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Abstract 1 

Study Region 2 

Gordon Gulch, an upper-montane forest watershed in the Colorado Front Range. 3 

Study Focus 4 

As the climate warms, the fraction of precipitation falling as snow is expected to decrease and the 5 

timing of snowmelt is expected to shift earlier in spring. In snow-dominated regions, these changes 6 

in snow accumulation and melt prompt us to examine downstream changes in streamflow. The 7 

objective of this study is to understand how changes in precipitation phase and snowmelt timing 8 

alter the timing of surface water inputs (i.e. rainfall and snowmelt) and the partitioning of these 9 

inputs between evapotranspiration and streamflow. We used the Distributed Hydrology Soil 10 

Vegetation Model and Weather Research and Forecasting Model-based projections of future 11 

climatic conditions to simulate streamflow. 12 

New Hydrological Insights for the Region 13 

Modeled annual streamflow decreased by 22% for the period 2071-2100. Surface water inputs 14 

increased during winter when atmospheric water demand was relatively low. Subsequently, the 15 

winter-period partitioning of water (as rain or snowmelt) to streamflow (as opposed to 16 

evapotranspiration) increased, by 15%, while partitioning to evapotranspiration decreased, 17 

effectively buffering what would have otherwise been a larger net streamflow decline associated 18 

with warming. Seasonal streamflow buffering is unique to snow-influenced systems, as the 19 

magnitude and timing of water released from snowpacks is sensitive to warming. This effect may 20 

diminish as warming drives snow-influenced systems toward rain-dominance, with implications 21 

for hydrological and ecological processes and water-resource management. 22 

Keywords: water, snowmelt, streamflow, modeling, hydroclimatology, Budyko  23 
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1.0 Introduction 24 

A warming climate is a catalyst for hydrologic change in the mountains, altering seasonal 25 

water availability by changing the phase of precipitation (P) from snow to rain, and the timing of 26 

snowmelt [Sturm et al., 2010; Williams et al., 2009]. Less snowfall, shallower snowpack, and 27 

changes in the timing and magnitude of melt [Mote et al., 2018; Musselman et al., 2017] will alter 28 

surface water inputs and the associated partitioning of surface water between evapotranspiration 29 

(ET) and streamflow (Q). Overall impacts of climate warming on hydrology have been empirically 30 

investigated and modeled, but leave a need to examine individual mechanistic causes to 31 

sensitivities in streamflow [Berghuijs et al., 2014; Foster et al., 2016; Gupta et al., 1998; Hinckley 32 

et al., 2012; Kapnick et al., 2018; Livneh and Badger, 2020; Safeeq et al., 2013]. An unanswered 33 

question in cold region mountain hydrology is how warming may modify the timing of water input 34 

to the terrestrial system. We posit that a critical component of hydrologic sensitivity to climate 35 

change, due to changes in snowfall and snowmelt, arises from changes in the timing of water 36 

delivery to the terrestrial system, broadly defined as the land surface beneath a snowpack. In this 37 

context, we define surface water inputs (SWI) as rainfall on the land surface and snowmelt water 38 

leaving the base of the snowpack. SWI is thus the sum of liquid water available to the terrestrial 39 

system at a given time, which can then be partitioned to streamflow (Q) or evapotranspiration (ET) 40 

or enter the subsurface as storage [Kiewet et al., 2021; Kormos et al., 2014]. Hence, as the temporal 41 

dynamics of either rainfall or snowmelt change with warming, a change in the alignment of SWI 42 

and potential evaporation (PET) will occur [Kormos et al., 2014]. 43 

In the upper montane forest of the Colorado Front Range, periods of high SWI align with 44 

periods of mid to high potential evapotranspiration (PET) [Kormos et al., 2014]. Precipitation falls 45 

as snow during wintertime months and snow water equivalent (SWE) accumulation stores water 46 



 (Hale et al., in review) 4 

until the snowpack melts, creating a lag in the timing between snowfall and SWI generation. The 47 

snowmelt period produces a large, sustained pulse of SWI in the spring months, a time of increased 48 

PET [Barnett et al., 2005; Kampf and Lefsky, 2016; Kormos et al., 2014; Luce et al., 1998; Marks 49 

et al., 1998; Milly and Dunne, 2016; Scheff and Frierson, 2014; Sturm et al., 2010]. Unlike the 50 

higher alpine areas of Colorado mountainous regions, snow accumulation in the montane area 51 

studied here is more spatially variable. As a result, snowmelt is not as spatially uniform or as 52 

consistent in time as it is in higher elevation areas.   53 

We hypothesize that, within an end-of-current-century warmer climate scenario, the 54 

seasonality of catchment SWI and catchment PET may become misaligned, with unknown effects 55 

on seasonal streamflow. Under warmer temperatures, SWE accumulation will likely be lower and 56 

less persistent throughout the winter, reducing or eliminating the large spring melt pulse [Barnhart 57 

et al., 2016; Cayan et al 2001; Knowles et al., 2005; Kormos et al., 2014; Musselman et al., 2017; 58 

Rasmussen et al., 2014; Regonda and Rajagopalan 2004]. As snowfall shifts to rainfall and as 59 

snowmelt shifts earlier, SWI will shift earlier in the year, during a time of decreased atmospheric 60 

water demand (i.e. PET). Previous works have evaluated streamflow sensitivity to climate [e.g., 61 

Tennant et al., 2015] but have not identified, mechanistically, the role of changes in the timing of 62 

SWI with regard to streamflow production on annual to monthly time scales. To address this 63 

knowledge gap, we applied the Distributed Hydrology Soil Vegetation Model (DHSVM) to 64 

simulate streamflow under historical conditions and a warmer climate scenario informed by high-65 

resolution weather and climate model runs [Liu et al., 2017]. DHSVM was forced with historical 66 

metrological data from in-catchment and nearby weather stations (whenever available) and 67 

Weather Research Forecast (WRF) model output (to impose warming conditions). We isolated 68 

model states and fluxes to estimate how warming-driven changes in the timing of modeled SWI 69 
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influence catchment streamflow. Analyses specifically included correlations and evaluation of 70 

delta values (i.e., the differences in annual and seasonal SWI, ET and Q across model simulations). 71 

 When compared against historical conditions, previous modeling studies have reported net 72 

decreases in modeled annual streamflow and net increases in annual PET associated with climate 73 

warming [Adam et al., 2009; Anghileri et al., 2016; Clow, 2010; Mahanama et al., 2012; Siddique 74 

and Palmer, 2021; Tang and Lettenmaier, 2012]. Other modeling studies have predicted future 75 

increases in wintertime streamflow [Siddique et al., 2021] despite overall annual decreases 76 

[Mahanama et al., 2012; Siddique et al., 2020; Siddique et al., 2021] and shifts in peak streamflow 77 

timing [Tennant et al., 2015]. Yet, the mechanism driving the increase in seasonal winter 78 

streamflow and its effect on annual hydrologic partitioning remains to be defined and evaluated. 79 

We predict that the timing of SWI may change monthly water balance partitioning, providing a 80 

much-needed explanation to previous partitioning analyses [Berghuijs et al., 2014; Kormos et al., 81 

2014]. To explore potential changes in partitioning, we analyzed DHSVM model output in the 82 

context of the Budyko hypothesis [Budyko, 1974], a framework that predicts partitioning of 83 

incoming water between streamflow or evapotranspiration based on an index of aridity (PET/P). 84 

The following question is addressed: how does climate warming and subsequent changes in the 85 

timing of SWI affect monthly and annual streamflow generation and water partitioning within a 86 

continental upper montane catchment? We hypothesized that an increase in rainfall and earlier 87 

snowmelt events, induced by warming, would temporally decouple catchment water availability 88 

(i.e. SWI) and atmospheric water demand (i.e. PET) and thus will increase cold-season hydrologic 89 

partitioning to streamflow. Understanding a potential mechanism to changes in annual and 90 

seasonal water availability would allow for more accurate water management planning as the 91 

climate continues to warm [Mote et al., 2018]. The novelty of this study is the model-based 92 
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quantification of the decoupling of SWI and PET, which isolates SWI as a potential driver of 93 

hydrologic change, evaluated through the seasonal changes in modeled winter and early spring 94 

streamflow that potentially offset overall reductions in modeled annual streamflow.  95 

2.0 Study Area and Methods 96 

We conducted this research in the Gordon Gulch catchment, which is located within the 97 

upper montane forest [Marr, 1961] of the Front Range, Colorado, USA (40.0085975°N-98 

105.4411069°W). The period of historical model simulations included the majority of four water 99 

years where detailed measurements were available (April 2010-August 2013). A pseudo-warming 100 

model simulation was conducted based on a perturbation of the historical period to represent end-101 

of-century climate conditions [Liu et al., 2017]. Using DHSVM, we used historical meteorological 102 

(air temperature, wind speed, relative humidity, incoming longwave radiation, incoming 103 

shortwave radiation, and precipitation) and streamflow observations to force a control simulation 104 

from April 1, 2010 to August 31, 2013. Streamflow data were not available before April 1, 2010, 105 

and a regional flood damaged the streamflow gage in mid-September 2013. To emulate warming, 106 

we replaced air temperature, relative humidity, incoming longwave radiation for April 1, 2010 to 107 

August 31, 2013 with 95-year CMIP5 multi-model ensemble-mean change signal under the 108 

RCP8.5 emission scenario from the Weather Research and Forecasting (WRF) model pseudo 109 

global warming (PGW) framework [see Liu et al., 2017 for details] to force a warming simulation. 110 

After identifying sensitive model parameters in the control simulation and forcing the two 111 

simulations within the watershed-scale hydrologic model, we used the Budyko framework 112 

[Barnhart et al., 2016; Budyko, 1948; Gerrits et al., 2009; Muleta and Nicklow, 2005; Wang and 113 

Tang, 2014] to compare differences in modeled hydrologic partitioning (i.e. ET/P and Q/P) 114 

between historical and end-of-current-century model simulations, contrasting the relative seasonal 115 
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alignment of catchment water supply (i.e. SWI) and atmospheric water demand (i.e. PET) and its 116 

effect on streamflow. The details of these methods are described in the subsections below. 117 

2.1 Study Area: Gordon Gulch, Colorado 118 

This study was conducted in the Gordon Gulch watershed within the Boulder Creek Critical 119 

Zone Observatory (BcCZO), 16 km west of Boulder, Colorado. This site was selected for its 120 

inclusion in the Boulder Creek Critical Zone Observatory network, where it represents one of few 121 

locations where local snow instrumentation, a necessity to this analysis, exists in an upper montane 122 

climatic zone, as opposed to strictly in sub-alpine and alpine elevations (many other works in this 123 

climatic zone use remotely sensed or data or model output to gain snow information [e.g., Bales 124 

et al., 2011b; Kelley and Goulden, 2016; Klos et al., 2014; Mainali et al., 2015]). Focusing on 125 

snow and its temporal release into the terrestrial system in the upper montane forest is important, 126 

because the winter season temperatures in this area remain close to 0oC [Jennings et al., 2018], the 127 

snowpack often melts intermittently [Kormos et al., 2014a] and is susceptible to small changes in 128 

atmospheric conditions, including warming and shifts in precipitation magnitude and phase 129 

[Williams et al., 2009]. Further, the environmental characteristics and thus hydrologic behavior of 130 

Gordon Gulch is, on average, reflective of the behavior in the surrounding upper montane forests 131 

in the Colorado Front Range [Anderson et al., 2021], as seen by its “critical zone architecture” 132 

which includes soil, mobile regolith, saprolite, and weathered rock. 133 

Gordon Gulch is located within the semi-arid upper montane forest (Figure 1) and has a 134 

catchment area of 2.6 km2, an average elevation of 2500 meters, and an elevation range of 2446 135 

meters to 2737 meters. The watershed is drained by the eastward-flowing Gordon Gulch stream, 136 

with opposing north-south aspect hillslopes [Anderson et al., 2021; Diek et al., 2014]. Gordon 137 

Gulch experiences seasonal mean temperature differences of 20oC, with a yearly mean temperature 138 
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of 5.1oC. Annual average precipitation is 520 mm, 40%-60% of which falls as snow [Anderson et 139 

al., 2021; Anderson at Ragar, 2020; Burns et al., 2016; Cowie, 2010]. Annual runoff ratios range 140 

between 0.08-0.23 [Anderson at Ragar, 2020; Barry, 1973; Befus et al, 2011; Diek et al., 2014; 141 

Hinckley et al., 2012]. Gordon Gulch is underlain by gneiss bedrock on which a thin residual soil 142 

is developed [Anderson et al., 2020; 2021]. Soil ranges from 0 m – 0.4 m in thickness [Anderson 143 

et al., 2021; Shea, 2013], and seismic refraction profiling shows that reduced seismic velocities 144 

corresponding to weathered rock extends to ~8-12 m depth across the catchment [Anderson et al., 145 

2021; Befus et al., 2011].  The catchment is dotted with tors (i.e. bedrock outcrops), which 146 

comprise about 10% of the surface [Anderson et al., 2020; 2021]. Model forcing and validation 147 

data were obtained from a collection of local meteorology stations and spatially gridded data, 148 

described below and listed in Table 1, and a streamflow gage within the catchment [Anderson and 149 

Ragar, 2020].  150 

2.2 Methods: Distributed Hydrology Soil Vegetation Model (DHSVM) 151 

DHSVM is a spatially distributed numerical model that uses meteorological forcings and 152 

physiographic data to simulate the effects of precipitation, soils, geology and vegetation on the 153 

hydrologic response at the catchment-scale [Wigmosta et al., 1994]. DHSVM has been used to 154 

successfully portray mountainous watershed and sub-watershed processes across North America 155 

and to investigate the effects of climate warming and vegetation change on streamflow amount 156 

and timing [Livneh et al., 2014, 2015; Raleigh et al., 2016; Westrick et al., 2002; Wigmosta and 157 

Lettenmaier, 1999; Yao and Yang, 2009]. At each time interval, the model solves energy and water 158 

balance equations for every grid cell in the select watershed [Wigmosta et al., 1994] using model 159 

forcings (i.e., precipitation, air temperature, wind speed, incident shortwave radiation, relative 160 

humidity, and net radiation components), and state variables (e.g., topographic, vegetation and soil 161 
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characteristics). Model outputs include the primary hydrologic fluxes such as evapotranspiration 162 

and streamflow.  163 

A two-layer canopy represents evapotranspiration (ET) and energy transfer at each 164 

timestep. A two-layer snow model solves for the snowpack energy and mass balance (e.g., snow 165 

accumulation and melt). A multilayer unsaturated soil model and a saturated subsurface 166 

flow model simulate subsurface water flow dynamics. PET is calculated using the Penman-167 

Monteith approach. Slope and aspect are accounted for in DHSVM by the characterization of 168 

shortwave and longwave radiation within the surface energy budget [Wigmosta et al., 1994]. The 169 

soil-vegetation water balance in DHSVM accounts for rooting zone water storage, overstory and 170 

understory interception, evaporation, and transpiration, surface soil evaporation, snowpack water 171 

content, and volume of precipitation [Wigmosta et al., 1994]. 172 

DHSVM simulates the exchange of water between grid cells, resulting in a three-173 

dimensional redistribution of surface and subsurface water across the landscape [Wigmosta et al., 174 

1994]. DHSVM moves water between grid cells as overland flow, channel flow and/or shallow 175 

subsurface flow in the soil. The subsurface water storage in the soil is a function of soil depth and 176 

depth to the root zones in each soil layer, where increased soil depth allows for increased storage 177 

[McNamara et al., 2005]. All through-fall water or snowmelt (that which is not intercepted) enters 178 

the soil column and becomes subsurface storage through unsaturated moisture movement. Once 179 

the soil becomes saturated, excess water becomes surface runoff. Thus, soil/vegetation water 180 

balance within one grid cell is defined as [see Figure 2 in Wigmosta et al., 1994]: 181 

ΔS𝑠𝑠1 + ΔS𝑠𝑠2 + ΔS𝑠𝑠3 + ΔS𝑖𝑖𝑖𝑖 + ΔS𝑖𝑖𝑖𝑖 +  ΔW = 𝑃𝑃 − E𝑖𝑖𝑖𝑖 −  E𝑖𝑖𝑖𝑖 −  E𝑠𝑠 −  E𝑡𝑡𝑡𝑡 −  E𝑡𝑡𝑡𝑡 − 𝑃𝑃2 (1) 182 

where ΔS𝑠𝑠1 and ΔS𝑠𝑠2 and ΔS𝑠𝑠3 are the changes in the three rooting zones soil water storage, 183 

respectively.  ΔS𝑖𝑖𝑖𝑖 is the change in overstory interception and ΔS𝑖𝑖𝑖𝑖is the change in understory  184 

interception. ΔW is the change in snowpack water content, P is the volume of precipitation (rain 185 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/subsurface-flow
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/subsurface-flow
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and/or snow), P2 is the discharge volume leaving the lowest rooting zone, E𝑠𝑠 is the volume of 186 

surface soil evaporation, and E𝑖𝑖𝑖𝑖, E𝑖𝑖𝑖𝑖, E𝑡𝑡𝑡𝑡and E𝑡𝑡𝑡𝑡 are the volumes of overstory and understory 187 

evaporation (from interception storage) and transpiration, respectively.  188 

Via Darcy’s law, using the Brooks-Corey equation (1), water percolates through the root 189 

zones (one defined root zone per soil layer) until discharge from the lower rooting zone recharges 190 

the local, grid-cell-specific, water table [Wigmosta, 1994; Zhao et al., 2009]. Each grid cell then 191 

exchanges saturated water with its eight adjacent neighbors [see Figure 4 in Wigmosta et al., 1994 192 

on subsurface flow routing]: 193 

𝑞𝑞𝜈𝜈(θ)=KS[θ−θ𝑟𝑟ϕ−θ𝑟𝑟
]2m+3 (2) 194 

where 𝑞𝑞𝜈𝜈 is the percolation term,  Ks is the soil vertical saturated hydraulic conductivity, ϕ is the 195 

soil porosity, θr is the residual soil moisture content, and m is the pore size distribution index. Soil 196 

transmissivity is calculated assuming that soil lateral saturated hydraulic conductivity decreases 197 

exponentially with depth [Wigmosta et al., 2002].  198 

 Finally, DHSVM was modified to partition precipitation phase based on the probability of 199 

rain or snow at a given time step using a bivariate binary logistic regression [Jennings et al., 2018; 200 

Wigmosta and Perkins, 2001; Zhao et al., 2009]. Two DHSVM simulations were run at a 20-meter 201 

resolution on an hourly timestep: a historic/control simulation from April 1, 2010 to August 31, 202 

2013, with a 10-year spin-up period and a warming simulation, representing an end-of-current-203 

century (2070-2100) climate (see section 2.4).  204 

2.3 Data sources 205 

2.3.1 Meteorological variables 206 

The sources of model input data are listed in Table 1 and include a fusion of in situ 207 

measurements from within-catchment stations and nearby stations and meteorological reanalyses 208 
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from the National Land Data Assimilation System (NLDAS2). The purpose of blending these 209 

datasets was to build a complete record for the study period, across water years 2000-2013 (which 210 

included a 10-year spin-up period from 2000-2009). To generate a complete precipitation record, 211 

we prioritized the most direct measurements within the Gordon Gulch catchment, whenever 212 

available. 213 

In-catchment meteorological stations included the Gordon Gulch north facing 214 

meteorological station (GGL_NF_Met) and the Gordon Gulch south facing meteorological station 215 

(GGL_SF_Met). During instances when the in-catchment measurements were not available, 216 

nearby meteorological stations were secondarily prioritized, which included the National 217 

Atmospheric Deposition Program (NADP) CO94 site (2 km south of Gordon Gulch, elevation of 218 

2390 m), and the Betasso Preserve meteorological station (BT_Met, 10.2 km east, elevation of 219 

~2000 m), and Niwot Ridge C1 meteorological station (6.5 km west, elevation of 3022 m). The 220 

order in which these different meteorological stations were prioritized to create a complete 221 

precipitation record is outlined in Table 1. 222 

The NLDAS2 dataset was prioritized when any remaining gaps in the meteorological 223 

record remained (with the exception of precipitation). The NLDAS2 record contains a complete 224 

record of all required meteorological model input variables (air temperature, wind speed, incident 225 

shortwave radiation, relative humidity, and longwave radiation) and were downscaled from 12 km 226 

to 20 m resolution using nearest neighbor interpolation. The NLDAS2 meteorological record for 227 

these variables was bias-corrected using the in-catchment and nearby meteorology stations. The 228 

bias correction process included: calculating hourly averages of meteorological station 229 

observations, which were at a 10-minute temporal resolution; finding all instances when 230 

meteorological station and NLDAS2 data were both available; fitting a linear model through 231 
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NLDAS2 data vs. meteorological station data; using linear model parameters to approximate 232 

station observations in Gordon Gulch from NLDAS2 record. The order in which different 233 

meteorological stations were prioritized to bias correct the NLDAS2 record to create a complete 234 

meteorological record (except precipitation) is outlined in Table 1. 235 

2.3.2 Streamflow 236 

There is one streamflow gage in Gordon Gulch, on the eastern end of the catchment (Figure 237 

1). Streamflow stage is recorded, and streamflow observations (in m3/s) are derived from existing 238 

annual stage-discharge relationships [Anderson and Ragar, 2020]. Data are available at 10-minute 239 

intervals and were aggregated to an hourly time series for use in DHSVM. 240 

2.3.3 Vegetation, soil, and geology 241 

Vegetation and soil types were obtained at 30 m resolution from the National Land Cover 242 

Database (https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover, accessed: June 243 

2017) and Natural Resources Conservation Services (https://www.nrcs.usda.gov/wps/portal/nrcs/ 244 

detail/soils/survey/geo/?cid=nrcseprd1464625, accessed: June 2017), respectively. The dominant 245 

vegetation types in Gordon Gulch are evergreen forest and shrubs. The dominant soil type is sandy 246 

loam Shea [2013]. Spatially distributed geology data for the area is available at a 30 m resolution 247 

from the USGS. The underlying catchment geology includes: biotite and felsic gneiss, and 248 

granite/granitoid/diabase/quartz latite [Anderson et al., 2021]. Within DHSVM, these were 249 

categorized as metasedimentary and metavolcanics rocks and intrusive igneous, respectively. The 250 

mobile regolith/bedrock interface is located above the water table in Gordon Gulch. The available 251 

30 m vegetation, soil (which includes surface and sub-surface thickness) and geologic data were 252 

downscaled to 20 m resolution using nearest neighbor interpolation. 253 

2.4 Model Calibration 254 

https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover
https://www.nrcs.usda.gov/wps/portal/nrcs/%20detail/soils/
https://www.nrcs.usda.gov/wps/portal/nrcs/%20detail/soils/
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  With the ultimate intent of matching the model streamflow output to the observed 255 

streamflow record, to achieve an optimal model configuration, we adjusted a select number of 256 

parameterized model soil and vegetation values. The majority of the DHSVM soil and vegetation 257 

parameter values were first obtained from a previous application of the model over the Boulder 258 

Creek watershed [Badger et al., 2020; Livneh et al., 2014; 2015], since Gordon Gulch lies within 259 

this basin and as these past model runs demonstrated realistic simulations of snowmelt and 260 

streamflow dynamics. 261 

We then identified an optimal model configuration by adjusting the following five 262 

parameters identified as sensitive by previous studies [e.g. Badger et al. (2020); Livneh et al., 2015; 263 

Yao and Yang, 2009]: hydraulic conductivity, vertical exponential factor, porosity, field capacity 264 

and minimum stomatal resistance. The physical relationship between these parameters and 265 

streamflow are described below (Section 2.4). 10,000 model runs, with different combinations of 266 

values of the select parameters, were sampled following a Latin-Hypercube sampling technique to 267 

identify the highest daily Nash-Sutcliffe Efficiency (NSE) value, a coefficient ranging from −∞ to 268 

1 [Breuer et al., 2009; Gan et al., 2014; Livneh et al., 2015; Song et al., 2015]. An NSE of 1 269 

indicates a perfect match between observed and modeled datasets, in this case the observed and 270 

modeled hydrographs [Manache and Melching, 2004; Nash and Sutcliffe, 1970]. Uncertainty 271 

within observed streamflow was quantified using 95% confidence intervals within the stage-272 

discharge relationship for each water year. Uncertainty within the simulated streamflow was 273 

quantified by including the streamflow output range for the top performing 10% of simulations. 274 

2.4.1 Adjusted Parameters for Model Optimization 275 

Saturated hydraulic conductivity is the rate of water movement through pores of a 276 

saturated soil. Thus, hydraulic conductivity is a function of fluid, soil texture and porosity. 277 
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Saturated hydraulic conductivity exponentially declines with depth [see Wigmosta et al., 1994 for 278 

details]. Porosity is the total volume of empty space (voids) to soil material, which influences the 279 

amount of water a given volume of soil can hold, in turn influencing the soil moisture at any given 280 

timestep. Field capacity is the amount of moisture held in the soil after excess water has drained 281 

away and the rate of downward movement has decreased. This value is a fraction of the porosity, 282 

where a higher field capacity indicates a higher water holding capacity. Minimum resistance is a 283 

vegetation parameter and it is the opposition to transport water vapor to or from the stomata (pores) 284 

on the leaves of plants. The environmental dependencies of the minimum resistance include air 285 

temperature, vapor pressure deficit, photosynthetically active radiation flux, and soil moisture 286 

[Dickinson et al. 1993; Feddes et al., 1978; Wigmosta et al., 1994], and a higher minimum 287 

resistance value means greater opposition toward water movement through stomata. Minimum 288 

resistance, per vegetation layer, is a fixed value throughout each model simulation. The parameter 289 

values selected for the two model simulations are listed in Table 2, and the limitations introduced 290 

by parameter stationarity are discussed in section 4.1.2. 291 

2.5 Control and Warming Simulations 292 

We simulated two climate scenarios: a control simulation representing the present-day 293 

atmospheric conditions, and a warming simulation representing future atmospheric conditions. 294 

The control simulation (2000-2013) was forced with historical data from water years 2000-2013; 295 

where 2000-2009 was the 10-year spin-up period and 2010-2013 was the period used for 296 

evaluation in this work (data sources are listed in Table 1).  This control simulation reflects 297 

baseline hydrologic conditions for modeled snow fraction, SWE, SWI, streamflow, and PET.  The 298 

Penman-Monteith approach, as well as Thornthwaite’s temperature-based model [Thornthwaite 299 
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and Mather, 1955; 1957], were used to estimate PET; the latter method was used for comparative 300 

purposes.  301 

The end-of-century (2070-2100) warming scenario was informed by Weather Research and 302 

Forecasting (WRF) model output run in a high-resolution, pseudo global warming (PGW) 303 

framework by Liu et al., [2017]. The work by Lui et al., [2017] includes a 13-year historical 304 

reanalysis and a 13-year future climate sensitivity simulation with modified initial and boundary 305 

conditions set to the high-end, CMIP5 end-of-century emission scenario as averaged across 19 306 

global climate models [see Liu et al., 2017 for details]. The work by Liu et al. [2017] has supported 307 

previous assessments of changes in snowpack [Ikeda et al., in review], snowmelt [Musselman et 308 

al., 2017], and basin-scale rain-on-snow flood risk [Musselman et al., 2018] for the western U.S. 309 

The end-of-century air temperature, relative humidity, and longwave radiation data from Liu et al. 310 

[2017] were extracted and averaged for the WRF grid cell encompassing Gordon Gulch and the 311 

eight grid cells neighboring Gordon Gulch. Thus, the WRF data were averaged into an hourly 312 

dataset for one average water year. Delta values were calculated between the control dataset and 313 

the warming dataset, and these delta values were then added/subtracted from the control dataset to 314 

generate a warming dataset of equal length as the control dataset. 315 

 On average, annual air temperature increased by 4.7 oC (compared to the control 316 

simulation), annual longwave radiation increased by 29 W/m2 and annual relative humidity 317 

decreased by 2% (Figure 2). There is confidence that these variables will change with warming 318 

[Gochis et al., 2013] while future precipitation changes are less certain. For this reason, we did not 319 

change precipitation amounts in the warming simulation and instead held precipitation constant 320 

across simulations; the ramifications of this assumption are discussed in section 4.1. By assuming 321 

that historical precipitation magnitudes will not change in the future climate, we isolated the 322 
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hydrologic changes associated only with warming, subsequent changes in precipitation phase, and 323 

snowmelt timing and magnitude. Thus, relative to our control simulations, our warming 324 

experiment permitted an assessment of simulated changes in snowfall fraction, SWE, SWI, PET 325 

[Thornthwaite and Mather, 1955; 1957], and runoff (Q) – characterizing the total hydrological 326 

impacts of climate warming.  Because we are explicitly interested in how warming shifts SWI in 327 

the context of water partitioning, we do not consider potential changes in the amount of 328 

precipitation as this would not allow us to focus our analyses on our primary questions. Our 329 

analysis of warming included monthly and annual comparisons of water and energy variables of 330 

interest: rain and snowfall, snowmelt, PET, ET, SWI and Q. 331 

2.6 Budyko Analysis of Water Partitioning  332 

We analyzed DHSVM output and differences in hydrologic partitioning between control 333 

and warming simulations within the Budyko framework [Budyko, 1974]. The framework requires 334 

the following environmental variables for analysis of hydrologic partitioning: precipitation (P), 335 

potential evapotranspiration (PET), and evapotranspiration (ET).  Based on long-term observations 336 

from several catchments globally, Budyko [1974] developed an empirical relationship between 337 

catchment evaporative index (ET/P) and its index of aridity (PET/P) (Equation 3 and Figure 3): 338 

𝑬𝑬𝑬𝑬
𝑷𝑷 =  �(𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭( 𝐏𝐏

𝑷𝑷𝑷𝑷𝑷𝑷))(𝟏𝟏 − 𝐞𝐞𝐞𝐞𝐞𝐞 (−𝑷𝑷𝑷𝑷𝑷𝑷
𝑷𝑷 )) (3) 339 

 This framework is broadly used to predict the fraction of precipitation that will be 340 

partitioned to streamflow and evapotranspiration (Q/P or 1-ET/P), assuming that changes in ET 341 

cause compensatory changes in streamflow (Q) [Berghuijs et al., 2014]. The Budyko framework 342 

is based on long-term averages and therefore does not consider loss or gain of water via 343 

groundwater flow (inter-basin flow), and assumes that there is no change in storage within the 344 

catchment, whether in groundwater or soil water. The latter assumption limits the Budyko 345 
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framework to analysis to annual timesteps, most ideally as longer-term averages. Analyses have 346 

been conducted using Budyko over shorter time-scales, in which partitioning behavior must be 347 

interpreted in consideration of storage dynamics in the system. Typically, catchments with a low 348 

aridity index (PET/P <1) are energy limited with respect to evapotranspiration, and catchments 349 

with a high aridity index (PET/P >1) are water limited. 350 

Figure 3a shows the Budyko functional relationship between the aridity index (horizontal 351 

axis) and the evaporative index (vertical axis) on a hypothesized seasonal timescale. Anomalies 352 

from the Budyko hypothesis result from overproduction of either catchment Q or ET, below and 353 

above the line, respectively [Barnhart et al., 2016]. Relative to historical conditions (Figure 3a, 354 

black point), water partitioning will change as the aridity index increases in the warming 355 

simulation. Water partitioning may change relative to the expectation, which is represented by the 356 

Budyko curve. The catchment may partition precipitation to ET and Q under increased aridity 357 

index as expected, following the Budyko curve (Figure 3a, green point). Alternatively, the 358 

catchment may partition more precipitation to ET than expected (Figure 3a, yellow point) or more 359 

precipitation to Q than expected (Figure 3a, blue point).  360 

Comparing hypothetical control and warming conditions (Figure 3b), it is hypothesized 361 

that the warming evaporative index in spring months will increase in magnitude from the control 362 

evaporative index, consistent with the Budyko curve without anomalous partitioning (Figure 3b, 363 

point (control) and green star (warming)). In winter months, it is hypothesized that the control 364 

simulation (Figure 3b, blue point) will originally plot below the Budyko curve because 365 

atmospheric water demand is low during this time period and therefore any SWI generated by rain 366 

or snowmelt is likely to partition more efficiently to streamflow rather than to plant water use, for 367 

example. During the winter warming simulation (Figure 3b, blue star), it is hypothesized that shifts 368 
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toward earlier snowmelt and from snowfall to rainfall would act to increase winter SWI. This 369 

increase in SWI, when atmospheric water demand (i.e. PET) is still relatively low, will act to 370 

partition more water to streamflow than expected based on the Budyko curve, yielding an 371 

evaporative index value well below the Budyko curve. Lastly, in summer months, it is 372 

hypothesized that the control simulation (Figure 3b, yellow point) may first plot above the Budyko 373 

curve, expressing a water-limitation. This is a season of increased atmospheric water demand (PET 374 

rises with seasonal temperatures), and the catchment may partition more water to ET. Under 375 

warming conditions in the arid western U.S., we hypothesize that summer months will experience 376 

the greatest water limitations (Figure 3b, yellow star). With warming, it is expected that more SWI 377 

will occur earlier in the year and less water will persist on the landscape until summer, increasing 378 

the existing water-limitation.  379 

We used the Budyko framework on a monthly timeframe to evaluate monthly water and 380 

energy limitations and the successive effects on hydrologic partitioning with each consecutive 381 

month associated with changes in antecedent moisture availability. Holding precipitation constant, 382 

we isolated monthly changes in modeled PET due to warming and evaluated associated increases 383 

or decreases in hydrologic partitioning to ET and Q due to changes in monthly SWI. This SWI-384 

focused approach enables a more direct evaluation to how changes in snow accumulation and 385 

snowmelt influence hydrologic partitioning. These assumptions allowed us to isolate the relative 386 

effects of SWI from total hydrologic partitioning change due to warming by assuming changes in 387 

the anomaly from the Budyko curve were the effect of changes in SWI timing and the decoupling 388 

of water and energy. Hence, the absolute values represented by the Budyko curve are not important 389 

to the analyses, nor are these magnitudes intended to be directly applicable to monthly partitioning 390 
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in Gordon Gulch, but rather the change in general behavior between simulations (discussed further 391 

in section 4.1). 392 

3.0 Results 393 

The manual calibration of DHSVM resulted in an NSE value of 0.85 (Figure 4); an 394 

important statistic for verifying adequate model performance (for subsequent results below). This 395 

statistic is similar to previous work with DHSVM [Beckers and Alila, 2004; Moriasi et al., 2007; 396 

Surfleet et al., 2010; Thyer et al., 2004; van Wie et al., 2013; Wigmosta and Burges, 1997]. The 397 

simulated runoff ratio was 0.17, and the observed runoff ratio was 0.16, with an observed 398 

uncertainty range from 0.11 to 0.23; i.e. associated with typical uncertainties in the rating curve 399 

used to relate measured stage height to discharge. The percent bias, across the entire simulation 400 

period, was 37.6%, ranging between 25.3% (in 2013) to 53.7% (in 2011) when evaluated by water 401 

year. 402 

3.1 Change in Water Balance 403 

 Annual and average water budget variables from April 1, 2010 – August 31, 2013 are listed 404 

in Table 3, including total soil water, total sub-surface flow and average water table depth. Annual 405 

precipitation was greater in WY2011 than in WY2012, as was the snow fraction (the fraction of 406 

total annual precipitation falling as snow). The greatest change in snow fraction across the control 407 

and warming simulations occurred in winter and early spring months where snowfall in the control 408 

simulation transitioned to rain in the warming simulation.  409 

 Increases in rain and seasonal changes in snowmelt in the warming simulation altered the 410 

timing and magnitude of water partitioned as ET and Q (Figure 5). Because the incoming 411 

precipitation amount was fixed across the two simulations, increases or no changes in rain occurred 412 

every month of the year, with the greatest increases occurring in April and May (Figure 5a). As 413 
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prescribed by our methodology, snowfall decreased in an equal and opposite manner than that of 414 

rainfall (Figure 5b). Snowmelt decreased overall, but increased in December, January and 415 

February (Figure 5c). The increases in rain and melt caused increases in SWI in December and 416 

February and in April and May. Conversely, a large decrease in SWI occurred in March (Figure 417 

5d). As SWI increased in winter months and ET remained low (Figure 5e), streamflow increased 418 

during these months (Figure 5f). Overall, the catchment experienced an average annual decrease 419 

in streamflow of 22%, with a seasonal 15% increase in streamflow during winter and spring 420 

months (defined here as November through March).  421 

Evaluating the difference between control and warming monthly average values (i.e. 422 

warming value minus control value), there was a statistically significant positive relationship (p < 423 

0.01) between ∆SWI and ∆Q where, ∆SWI explained 38% of the variability in ∆Q (R2 = 0.38). 424 

Conversely, a statistically significant (p < 0.01) inverse relationship between ∆SWI and ∆ET, where 425 

∆SWI explained 25% of the variability in ∆ET (R2 = 0.25). These results indicate that the change 426 

in the timing of SWI has a significant impact on Q and ET, which is consistent with first principles 427 

related to water partitioning and associated impacts of seasonal water inputs on energy/water 428 

limitations. When including only months when SWI changed by at least 5 mm, a stronger positive 429 

relationship (p < 0.01) between ∆SWI and ∆Q occurred with an R2 of 0.48 (Figure 6a). Similarly, 430 

the significantly inverse relationship (p < 0.01) between ∆SWI and ∆ET also increased when 431 

months with SWI changes below 5mm were excluded; R2 increased to 0.61 (Figure 6b).  Because 432 

we are most interested in the hydrologic response to changes in the timing of SWI, excluding 433 

months with minimal SWI change is warranted. Changes in both SWI (Figure 5d) and Q (Figure 434 

5f), from the control simulation to the warming simulation, were positive in winter months; these 435 

months exhibited increases in rainfall (Figure 5a) and decreases in snowmelt (Figure 5c). In spring, 436 
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both SWI and Q decreased in association with decreased snowmelt (Figure 5c) and increased ET 437 

(Figure 5e).  438 

There exist monthly nuances to the relationships between changes in SWI, ET, and Q as 439 

described above. In April and May specifically, there was a large increase in ET and decrease in 440 

Q, but a relatively small change in SWI.  In these months, in the control simulation, snowfall and 441 

snowmelt occurred in rapid succession. While snow accumulated in late-spring snowstorms, the 442 

climate is such that the snow melted shortly afterward, causing little delay in SWI generation (i.e. 443 

snowfall and snowmelt occurred in the same month). Similarly, when the catchment was perturbed 444 

by the warming simulation and April and May monthly precipitation fell as rain instead of snow, 445 

there was no change in the timing of SWI generation at the monthly time scale relative to the 446 

control simulation.  Given that the snowpack does not store water beyond the monthly time scale 447 

in the April and May control simulation, there were little changes in the timing of SWI generation 448 

in the warming simulation relative to the control; i.e. because precipitation and SWI occurred in 449 

the same month in both simulations. In March, conversely, appreciable snowpack water storage 450 

occurred in the control simulation. Hence, in the warming simulation the timing of SWI generation 451 

changed in the warming simulation as snowmelt shifted to earlier months (Figure 5c, February). 452 

Lastly, no change in SWI occurred in summer months, as all precipitation fell as rain in both 453 

simulations, not affecting the timing of SWI.  Notwithstanding, ET and Q both decreased in 454 

summer months for the warming simulation, likely because of increased summer water limitations 455 

associated with a shift in SWI to winter months and water storage limitations, which are discussed 456 

further in section 4.1. 457 

3.2 Budyko Analysis of Water Partitioning  458 
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Under the warming simulation, ET/P increased less than expected from Budyko’s function, 459 

and therefore decreases in Q/P were less than expected as well (Table 4). ET/P did not increase at 460 

the level expected from Budyko because SWI shifted earlier in the year, a changed that was 461 

associated with warming. This change caused winter seasonal increases in Q, which offset the 462 

overall annual decrease in Q. According to the Budyko hypothesis, the expected annual average 463 

runoff ratio under warming conditions, based on the aridity index calculated from the warming 464 

simulation (PET/P = 2.85), was 0.073. The catchment instead experienced an annual average 465 

runoff ratio of 0.12, indicating a 4.7% increase in streamflow (i.e. 0.12 – 0.073) associated with 466 

the shift in SWI timing. 467 

  Examining the monthly Budyko comparisons illustrated how the modeled water 468 

partitioning changed due to warming and changes in SWI timing. In this respect, Figure 7 shows 469 

that under warming, winter months (blue stars) and early spring months (March/April, green stars) 470 

plot further below the Budyko curve than the corresponding control simulation (winter months = 471 

blue circles, spring months = green circles).  Because this time period is primarily energy-limited, 472 

the increased SWI exhibited relatively lower partitioning to ET and greater partitioning to 473 

streamflow than expected by Budyko. The reductions in ET partitioning (relative to Budyko) are 474 

also seen in the water-limited summer months (Figure 7, red stars versus corresponding red 475 

circles). This occurred because shifts toward earlier SWI in previous months increased water-476 

limitations with respect to summer ET. The combined effects of decreased ET partitioning (relative 477 

to Budyko) in both winter to early spring months and in summer months resulted in an overall 478 

reduction in annual ET partitioning relative to the Budyko expectation. Importantly, one would 479 

not expect this type of warming response for a rain-dominated system because shifts in SWI timing 480 

would not occur in any month.  481 
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In Figure 8a-d, we show both the raw values and the changes across the control and 482 

warming simulations (as a difference value) in average monthly ET/P (Figure 8a) and SWI (Figure 483 

8b) to further evaluate the mechanistic impact SWI has on catchment hydrologic partitioning. In 484 

the warming simulation, ET/P increases in winter and early spring months and decreases in 485 

summer months (Figure 8c). These changes coincide with water availability (or lack of) in the 486 

form of SWI: in the warming simulation, increased SWI is generated in winter months (due to 487 

more rainfall and earlier snowmelt events), which caused decreased SWI in later months (i.e., 488 

March, Figure 8d). Similarly, the notable decrease in SWI in March in the warming simulation 489 

explains the subsequent decreased ET/P in June, because water-limitations in June are enhanced 490 

by the shift toward earlier SWI. Lastly, the notable increases in SWI under warming conditions 491 

are seen in the average monthly differences in SWI in December and February. The change in 492 

January SWI is less dramatic, as SWI was generally low in the four represented years (averaged 493 

in Figure 8b) and January was likely less sensitive to warming than December and February, as it 494 

is climatologically the coldest month in this catchment.  495 

4.0 Discussion 496 

4.1 Assumptions and Limitations  497 

4.1.1 Precipitation. We limited our warming perturbations to air temperature, relative 498 

humidity and incoming longwave radiation by amounts shown in Figure 2. Across the control and 499 

warming simulations, we held historical precipitation constant. Allowing precipitation amount to 500 

change would have eliminated a means of deciphering how changes in SWI impact ET and Q as 501 

changes in precipitation would have also impacted partitioning. Holding P constant in the warming 502 

simulation likely created amplified water-limitations in the summertime, where we saw monthly 503 

decreases in ET/P. 504 
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A number of studies have highlighted uncertainties in future precipitation. By end-of-505 

current-century across the western U.S., Liu et al., [2017] estimated increases in wintertime 506 

precipitation between 40% to 70%, with greater increases expected in high elevation mountainous 507 

regions. Changes in precipitation during the summer season are less defined and more variable. 508 

Kittel et al. [2016] showed that historical precipitation trends on the Front Range of Colorado 509 

(1952 to 2010) are unclear as precipitation increased approximately 60 mm per decade at an alpine 510 

site (3739 m) but showed no trend at a nearby subalpine site (3022 m). They suggested that 511 

precipitation variability is more strongly associated with decadal variability, as both warm-and-512 

wet and warm-and-dry periods will occur in the future. In the greater Upper Colorado River Basin, 513 

end-of-current-century precipitation projections are equally unclear, with predictions ranging from 514 

a 60% decline at lower elevations to as much as a 74% increase at high elevations [Christensen et 515 

al., 2004; Group et al., 2015; Kopytkovskiya et al., 2014; Miller et al., 2014; Minder et al., 2017].  516 

Using this information, we posit that if the wintertime precipitation were to fall as snow, 517 

but snowmelt still occurred earlier due to simulated warming, this seasonal increase in 518 

precipitation would reinforce our finding regarding a buffering effect associated with a shift in the 519 

timing of SWI and associated increases in winter Q.  The same result would occur if the future 520 

increased wintertime precipitation were to fall as rain, as SWI would be generated immediately in 521 

the colder months when PET is relatively low, partitioning more SWI to Q, increasing winter 522 

season runoff, and buffering overall annual decreases in Q. Precipitation increases in the future 523 

could alleviate catchment water-limitations, and therefore the summer decreases in ET/P noted 524 

herein may not be applicable to scenarios of increased precipitation. Irrespective of potential 525 

precipitation trends, first principles determine that a shift in SWI will occur with warming and thus 526 

the buffering concept revealed here would remain evident. In addition, predictions of future 527 



 (Hale et al., in review) 25 

precipitation are highly uncertain and therefore limiting our study to the more certain projections 528 

of increased temperature, allows for a more tractable scope in our analyses. 529 

Lastly, the scale and accuracy of precipitation forcing data may have dramatic impacts on 530 

streamflow simulations, in particular extreme peaks. Even at smaller catchment scales, spatial 531 

variability of precipitation has been shown to translate into large variations in modeled runoff 532 

[Faurès et al., 1995; Goodrich et al., 1995]. Thus, in Figure 4, where the model is unable to 533 

accurately capture the runoff peaks observed in Gordon Gulch could be the result of precipitation 534 

variability across the catchment that was not represented in the modeled forcing data. This 535 

limitation may be improved with high resolution precipitation data and/or including a longer 536 

simulation period, which may enhance the model calibration process. 537 

 4.1.2 Storage. Additional stationarity was assumed across control and warming model 538 

simulations in soil and vegetation parameters. DHSVM was initially optimized in the control 539 

simulation to the historic streamflow record, and we assumed that those parameters, which 540 

influence sub-surface flow and storage, were transferrable to the future, warming simulation. It is 541 

likely that these parameters will change in the next century, introducing a limitation to the 542 

methodology used in this work. However, changes in soil properties in particular are likely to occur 543 

more rapidly in time, under future warming, to soils high in organic matter, which are less common 544 

in Colorado Front Range (which are low in organic matter) [Karmakar et al., 2016]. Further, in 545 

both simulations, stomatal minimum resistance remains the same throughout one water year 546 

[Kaufmann, 1982; Wigmosta et al., 1994], which is not always accurate in a forested area [Irmak 547 

and Mutiibwa, 2009]. 548 

Next, by evaluating hydrologic partitioning with a monthly scale Budyko analysis, our 549 

evaluation of hydrologic storage within Gordon Gulch across months is relative (i.e., we focus on 550 
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the change in general behavior between simulations). Because the Budyko framework is based on 551 

long-term observations, the prediction of an evaporative index from a given aridity index does not 552 

consider carry-over in water availability (i.e. storage) from month to month. Thus, when evaluating 553 

hydrologic partitioning on a monthly timescale, ET/P can exceed a value of 1, as seen in Figure 7 554 

and in previous works using the Budyko framework on a shortened, monthly timeframe [Du et al., 555 

2016; 2012; Yokoo et al., 2008; Zhang et al., 2008]. Du et al., [2016] address this exceedance by 556 

parameterizing water supply as precipitation in addition to root zone water storage change. Thus, 557 

because we do not explicitly quantify root zone water storage change in our analysis, we instead 558 

assess monthly hydrologic partitioning as relative between our two model simulations, where our 559 

results suggest general catchment behavioral differences between a control and warming scenario.  560 

However, water storage in the root zone and water table (i.e., soil and sub-surface storage) 561 

can impact the monthly Budyko values by increasing ET (from stored water in the soil and 562 

vegetation) in months where P may be low (e.g., control simulation summer months in Figure 7 563 

when ET exceeds P). Subsequently, once root zone storage is depleted in the semi-arid 564 

environment, ET will significantly decrease, despite any P input, as there is no remaining water 565 

(e.g., control simulation fall months in Figure 7 when ET/P again drops below 1). 566 

 4.1.3 Model uncertainties. There are inherent uncertainties in the DHSVM simulations 567 

associated with model forcings, parameters, and model structure. Fixed and unfixed parameters 568 

attempt to represent an intricate and dramatic landscape and capture environmental micro-569 

dynamics and interactions. However, each parameter introduces an assumption about the 570 

landscape, where observations are often lacking [Stewart et al., 2017; Wigmosta, 1994; Du et al., 571 

2014; Zhao et al., 2009]. This was particularly true with soil parameters, where porosity and field 572 

capacity are often poorly known across any given catchment. The representation of the water table 573 
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bedrock interface within the model (where impermeable bedrock underlies the water table 574 

[Wigmosta et al., 1994]) also poses a limitation, as it simplifies the underlying structure present in 575 

Gordon Gulch, where deep groundwater flow contributes to runoff. The streamflow record of 576 

Gordon Gulch also posed limitations to our study, where only three years were available for 577 

analysis and model parameter estimation. Owing to the relatively small catchment area (2.6 km2) 578 

and semi-arid climate (520 mm annual precipitation), the streamflow volumes in Gordon Gulch 579 

are relatively small and are highly variable; e.g. 2011 was highly snow-dominated (snow fraction 580 

0.53) whereas 2012 was dominated by summer rainfall (snow fraction 0.39). Given these small 581 

and variable fluxes, capturing the temporal variability of streamflow within any hydrologic model 582 

is challenging. 583 

4.2 Implications 584 

Previous works have suggested that regions with greater proportional snowfall versus 585 

rainfall have relatively greater streamflow [Berghuijs et al. 2014; Klos et al., 2014]. Such 586 

differences across catchments have been attributed to groundwater dynamics and the catchment 587 

drainage rate [Safeeq et al., 2013; Tague and Grant, 2009] as well as the rate of snowmelt [Barnhart 588 

et al., 2016]. As warming shifts surface water inputs from snowfall to rainfall, and causes earlier 589 

snowmelt and peak runoff [Tennant et al., 2015], runoff ratios will decrease [Follum et al., 2019; 590 

Livneh and Badger, 2020; Zhang et al., 2018]. Yet, missing from these preceding assessments of 591 

snowmelt-driven changes in streamflow under warming has been an in-depth analysis of how the 592 

timing of surface water inputs will change and how this change will impact streamflow generation. 593 

The analyses presented herein address this knowledge gap by estimating future changes in 594 

hydrologic partitioning associated with an alteration of surface water input seasonality. The shift 595 
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in SWI caused a 15% increase in winter streamflow which acts as a relative buffer to the 22% 596 

annual loss in modeled streamflow. 597 

The resulting overall decrease in annual streamflow with seasonal increases in winter 598 

streamflow presented here is complementary to several previous studies. Imposing warming 599 

conditions on historical records, both Christensen et al [2004] and McCabe et al. [2007] estimated 600 

an end of 20th century annual decrease in streamflow of 17% in the Colorado River Basin. 601 

Christensen and Lettenmaier [2006; 2007] estimated an end-of-century annual decrease in 602 

streamflow of 8%-11% across the Colorado River Basin. The entirety of western North America 603 

is projected, by climate model ensembles and the Variable Infiltration Capacity (VIC) model, to 604 

experience an annual decrease in runoff of 10-30% by 2050 [Christensen and Lettenmaier, 2006; 605 

2007; Milly et al., 2005]. Seasonally, Hamlet and Lettenmaier [1999], using the VIC model across 606 

the Western United States, saw overall decreases in streamflow but with wintertime increases up 607 

to 50% due to increased precipitation.  While our results fit within the range of annual streamflow 608 

projections, these previous studies leave a need to determine the mechanism for the associated 609 

hydrologic changes related to changes in the timing of SWI generation. Past sub-seasonal analyses 610 

of hydrologic sensitivity to climate warming have the potential to reveal mechanisms for 611 

streamflow change. For example, Foster et al. [2016] evaluated catchment increases in ET and 612 

precipitation phase change at two mountainous locations in Colorado, and determined that an 613 

increase in ET created larger decreases in Q (compared to precipitation phase changes), suggesting 614 

that increases in ET primarily drive decreases in Q.  615 

In this study, winter and spring increases in rainfall fraction and earlier snowmelt events 616 

resulted in increased SWI and associated increases in seasonal streamflow. It is also possible that 617 

winter and spring SWI increases will recharge groundwater that can support the ET of deep-rooted 618 
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vegetation, streamflow later in the season, or groundwater export from the catchment. Analyses 619 

using the Budyko framework revealed a smaller increase in evaporative index (i.e. ET/P) than 620 

expected under a warming scenario (Table 4; Figure 7 yellow points/stars, green points/stars). In 621 

this respect, the anomaly from the Budyko curve increased with warming, resulting in a larger 622 

runoff ratio than that expected based on the Budyko hypothesis. As SWI shifted toward winter 623 

months, when atmospheric water demand was relatively low, Q/P increased. Such sensitivity of 624 

the water balance to the seasonality of climate is consistent with Nasta et al. [2020] and Milly's 625 

supply‐demand‐storage model, demonstrating that when P seasonality and PET seasonality are in-626 

phase, catchments will experience a higher ET/P ratio than when P seasonality and PET seasonality 627 

are out-of-phase [Milly, 1994a, 1994b; Nasta et al., 2020; Williams et al., 2012]. Temporal 628 

differences in the seasonal timing of rainfall caused up to a 20% difference in ET/P, where a longer 629 

wetter season (more rainfall in the winter and spring months) caused a lower ET/P and, conversely, 630 

greater Q/P and a departure below the Budyko curve [Nasta et al., 2020].  631 

Within a simulated warming climate, streamflow was sensitive to both increased PET and 632 

changes in SWI timing, where increased PET acted to decrease Q but earlier SWI acted to increase 633 

Q. SWI increased in the winter months when PET was relatively low, decoupling catchment water 634 

supply (i.e. SWI) and atmospheric water demand (i.e. PET), and increasing winter streamflow. 635 

Under warming conditions, annual mean streamflow still decreased overall but increased in winter, 636 

demonstrating how the original presence of snow in the control simulation buffered and offset the 637 

overall decrease in Q due to simulated warming. This buffering effect of increased wintertime 638 

streamflow is specific to snow-dominated catchments, where buffering of climate sensitivity is 639 

associated with shifts in SWI timing. Such sensitivity is buffered until snow longer falls within a 640 
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catchment, as SWI (produced by solely rainfall) timing will not be affected by warming and no 641 

seasonal streamflow climate-sensitivity buffer will exist.  642 

5.0 Conclusions 643 

In this analysis, the timing of surface water input (SWI) shifted toward earlier in the year 644 

due to warming and subsequent decreases in snowfall fraction and earlier snowmelt events. As a 645 

result, average annual winter and early spring streamflow (Q) increased by 15%, despite an average 646 

annual streamflow decrease of 22%. Hydrologic partitioning within the catchment shifted toward 647 

increased ET, but less than would be expected within the Budyko hypothesis. In this regard, winter 648 

increases in SWI resulted in a seasonal increase in annual Q relative to the expected value based 649 

on Budyko. These wintertime SWI increases caused successive summertime drying, which 650 

decreased partitioning to ET/P, when there exist seasonal water-limitations, which were amplified 651 

under warming conditions.  652 

To obtain these results, the Distributed Soil Hydrology Vegetation Model (DHSVM) was 653 

used to simulate a control and warming scenario, in a small upper montane catchment in the Front 654 

Range of Colorado. In order to evaluate solely the effects of SWI on Q, precipitation amount (but 655 

not phase) was held constant, and landcover and soil properties were considered stationary across 656 

simulations. This approach meant that the model results were most informative when relatively 657 

compared against one another, as opposed to presented as absolute, transferrable values. A future 658 

study may evaluate annual and seasonal SWI and Q in a non-stationary scenario, where the isolated 659 

effect of each variable on Q would need to be identified in order to create a meaningful SWI-Q 660 

relationship. We predict that, by first principles, the increased winter season Q as a result of 661 

increased SWI from earlier snowmelt would remain. 662 
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Overall, the winter-spring streamflow increases and increased Q/P in Budyko space 663 

represent a buffering effect with respect to hydrologic sensitivity to climate change that is specific 664 

to snow-dominated catchments. As climate warming continues, losses in snow cover may exceed 665 

a threshold in which snowmelt becomes an insignificant hydrologic driver and this seasonal 666 

streamflow buffering effect will no longer exist. Thus, the findings here represent an expected 667 

hydrologic response in near-future conditions within the Colorado Front Range, whereby 668 

subsequent responses may reflect more rain-dominated conditions. Critically, the temporal 669 

distribution of SWI generation, and future changes, will change where and when water resources 670 

will arrive downstream, influencing the reliant, surrounding ecosystems and end-users.  671 
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