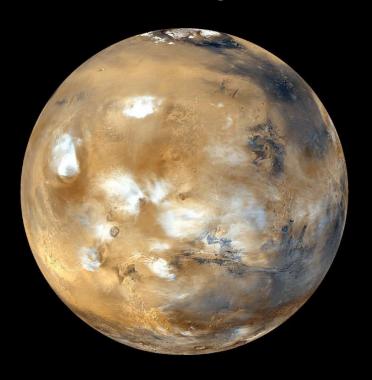
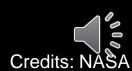


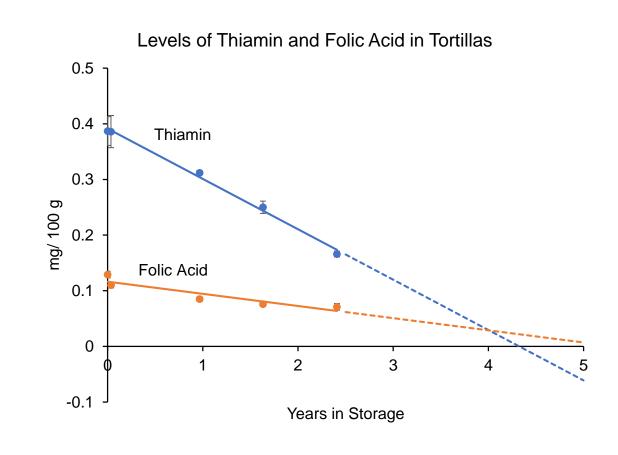
BioNutrients: Microbial on-demand production of short shelf-life micronutrients in space

Frances M. Donovan, Ph.D.


Synthetic Biology Project, STMD Game Changing Development, NASA Ames Research Center



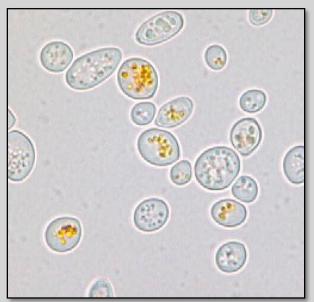
Sustained human exploration of deep space will stress re-supply capacity and surpass current shelf life limitations for critical nutrients and therapeutics.



Nutrients are a critical supply risk: Essential nutrients degrade in long-duration storage

Studies of the NASA pre-packaged food system have found declines in:

- Folic acid/Folate
- Vitamin A
- Thiamin (Vitamin B₁)
- Riboflavin (Vitamin B₂)
- Vitamin B₆
- Vitamin B₁₂
- Vitamin C
- Vitamin E
- Vitamin K


Need to produce some foods in situ

BioNutrients: In Mission production of nutrients as an alternate strategy

Microbially fermented foods engineered to produce essential nutrients or protein therapeutics, on-demand, surviving ambient storage conditions.

S. boulardii producing β-carotene

Rationale: Engineer yeast and/or bacteria to produce essential nutrients when grown for a short period of time in edible media.

- Rapid, on-demand production
- Room temperature storage of organisms
- Enriches pre-packaged foods with labile nutrients

Carotenoids selected as initial nutrient:

- Light sensitive and degrades in packaged foods
- Important to protect from macular degeneration
- Antioxidant activity to protect against DNA damage

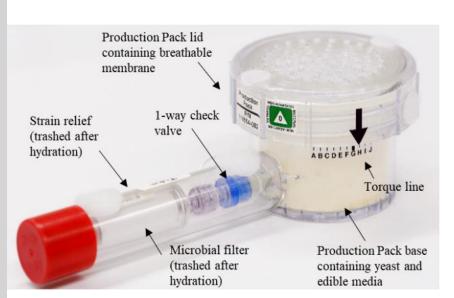
Future implementation concept

Premixed dry media and microbes Ambient temperature storage

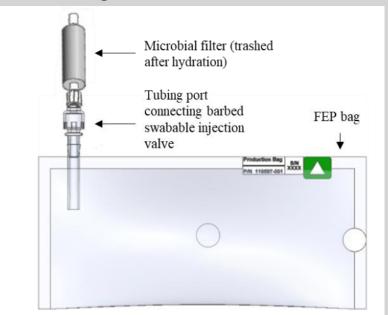
Hydrate and dissolve media Incubate to grow microbes

Deactivate microorganisms Consume as a supplement

BioNutrients Development Plan



Mission	Objectives	Launch
BN-1	5-year test of storage and production on the ISS Engineer yeast strains to produce carotenoids in edible media Test media and related packaging Develop Gen-0 bioreactor Test other microorganisms for long-duration storage	✓ NG-11, April 2019
BN-2	<1-year flight test Expand products to yogurt and kefir, continue carotenoid testing Engineer medical countermeasure product (follistatin) Develop Gen-1 bioreactor to decrease system mass Develop HACCP food safety plan	Target NG-18, August 2022
BN-3	Engineer system to produce multiple nutrients in low ESM package Develop Gen-2 bioreactor Demonstrate reliability of HACCP plan	FY24


BioNutrients 1 hardware vs BioNutrients-2: Reduced Mass, Volume

BN-1: 117 g Bioreactor

BN-2: 10 g Bioreactor

BN-2: Change to a
Fluorinated Ethylene
Propylene (FEP) bag
bioreactor – lower mass and
volume, performance to be
compared to BN-1 hard shell
with gas permeable
membrane.

FEP is gas permeable.

BN-1 hardshell bioreactor growing yeast expressing carotenoids in SABL on the ISS. BN-2 FEP bag growing yogurt with a pH indicator dye on during pre-flight testing

For more detail please see Ball et al. (2021) Proc. Int. Conf. Envir. Systems. ICES-2021-331.

https://ttu-ir.tdl.org/handle/2346/87260

BioNutrients-1 Stasis Packs

Stasis packs seek to identify species and conditions that will provide 5-year shelf life in ambient temperature storage.

- 9 microbe species investigated
 - Baker's yeast and probiotics
 - Species for yogurt
 - Species that can metabolize diverse carbon sources
- Varied storage and pre-flight treatments
 - vary storage preparation (encapsulation, pellet forms, additives)
 - mutagenize for genetic screens
- 3 media formulations
- > Compare ground control to ISS storage.
- Assay for viability at 3- to 6-month intervals over 5 years.
- ✓ Variation in viability observed by 2 years of storage.

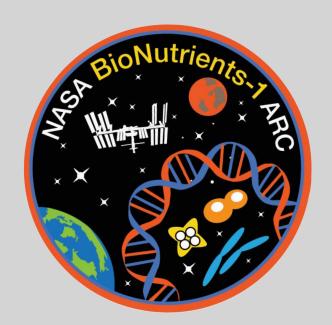
Santa Maria et al (2020) found yeast to be stable for 2 years at room temperature storage.

Santa Maria et al (2020) Astrobiology. https://doi.org/10.1089/ast.2019.2073

Summary

Fermented foods provide an additional strategy to produce essential nutrients for extended shelf life.

- Microbes can be engineered to produce multiple nutrients or countermeasures.
- Media and microbes need to be shelf stable for 5 years (current production pack tested >2 years to date).
- Growth cycles are short, on the order of <1-3 days instead of weeks to months.


Ongoing development needed for full implementation

- More comprehensive microbe engineering, product development.
 - Critical products, testing of palatability, crew acceptance of nutrient supplementation via microbial production.
- Engineering food safety and process controls.
 - In mission: cooking or other methods to end microbial growth and assess safety of products.
 - HACCP planning and other ground based processes to ensure safety.

GCD Synthetic Biology Project Team

BioNutrients Authors

Natalie Ball Aditya Hindupur Hiromi Kagawa **Aphrodite Kostakis Amy Gresser** Julie Levri **Kevin Sims** Sean Sharif Alyssa Villanueva Frances Donovan A. Mark Settles John Hogan

Acknowledgements

Michael Dougherty
Jon Galazka
Harry Jones
Jessica Kong
Paul Milazzo
Marilyn Murakami
Satro Narayan
Matthew Paddock
Mathangi Soundararajan
Daniel Varnum-Lowry

Astronauts

David Saint-Jacques
Drew Morgan
Shannon Walker

