation unique information about soil moisture is the highest) we attribute greening to the 320 

variations of precipitation, otherwise i.e., when the increases in soil moisture are not related to the 321 

precipitation and the area is irrigated, we conclude that the observed greening stemmed from 322 

irrigation. If the snow cover unique information about LAI is the highest, greening is assumed to 323 

be driven by warming or decreases in snow cover. Because decreases in snow cover generally 324 

cause vegetation growth by increasing the soil moisture, we also assume that greening is governed 325 

by the decreases in snow cover when the redundant information between soil moisture and snow 326 

cover about LAI is the highest and the area is covered by snow.  327 
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• MODIS LAI: https://lpdaac.usgs.gov/products/mcd15a2hv006/ 330 
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• ESA CCI soil moisture: https://www.esa-soilmoisture-cci.org/data 332 

• GRACE data: https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/ 333 
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 Figure Caption 576 

Figure 1: The High Mountain Asia domain (a) elevation, (b) land cover101, (c) average annual 577 

IMERG precipitation and (d) air temperature from 2003 to 2020 from ERA5, and (e) percent of 578 

irrigated areas per pixel41. The black lines indicate the limits of the hydrologic basins and their 579 

names are indicated in (e). Ir means Irrawaddy and Sg Song Hong. 580 

Figure 2: Spatial distribution of the principal drivers of greening in HMA. Precipitation-driven 581 

greening is observed in areas where the information about LAI from precipitation/soil moisture is 582 

the highest. Warming-induced greening is limited to areas where the information from snow cover 583 

about LAI is the highest. Irrigation-induced greening is observed in irrigated lands where the 584 

information about LAI from soil moisture is the highest.  585 

Figure 3: (a) Spatial distributions of the unique and redundant information of soil moisture (SM) 586 

and snow cover (SC) in the Terrestrial Water Storage (TWS) and Leaf Area Index (LAI). (b) 587 

Average basins and sub-basins values of the unique and redundant information of soil moisture 588 

(SM) and snow cover (SC) in the Leaf Area Index (LAI). Ir is irrigated lands, N.Ir. non irrigated 589 

lands, H.E high elevation, and M.E mid-elevation.  590 

Figure 4: (a) Spatial distributions of the unique and redundant information of precipitation (P) and 591 

temperature (T) in the soil moisture (SM) and snow cover (SC).   592 
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 601 

Figure 2: Spatial distribution of the principal drivers of greening in HMA. Precipitation-driven 602 

greening is observed in areas where the information about LAI from precipitation/soil moisture is 603 

the highest. Warming-induced greening is limited to areas where the information from snow cover 604 

about LAI is the highest. Irrigation-induced greening is observed in irrigated lands where the 605 

information about LAI from soil moisture is the highest.  606 
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 608 

Figure 3: (a) Spatial distributions of the unique and redundant information of soil moisture (SM) 609 

and snow cover (SC) in the Terrestrial Water Storage (TWS) and Leaf Area Index (LAI). (b) 610 

Average basins and sub-basins values of the unique and redundant information of soil moisture 611 

(SM) and snow cover (SC) in the Leaf Area Index (LAI). Ir is irrigated lands, N.Ir. non irrigated 612 

lands, H.E high elevation, and M.E mid-elevation. Because the synergistic information has very 613 

low values, we only show the unique and redundant information.  614 
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 616 

Figure 4: (a) Spatial distributions of the unique and redundant information of precipitation (P) and 617 

temperature (T) in the soil moisture (SM) and snow cover (SC). Because the synergistic 618 

information has very low values, we only show the unique and redundant information.  619 
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