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Abstract 12 

Water-resources planners use regional water management models (WMMs) to identify vulnerabilities to 13 

climate change. Frequently, dynamically downscaled climate inputs are used in conjunction with land 14 

surface models (LSMs) to provide hydrologic streamflow projections, which serve as critical inputs for 15 

WMMs. Here, we show how even modest projection errors can strongly affect assessments of water 16 

availability and financial stability for irrigation districts in California. Specifically, our results highlight 17 

that LSM errors in projections of flood and drought extremes are highly interactive across timescales, 18 

path-dependent, and can be amplified when modeling infrastructure systems (e.g., misrepresenting 19 

banked groundwater). Common strategies for reducing errors in deterministic LSM hydrologic 20 

projections (e.g., bias correction) can themselves strongly distort projected climate vulnerabilities and 21 

misrepresent their inferred financial consequences. Overall, our results indicate a need to move beyond 22 

standard deterministic climate projection and error management frameworks that are dependent on single 23 

simulated climate change scenario outcomes. 24 
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Introduction 26 
 27 

The planning and management of water resources depend heavily on projections of water supply and 28 

demand (Loucks and van Beek 2017; Wurbs 1995), strongly shaping water infrastructures and institutions 29 

(Malek et al. 2018; Trindade et al. 2019; Yoder et al. 2017). The challenge of infrastructure investment 30 

for climate adaptation represents a balance between financial stability and the capacity to meet system 31 

demands (Baum et al. 2018; Trindade et al. 2019).  Moreover, governments often confront high economic 32 

costs, political contention, and social conflicts (Gizelis and Wooden 2010; Petersen-Perlman et al. 2017) 33 

as they seek to change water related infrastructures or institutions. These factors promote institutional 34 

inertia that favors reactive, post-event responses. Ignoring projections can lead to mal-adaptive and 35 

myopic actions that ultimately reduce our ability to respond to changes and reduce the vulnerability of 36 

water-dependent sectors to stressors (Lamontagne et al. 2019). Projections of future water resource 37 

availability can also shape the perceptions of farmers, irrigation district managers, and water and power 38 

utilities about their individual vulnerabilities to climate change, therefore influencing local investment 39 

and water-stress hedging decisions (Mase et al. 2017; Mills et al. 2016; Udmale et al. 2014).   40 

Typical model-driven projections of water supply vulnerabilities to climate change consists of: (i) 41 

dynamically downscaling climate projections to inform simulation of unregulated streamflow that enters 42 

river systems (Clark et al. 2011; Overgaard et al. 2006) using hydrologic land surface models (LSMs) and 43 

(ii) the use of the resulting streamflow projections to simulate the allocative water balance dynamics 44 

across water-dependent sectors (Wurbs 1995) using water management models (WMMs) (Brown et al. 45 

2015). Unregulated streamflow simulations require forcing data from observed meteorological inputs or a 46 

combination of global circulation models and regional atmospheric models. Streamflow projections 47 

contain errors due to biases in meteorological and soil data as well as model calibration, scale, and limits 48 

in process representations (Beven 1993, 2016; Gaganis 2009). A large body of literature has explored 49 

how these errors are generated and how they can be categorized (Gupta and Govindaraju 2019; Gupta et 50 

al. 2008; Nearing et al. 2016; Refsgaard et al. 2006; Vogel 2017; Wagener et al. 2010). However, it is 51 



poorly understood how LSM errors propagate into WMMs, which are themselves subject to errors, and 52 

combine to yield biases in our end-point decision-relevant measures of climate vulnerability (e.g., reduced 53 

crop yields, water shortages, or financial risks). Recent studies have begun to formally analyze the 54 

propagation of uncertainty of inflow water regimes within water management models (e.g., Hassanzadeh 55 

et al. 2016; Marton and Paseka 2017; Nazemi and Wheater 2014; Sordo-Ward et al. 2016). These efforts 56 

mainly focus on internal variability or uncertainty that results from ensemble simulations based on 57 

synthetically generated streamflow time series. Although understanding the effects of observation record 58 

limits and internal variability is important, it is fundamentally different than the error perturbation 59 

analyses contributed here. The implications of errors within the broadly used top-down GCM- and LSM- 60 

based deterministic simulated streamflow projection products is not well understood in terms of its effects 61 

on water management models. It is worth mentioning here that, synthetic generation of streamflow time 62 

series is commonly used as an alternative bottom up way of  exploring streamflow changes and 63 

uncertainty (Borgomeo et al. 2015; Herman et al. 2016; Kirsch et al. 2013; Quinn et al. 2018, 2020; 64 

Steinschneider et al. 2015). These methods often employ statistical techniques to construct streamflow 65 

timeseries that are non-stationary and more diverse, while, they still maintain a reasonable level of 66 

statistical consistency with the past observations. Overall, streamflow scenarios have been used to make 67 

up for the lack of long-term streamflow observations. These scenarios also allow us to investigate cases 68 

that have not been occurred during the observation periods such as low frequency extreme wet and dry 69 

events, and multi-year droughts. 70 

Here, we focus on climate-driven vulnerabilities in the California water supply system, which represents 71 

one of the most institutionally complex water infrastructure systems in the world. The system (Figure 1) 72 

includes thousands of kilometers of conveyance canals and dozens of dams that are operated to satisfy a 73 

broad spectrum of objectives, including two state-wide water delivery projects—the State Water Project 74 

(SWP) and the Central Valley Project (CVP).  California’s water supply is highly dependent on the 75 

surface water inflows from the Sierra Nevada mountains into its northern reservoirs. While the state has 76 



experienced substantial flood and drought events in the past (Howitt et al. 2014; Mann and Gleick 2015), 77 

climate change is expected to worsen the situation (Mann and Gleick 2015; Mote et al. 2005; Tanaka et 78 

al. 2006). This vulnerability is motivating a myriad of propositions to improve California’s water 79 

infrastructures and institutions (Forsythe et al. 2017; Nishikawa 2016; Sandoval-Solis 2020). 80 

Groundwater resources and water banks are among the most crucial and vulnerable parts of the water 81 

supply in California (Kiparsky et al. 2017; Nishikawa 2016), particularly for the agricultural sector, and 82 

are the subject of emerging regulations (Forsythe et al. 2017). A significant portion of California’s annual 83 

precipitation is generated through atmospheric rivers during the winter and early spring (Dettinger et al. 84 

2011), which must be stored to meet summer agricultural demands (Christian-Smith 2013; Kocis and 85 

Dahlke 2017). Therefore, water stakeholders in California recharge their groundwater resources during 86 

these short-lived extreme events, to use it later when surface water is not sufficient to meet the demand 87 

(Ghasemizade et al. 2019; Scanlon et al. 2016). This management regime potentially increases the 88 

sensitivity of irrigation focused drought projections to short-term (daily) errors in simulated flood events. 89 

To date, the implications of this issue have not been explored in detail.  90 

In this study, we show how errors from a well-established coupled atmosphere-land modeling system 91 

(WRF-NoahMP; Cai et al. 2014; Skamarock et al. 2005, 2008; Figures S1- S2) propagate into a 92 

California-specific WMM (i.e., CALFEWS; Zeff et al. 2021) and impact the simulation of system-wide 93 

water supply, groundwater extraction, and annual revenue of irrigation districts in the Central Valley.  94 



 95 

Figure 1. Study area of this study (State of California). The map indicates the locations of various dams and 96 

reservoirs in California, the state’s main agricultural areas, and the spatial distribution of almond, one of the most 97 

important crops in California. The figure also shows the capacity of the dams of the two main water delivery 98 

projects in California and the San Luis dam that is shared between the two projects.  99 

 100 

We trace how errors in a single dynamically downscaled deterministic streamflow scenario for a recent 101 

historically observed period can strongly bias the important water balance dynamics for key actors and 102 



infrastructure systems. This work highlights the strong interdependence between errors in flood and 103 

drought extremes, which are shown to be nonlinear, path-dependent, and amplified in modeled operations 104 

of conveyance and storage infrastructures. In other words, the simulation of various system stakeholders 105 

depends on the history of exposure of the stakeholder to streamflow errors as well as their flow paths 106 

through other system components. Moreover, we show that standard methods for managing and reducing 107 

these hydrologic errors exacerbate these water balance distortions as well as associated inferences of 108 

climate vulnerabilities for the region. 109 

 110 

Methods 111 

In this study, we explore how errors in dynamically downscaled projections of surface hydrology impact 112 

important California water management systems using the California Food-Energy-Water Systems Model 113 

(CALFEWS; Zeff et al. 2021). The model adaptively allocates water across scales and sectors using a 114 

detailed representation of the state’s infrastructure and institutions. Our analysis compare CALFEWS 115 

simulations of critical components of the California water distribution system under four sources of 116 

streamflow inputs: i) observed streamflow from the California Department of Water Resources’ Data 117 

Exchange Center (CDEC); ii) raw WRF-NoahMP streamflow outputs (no groundwater correction; 118 

NGW); iii) WRF Noah-MP streamflow outputs with an expert-driven manual removal of groundwater 119 

biases (groundwater corrected; CGW); and iv) WRF Noah-MP streamflow data that reduced errors via an 120 

automatic bias correction method using quantile mapping (bias-corrected; BC). In this section, we 121 

describe the computational framework that was used to conduct the simulation-based analyses that 122 

underlie this study (Figure S1 in Supplemental Materials). To that effect, we first introduce the regional 123 

atmospheric land-surface model (WRF-Noah-MP) that generated our dynamically downscaled 124 



streamflow datasets. We then summarize the water management model used in this study (CALFEWS; 125 

Zeff et al. 2021). Finally, we then describe the methods used here to produce our bias-corrected datasets.  126 

WRF-Noah-MP Streamflow Projections: 127 

The input streamflow data to our WMM was generated using the Weather Research and Forecast (WRF) 128 

regional climate model (Skamarock et al. 2005, 2008; Tang and Dennis 2014). The version of WRF used 129 

to generate the streamflow inputs to CALFEWS is integrated with the Noah-MP land surface model 130 

(LSM; Barlage et al. 2015) a mechanistic hydrologic LSM that simulates key surface water and energy 131 

fluxes and states required by WRF as a surface boundary condition. Noah-MP also simulates surface 132 

runoff and sub-flow, cold season processes, vegetation dynamics, soil water movement, frozen soil, and 133 

infiltration processes (Cai et al. 2014; Ingwersen and Streck 2011; Liu et al. 2016).  134 

In this study, we compare four sources of streamflow inputs for CALFEWS. The first one is our observed 135 

streamflow baseline from the California Department of Water Resources’ Data Exchange Center (CDEC). 136 

We also considered three variants of WRF-Noah-MP-simulated streamflow scenarios: 1) Raw WRF-137 

Noah-MP (NGW); 2) Groundwater-corrected flow (CGW); and 3) Bias-corrected flow (BC). The first 138 

two simulated streamflow scenarios (CGW and NGW) were developed by Holtzman et al. (2020) while 139 

the BC scenario was developed in this study (Supplementary Notes S3). To develop NGW and CGW, 140 

Holtzman et al. (2020) used two different parameterizations of WRF-Noah-MP. Their baseline WRF 141 

setup and parameterization were consistent with Wrzesien et al. (2015), with a spatial resolution of 9 142 

kilometers (27-km outer domain). However, Holtzman et al. (2020) showed that the default WRF 143 

parameterizations can lead to biased streamflow simulations in California. Therefore, they published a 144 

series of modifications to improve the simulated streamflow. The NGW is a direct output of WRF-Noah-145 

MP after improvement of its internal parameterizations. The CGW, on the other hand, was developed by 146 

ex-post statistical correction of NGW-simulated streamflow to make up for the lack of a groundwater 147 

representation in the original WRF-Noah-MP setup.  148 



To develop the NGW streamflow scenario, Holtzman et al. (2020) made the following major 149 

modifications: i) The rain-snow partitioning formulation was changed from a function of air temperature 150 

to a more-sophisticated WRF microphysics scheme. This allows the model to accumulate more accurate 151 

amounts of snow during the winter months. ii) They updated the depth of subsurface runoff generation 152 

because WRF’s default runoff generation depth was between 1 and 2 meters in all locations. This ignores 153 

the fact that, in higher elevations, soil is generally shallower, and assumption of runoff generation from 154 

assumed deeper soil layers can potentially lead to unreasonable baseflow generation and biased 155 

streamflow timing. To respond to this problem, Holtzman et al. (2020) assumed runoff generation from a 156 

shallower layer (10 to 30 cm). iii) Slope to calculate subsurface flow was another parameter that 157 

Holtzman et al. (2020) changed to improve the simulation of subsurface flow. The default value of WRF-158 

Noah-MP was 0.1, but they changed this to 0.5. The higher subsurface flow slope was able to improve the 159 

simulation of the streamflow amount. iv) Holtzman et al. (2020) also changed the “sand” and “ice” soil 160 

types to “sandy loam” to decrease the occurrence of unrealistically large transient soil moisture changes at 161 

the beginning of the simulation. v) Soil porosity of “sandy-loam” soil was modified from a default value 162 

of 0.434 to 0.52. The reason was that their initial simulations indicated that the water-holding capacity of 163 

the default modeled soils was not high enough, which led to earlier streamflow peaks. vi) Finally, they 164 

used a constant value for snow capacitance (0.2) of Thompson microphysics scheme (Thompson et al. 165 

2008) to ensure a more reasonable simulation of snowflake shape in WRF-Noah-MP. 166 

In regions with significant surface water-groundwater interactions (Criss and Davisson 1996; Shaw et al. 167 

2014) such as the Sierra-Nevada watersheds, the lack of groundwater representations can lead to biases in 168 

simulation of magnitude and timing of runoff and river flow. Because WRF-Noah-MP’s NGW setup did 169 

not include a mechanistic simulation of groundwater dynamics (Barlage et al. 2015), a post-processing 170 

groundwater correction module was utilized in the development of the CGW streamflow scenario. The 171 

GW correction was performed using an offline statistical relationship that was utilized to improve the 172 

NGW streamflow. The corrected streamflow on a given day was obtained as a weighted sum of three 173 



quantities: i) the original NGW daily streamflow, ii) the average NGW streamflow over the past 365 days, 174 

and iii) an intercept term which was set so that the correction did not change the overall mean NGW 175 

streamflow over the entire simulation period. The weights were constant in time over the simulation 176 

period but were allowed to vary between spatial locations. Conceptually, the 365-day running average 177 

term represents releases from medium-term groundwater storage, and the intercept represents baseflow 178 

due to long-term groundwater storage that is released over a time scale of many years. Including both 179 

these terms helped model spatial variation in the residence time of groundwater. 180 

Values of the correction weights were obtained separately for each streamflow location using the 181 

following procedure: first, both NGW and observed full natural flows (i.e. gauged flows with corrections 182 

for upstream human activities) were normalized by dividing by their overall mean value; then, linear 183 

regression was used to obtain the weight values that minimized the mean square error between the 184 

corrected normalized NGW and the normalized observations. The correction coefficients were fit on 185 

normalized flows instead of raw flows because the primary goal of the correction was to remedy errors in 186 

the NGW seasonality pattern, not to correct any overall bias. Results presented by Holtzman et al. (2020) 187 

suggest that this model substantially improves on the uncorrected Noah-MP results (i.e., the NGW 188 

scenario) using a soil-only modeling system. Note that Noah-MP does include an optional groundwater 189 

model, but it is often impractical to use because it takes many simulation years to spin up (Niu et al. 190 

2007). 191 

Note that, there are other approaches that past studies have utilized to improve the representation of 192 

groundwater dynamics in their streamflow simulations. For example, past studies have developed and 193 

incorporated simple groundwater modules (Niu et al. 2007; Yang and Xie 2003) or dynamically 194 

integrated their land surface hydrologic models into well-established groundwater models (Faunt et al. 195 

2009; Kim et al. 2008; Molina-Navarro et al. 2019; Xu et al. 2012). A few other studies have used 196 

statistical bias correction approaches to match the overall statistical moments of their simulated 197 

streamflow with observations which implicitly takes into account groundwater dynamics (Hamlet and 198 



Lettenmaier 1999; Tiwari et al. 2021). Finally, there are other methods such as Bayesian filtering methods 199 

(Ait-El-Fquih et al. 2016; Panzeri et al. 2014; Rajabi et al. 2018) or offline post-processing procedures 200 

(Holtzman et al. 2020; Trabucchi et al. 2021) that implicitly improve the representation of groundwater 201 

dynamics and overall quality of streamflow simulations. 202 

California Food-Energy-Water Systems Model (CALFEWS) 203 

We use a Water Management Model (Figure S1) that has been developed to simulate north-central 204 

California agro-hydrologic systems. The California Food-Energy-Water Systems model (CALFEWS) 205 

model (Zeff et al. 2021) abstracts critical institutional and infrastructure elements (>1000) that capture the 206 

complex dynamics for how north-central California’s water balance is managed  given the region’s 207 

extreme streamflow variability.  CALFEWS simulates the daily timescale operation of dams, water 208 

conveyance systems, groundwater banks, and water allocation decisions.  209 

CALFEWS exploits state-aware rules that allow it to abstract the highly dynamic and adaptive operational 210 

behaviors of the system while complying with the institutional constraints that shape the storage and 211 

conveyance of water. More specifically, CALFEWS includes the operation of 12 major reservoirs in 212 

north-central California (Figure 1). However, most of the water is conveyed from northern dams such as 213 

Shasta and Oroville to central California’s agricultural areas. The model mimics the operation of these 214 

dams in terms of water storage, flood prevention, and water release for agricultural and environmental 215 

services. The dams provide water to a complex transfer system that conveys water to the agricultural and 216 

urban areas of California, which are mainly located in the central and southern parts of the state (Figure 217 

1). The conveyance systems are based on two state-wide water transfer projects: the State Water Project 218 

(SWP) and the Central Valley Project (CVP). Both projects own the storage and conveyance water 219 

infrastructures that are included in the CALFEWS model. CALFEWS also takes into account all the 220 

major river water rights holders in the Tulare Basin (e.g., Kings, Kaweah, Tule, Kern). 221 

The CALFEWS model takes several environmental constraints into account. The model simulates delta-222 

related environmental concerns such as saltwater intrusion, minimum outflow from the delta, and 223 



constraints in the old and middle river flow. It also captures other minimum flow regulations in California 224 

rivers and their reaches. There are also non-environmental constraints that are enforced in the model, such 225 

as pumping limitations, canal capacity limitations, and water rights constraints. The model includes over 226 

thirty irrigation districts, ten distinct imported water contract and storage allocations, and nine major 227 

water banks in the system. Additionally, the model simulates the water redistribution system in the 228 

agricultural areas. For example, it captures direct groundwater banking partnerships and in-lieu 229 

exchanges.  230 

CALFEWS does not have a physically-based groundwater model that can mechanistically simulate 231 

groundwater dynamics, but it does have a water balance accounting model that distributes water to 232 

individual irrigation districts and groundwater banks based on surface water allocations, carry-over 233 

storage reservations in surface water reservoirs, and the ownership of individual aquifer recharge and 234 

recover assets. The model also simulates claims to excess flood water flows based on access and 235 

conveyance constraints. The detailed operational rules used within CALFEWS enabling estimation of the 236 

annual revenue and financial stability at the irrigation district scale. 237 

Although capturing the diverse range of institutional and infrastructure operational considerations that 238 

shape water allocation decisions is non-trivial and CALFEWS is subject to representational limits, the 239 

model does reasonably capture the complex dynamics of the infrastructure systems and their operations 240 

(see more details on the CFEWS-HIS baselines for major storages and Sacramento-San Joaquin Delta 241 

exports in Note S1, Figure S3-S4, and Table S1-S4 in Supplemental Materials, and Figure 2). Also, more 242 

details and baseline capabilities of CALFEWS are available in Zeff et al. (2021). 243 

Quantile Mapping-Based Bias Correction 244 

In this study, we used the frequently employed statistical bias-correction technique called quantile 245 

mapping (Cannon, Sobie, and Murdock 2015) to remove systematic biases of raw WRF-Noah-MP 246 

streamflow data. To do this, we developed and used an R package called “biascorrection” (Supplementary 247 



Notes 3) that follows the methodology described by (Hamlet and Lettenmaier 1999). In short, the bias 248 

correction module uses the historical observed streamflow to create the monthly flow quantiles of each 249 

individual month. After that, it uses the simulated streamflow data to create simulated monthly flow 250 

quantiles. Afterwards, the bias correction module creates the monthly bias-corrected flow by swapping 251 

each month of the simulated flow with the same quantile from the observed streamflow. Since hydrologic 252 

models can simulate the average annual flow reasonably well, after constructing the monthly bias-253 

corrected flow, we adjust them to make sure that their average annual flow is consistent with what the 254 

WRF-Noah-MP model has simulated. Finally, we disaggregate the monthly bias-corrected flow to daily 255 

by multiplying the raw daily simulated flow of each month by the simulated bias-corrected ratio of that 256 

month. 257 

 258 

Results and Discussions 259 

Diagnosing Streamflow Errors across Timescales 260 

The Shasta reservoir represents a key storage project for the CVP as well as flood control in northern 261 

California. As a means of distinguishing floods, seasonal transitions, and drought periods for the Shasta 262 

reservoir system, our error analysis is formulated across daily, monthly, and annual timescales (Figure 2 263 

and Figure S5-S12 in Supplemental Materials). We show that the raw streamflow output of the WRF-264 

Noah-MP model (NGW scenario) systematically underestimates streamflow during low flow periods 265 

(Figure 2 – Panel a). Previous literature has attributed these biases mainly to the significant computational 266 

and conceptual constraints associated with representing groundwater processes in Noah-MP (Cai et al. 267 

2014; Holtzman et al. 2020). Our results (Figure 2 – Panel a) demonstrate that the groundwater corrected 268 

stream flows (CGW) reduce errors during low-flow periods. However, the expert-based CGW calibration 269 

(Figure 2 – Panels a and e) yields a consistent underestimation during high-flow periods. More broadly, 270 

the distributions of the observed and the simulated streamflow scenarios at the daily time-step (Figure 2 – 271 

Panels c, d, e, and f) show that the CGW scenario significantly reduces the range of variability in 272 



streamflow and extremes. The water added during the low-flow periods is drawn from the high-flow 273 

periods – more specifically, from extreme flood events such as atmospheric rivers. Atmospheric rivers 274 

(and other extreme flow events) are a crucial component of water availability in California, and the 275 

presence or absence of them is what distinguishes a drought year from a wet year (Diffenbaugh et al. 276 

2015). We also show that the quantile mapping-based bias correction scenario (BC) enhances aggregated 277 

monthly and annual model performance in a manner comparable to the CGW, improving the 278 

representation of streamflow during dry periods (e.g., Figure 2). 279 

 280 

Figure 2. Comparison between the observed (CDEC) and simulated streamflow scenarios at Shasta Dam. The 281 

simulated streamflow scenarios include raw WRF-Noah-MP flow (NGW), WRF Noah-MP groundwater-corrected 282 



flow (CGW), and bias-corrected flow (BC). Panel a. and b. demonstrate the average monthly and average annual 283 

streamflow, respectively. Panel c., d., e., and f. show the monthly separated probability density function of daily 284 

streamflow for our four flow scenarios (observed, no groundwater correction, groundwater corrected, and bias-285 

corrected). 286 

 287 

However, similar to the CGW scenario, statistical bias correction deteriorates the representation of 288 

streamflow during high-flow periods, which dampens inter-seasonal variability.  The streamflow error 289 

management methods (i.e., BC and CGW) do not improve the entire distribution of flows critical to north-290 

central California. A key concern that emerges from these results is how these streamflow biases could 291 

create path-dependent and persistent errors that propagate into the other components of the California 292 

water system and affect our perception of downstream, multi-sector climate vulnerabilities. While, we 293 

only explain the results for Shasta Dam here, our analysis demonstrate that the simulated inflow time 294 

series into other California reservoirs (e.g., Oroville, Folsom, Pine Flat, New Melones, Millerton, 295 

Isabella, Don Pedro, and Yuba Dam) are predominantly in agreement with the Shasta dam (Figures S5-296 

S12 in the Supplemental Materials). 297 

Errors in the Main North-to-South Surface Water Transfers 298 

The two major pumping stations at the Sacramento – San Joaquin River Delta play a crucial role in 299 

California’s north-to-south water transfer projects. Pumping rates from these stations to the SWP and 300 

CVP are among the most important indicators of the system-wide water availability in California, 301 

particularly for users in the water-scarce San Joaquin Valley as well as Southern California. Here, we 302 

compare CALFEWS simulated pumping rates using the different sources of streamflow inputs with the 303 

actual observed historical pumping rates as recorded in CDEC. Our results (Figure 3 – Panels a and b, 304 

Figure S13 in Supplemental Materials) show that, in general, the LSM-based streamflow results (CGW, 305 

NGW, and BC) introduce significant errors compared to the CFEWS-HIS simulation (CALFEWS 306 

simulations under observed streamflow inputs). While, at least in some cases, the baseline (CFEWS-HIS) 307 

results do show non-negligible deviations from the observed pumping rates (Figure 3 – Panels a and b), 308 



the error distribution is relatively consistent during wet and dry years (Figure 3 – Panel c). It should be 309 

noted that capturing the diverse range of institutional and infrastructure operational considerations that 310 

shape pumping from the Sacramento – San Joaquin River Delta is non-trivial. As noted above, 311 

CALFEWS itself is subject to representational limits. Nonetheless, the CFEWS-HIS results largely 312 

capture key trends and dynamics. In the case of the NGW results (raw WRF-Noah-MP streamflow 313 

outputs), the underestimation of reservoir inflow during the summer causes a systematic underestimation 314 

of the pumping rate to the CVP during that season (Figure 2 – Panels a and d). These errors, which 315 

overlap in timing with peak irrigation demand, create consequential biases for projections of agricultural 316 

productivity and groundwater extraction.  317 



 318 

Figure 3. Pumping rate to Central Valley Project (CVP). This figure compares the “observed” pumping to CVP with 319 

simulations of CALFEWS under different streamflow scenarios (i.e., CDEC [CFEWS-HIS], raw WRF-Noah-MP 320 

output [NGW], groundwater corrected [CGW], and bias-corrected [BC]) across monthly (Panel a), annual (Panel b), 321 

and daily time scales (Panels c-f). In this figure, the unit of Root Mean Square Error (RMSE) is cubic meter per 322 

second. 323 

 324 

Efforts to address these biases in the CGW (groundwater corrected) and BC (bias-corrected) results do 325 

partially address the pumping underestimation issue, at least in some instances (Figure 2 – Panels e and f). 326 



However, these scenarios also produce higher pumping biases when estimating the pumping rates to the 327 

CVP and SWP (see SWP pumping rate errors in Figure S13 in the Supplemental Materials). These 328 

overestimation biases become more pronounced in key CA drought years (e.g., 2014 and 2015). Put 329 

simply, the groundwater correction and quantile-mapped bias correction falsely overestimate delta water 330 

deliveries in the evaluated drought years.  331 

The overestimation issue appears more frequently in the CGW case, primarily during high-flow periods in 332 

the winter and early spring. This effect is most pronounced in drier years (Figure 3 – Panel e) because the 333 

manual deterministic improvements in the representation of dry months can eliminate many low flow 334 

days that naturally exist in the observed record (Figure 2 – Panel c. and e.). Also, as the system transitions 335 

from the 2013-2015 drought to a wetter year in 2016, the CGW’s bias leads to an overly optimistic 336 

inference of drought recovery. The BC scenario more closely follows the distribution of the raw simulated 337 

results (Figure 3 – Panel f), however, it also amplifies some of the extreme flood events, leading to 338 

overestimated project pumping for several periods. Moreover, as discussed before, both the BC and CGW 339 

streamflow scenarios tend to underestimate flow during the high-flow periods, which can significantly 340 

affect the magnitude and timing of dam storage in the spring and winter. The biases in the delta-to-project 341 

deliveries also imply that LSM streamflow errors can significantly influence projections of energy supply 342 

and demand in California.  343 

Groundwater Banks 344 

Groundwater banks (GWBs) are critical components of California’s water system. In California, GWBs 345 

are used as additional sources of storage that help capture excess water during flood events to hedge 346 

against droughts (Ghasemizade et al. 2019). For example, from 2012 to 2017, GWBs provided the system 347 

with more than 40 km3 of drought relief water (Xiao et al. 2017), playing a key role in California 348 

agricultural systems seeking to avoid yield losses and in some cases complete bankruptcy (Diffenbaugh et 349 

al. 2015; Sarhadi et al. 2018).  350 



Our results indicate that upstream streamflow errors propagate into GWB simulations and significantly 351 

degrade the simulated banked storages (Figure 4 – Panels a and b, and Supplemental Materials Table S5), 352 

recharge to GWBs (Figure 4 – Panels c and d), and extraction from GWBs (Figure 4 – Panels e and f). 353 

For example, the simulated streamflow scenarios (NGW, CGW, and BC) all lead to systematic 354 

overestimations of water storage in two groundwater banks of California: Kern Water Bank (Kern) and 355 

Berrenda Mesa Project (Berrenda ; Figure 4 – Panels a and b). There are two main factors influencing this 356 

overestimation. First, groundwater banks have slower turnover times relative to the other components of 357 

the system, allowing water to stay in them for longer periods of time (i.e., higher residence times). This 358 

implies that if streamflow inputs have systematic errors in overestimating available water, the errors will 359 

not dissipate immediately, and the GWBs can substantially accumulate long-lasting erroneous storage 360 

contributions. For example, during the Spring of 2010, our simulated streamflow scenarios (NGW, CGW, 361 

and BC) consistently overestimated inflow to upstream reservoirs (Figure S14 in Supplemental 362 

Materials). Our results (Figure 4 – Panels c and d) clearly show how a portion of the overestimated water 363 

ended up recharging the groundwater system. This erroneous recharge causes a spike in groundwater 364 

storage as compared to the CFEWS-HIS baseline (Figure 4 – Panel a and b), and this gap remained to the 365 

end of our simulation period six-years later. The second major factor influencing the overestimation of 366 

available storages in GWBs within the NGW, BC, and CGW projections is their overestimation of the 367 

average annual pumping to the CVP (Figure 2 – Panel b). These overestimation errors ultimately 368 

contribute to higher groundwater recharge and lower water deficits and, thus, lower groundwater 369 

extraction. Our results emphasize that when evaluating water management options and vulnerabilities in 370 

California, drought years and flood years are tightly coupled. This implies that, if a modeling framework 371 

struggles to capture floods and wet periods well, it would not be able to capture the dynamic impacts of 372 

droughts. These consequential, long-lasting and path-dependent errors also highlight that extra attention 373 

should be paid to statistical and deterministic bias correction methods (e.g., BC and CGW) that 374 

inadvertently shift the dynamic water balances associated with highly consequential extreme events 375 

(Figure 2 – Panels e and f). The overestimation of groundwater bank storage can be also attributed to the 376 



fact that the recharge capacities in the groundwater banks are significantly higher than groundwater 377 

extraction capacities. This difference increases the residence time of error in groundwater systems, and 378 

further demonstrate the contrasting sensitivity of the system to errors during wet and dry periods. 379 

 380 

Figure 4. Groundwater storage, recharge, and extraction. This figure shows how different streamflow scenarios (i.e., 381 

observed [CFEWS-HIS], raw WRF-Noah-MP output [NGW], groundwater corrected [CGW], and bias-corrected 382 



[BC]) affect CALFEWS simulation of groundwater banks of the Central Valley. In this figure, the unit of Root 383 

Mean Square Error (RMSE) is million cubic meters. 384 

 385 

Moreover, our results indicate that the water extractions and recharge of various irrigation districts show 386 

distinctly different responses to streamflow scenarios. This is due to their unique institutional contexts as 387 

defined by their level of water right seniority, contracts, water supply projects (CVP vs. SWP), and 388 

geographical location in California (Table S6 in Supplemental Materials). The persistence and path 389 

dependence of errors in downscaled hydrologic projections strongly depends on the institutionally 390 

complex infrastructure systems of the north-central California water system. Infrastructure elements or 391 

users with the most secure water rights, or most advantageous positions within the water distribution 392 

network, receive their total water demand more frequently; therefore, an over- or underestimation errors 393 

for available inflow to the system are themselves institutionally allocated across the complex network of 394 

other water right holders. 395 

The Financial Dynamics of Irrigation Districts 396 

Errors in streamflow projections and the current standard approaches for managing them also strongly 397 

shape our ability to infer the financial stability of irrigation districts. Irrigation districts are cooperative 398 

water management institutions that facilitate the delivery and storage of water. They are also responsible 399 

for the maintenance of water storage and delivery infrastructure. These operational activities are the 400 

primary source of irrigation districts’ income. Generally, a lower amount of system-wide water supply 401 

reduces the total volume of water that they are able to convey and sell to their retail customers leading to 402 

lower overall revenues that can cause potential financial instability, higher borrowing costs, lower 403 

investment in infrastructure maintenance, and an inability to retain trained staff, all of which have 404 

detrimental consequences for the wellbeing of the region’s agriculture.  405 

Our results show that streamflow errors significantly influence our ability to infer the revenue 406 

vulnerabilities of irrigation districts (Figure 5 – Panel a). To estimate these revenues, given the 407 



unfortunate dearth of transparently recorded water price data, we explore here 100 plausible water price 408 

scenarios that represent five plausible trajectories of water price change during drought years (Note S4 409 

and Figure S15 Supplemental Materials). More specifically, the five baseline trajectories that have been 410 

used to generate our 100 synthetic water price scenarios represent -20%, 0%, +20%, +50%, and +80% 411 

change in water price during drought years.  The biases in revenue vulnerability results stem from 412 

different operational activities such as surface water delivery, aquifer recharge and groundwater pumping. 413 

Consequently, all of the previously discussed surface- and ground- water sources of errors contribute to 414 

the resulting errors for irrigation districts’ financial dynamics. We estimate that the combined annual 415 

expected costs of the errors among the 26 simulated irrigation districts totals to about $114-million, $91-416 

million, and $81-million US dollars under the CGW, NGW, and BC scenarios, respectively.  417 



 418 

Figure 5. Financial stability of irrigation districts. This figure shows how different streamflow scenarios (i.e., 419 

baseline [CFEWS-HIS], raw WRF-Noah-MP output [NGW], and groundwater corrected WRF-Noah-MP output 420 

[CGW], and bias-corrected WRF-Noah-MP [BC]) affect the simulation of financial stability for the Central Valley’s 421 

irrigation districts. In Panel a, c and d, the distributions and uncertainty bounds are generated from our 100 water 422 

price realizations and the solid lines demonstrates the average of all those water price scenarios. Panels e. and f. 423 

show the probability density function of average yearly revenue across different irrigation districts and under the 424 



observed, NGW, CGW, BC conditions. In this figure, the unit of Root Mean Square Error (RMSE) is million 425 

dollars. 426 

 427 

Such a costly misperception (ranging from underestimation -81% to an overestimation of +111% of 428 

average annual revenues among individual districts) of irrigation districts’ revenues could lead to 429 

infrastructure investment and financial decisions that would likely harm them as well as the broader water 430 

dependent north-central California systems. We also highlight that susceptibility of different irrigation 431 

districts to streamflow errors depends on the details of their specific institutional contexts (Figure 5 – 432 

Panels c and d). For example, our analysis suggests that SWP irrigation districts are more sensitive to 433 

streamflow errors (Figure 5 – Panel a), mainly because they tend to rely closely on error-prone water 434 

balance dynamics. In addition, various other institutional factors such as water right seniority level of 435 

districts, degree of their dependence on ground- versus surface- water systems, and the geographical 436 

location of districts contribute to their susceptibility or immunity to headwater streamflow errors. 437 

Our analysis indicates that, on average, the expert-based and automatic error management methods (CGW 438 

and BC) tend to systematically overestimate irrigation districts’ annual revenues (Figure 5 – Panel a and 439 

b). The reason is that, under these scenarios, surface water delivery during summertime is generally 440 

higher, and higher supply increases the income of irrigation districts. However, as discussed earlier, these 441 

errors also compounded with groundwater errors that can stem from failures in capturing key flood 442 

events. Given that these groundwater biases have longer residence times, they adversely impact irrigation 443 

districts’ revenue estimates over the longer term. It is concerning that these biases are very pronounced 444 

and more clearly emerge during extreme drought years. For example, the relative error is significantly 445 

higher during 2015, which was the most significant drought year in our study period (Figure 5 – Panel c). 446 

Furthermore, as the tail of the revenue probability density functions suggest, simulated streamflow 447 

scenarios perform exceptionally poorly during extreme low-revenue periods (Figure 5 – Panels e and f, 448 



also see Figure S16-S21 in Supplemental Materials). Again, this result is of significant concern because 449 

these extreme drought years can trigger major investments or inform planned institutional changes.  450 

Finally, our analysis (Figure S22 in Supplemental Materials) suggests that our broad envelope of water 451 

pricing scenarios do not substantially modify the core insights from the revenue impacts shown in Figure 452 

5. However, water pricing strongly depends on projections of state-wide availability of water (Medellín-453 

Azuara et al. 2012), and is a factor that should be studied closely for its interactions with streamflow error 454 

propagation. While fully exploring these dependencies is beyond the scope of this study, future work that 455 

employs hydro-economic models that capture the interactions between water supply availability estimates 456 

and water rates would provide more comprehensive understanding of the compound dynamics of human-457 

natural system under uncertainty. 458 

Do Streamflow Corrections Increase the Error in Modeled Impacts? 459 

Our results suggest that, at least in some cases, the expert-based manual groundwater bias correction and 460 

quantile mapping-based bias correction increase the bias and deteriorate the quality of the CALFEWS 461 

simulations. This is slightly counterintuitive, considering the fact that there are severe and well-known 462 

biases in the NGW streamflow simulation results from WRF-NoahMP, especially during low-flow 463 

periods (Figure 4 – Panels c and e), and the standard aggregated accuracy model performance metrics 464 

(e.g., NSE) are higher for the CGW and BC. One reason for the increases in error is that, among the many 465 

features of a streamflow time series (including average annual magnitude, average flow magnitude in 466 

different seasons, and seasonality), any specific bias correction method will optimize error in terms of 467 

only some of those features, while errors in other features may even be increased. Also, capturing the 468 

properties of extreme events is very important, as the severity and persistence of streamflow during low- 469 

and high-flow periods affect the operation of many components of the north-central California water 470 

infrastructure and institutional systems (Hanak et al. 2018; Scanlon et al. 2016). As such, we recommend 471 

that future studies claiming to improve simulated representation of hydrologic systems for the purpose of 472 

informing water resource decision-making move beyond typical bulk hydrograph metrics (e.g. RMSE, 473 



NSE, Kling-Gupta Efficiency) because they do not capture important nonlinear water balance dynamics 474 

that shape water resources management. Although these metrics are easy to calculate, our results suggest 475 

that they can provide a misleading sense of improvement. 476 

Additionally, there is a close relationship between floods and droughts in California’s water system. 477 

Floodwater is often either stored in surface reservoirs or controlled and diverted toward recharge basins, 478 

feeding groundwater banks. Later, the banked/stored water is used by irrigation districts (Dettinger et al. 479 

2011; Xiao et al. 2017). Therefore, error generated during high-flow periods will propagate into low-flow 480 

years and affect the simulation of system-wide water availability, groundwater extraction, and irrigation 481 

district revenue during water shortage periods, when the north-central Californian water system is more 482 

vulnerable. In other words, errors across time and space pool, transfer and reside in the institutionally 483 

complex infrastructure systems. We use our north-central California example to argue that, in each 484 

region, one or more characteristics of flow might be more important to capture, and the interaction of 485 

these properties (high- and low- flow periods) must be known in order for a reasonable understanding of 486 

the system to be gained. Finally, we warn that the complex institutional and infrastructure contexts of the 487 

errors in simulated streamflow projections, are critical to understanding the consequences of any error 488 

management strategies. Deterministic bias correction that are commonly used in climate scenario 489 

modeling exacerbate this issue, as they ignore the water resources system context in which they are 490 

employed.  Our results highlight that the impact of changing hydrology on water resources in climate 491 

projections cannot be treated as being dominantly a natural systems modeling problem. 492 

 493 

Conclusions 494 

In this study, we explore how our management of the well-known errors and biases in coupled land-495 

atmosphere modeling systems (e.g., WRF-NoahMP) used to simulate current hydrology (as in this study) 496 

and increasingly to project regional climate change impacts (Huang et al. 2018; Musselman et al. 2018; 497 



Schwartz et al. 2017; Wrzesien and Pavelsky 2020) can strongly distort our perceptions of vulnerabilities 498 

in institutionally complex major global water resources systems such as the north-central California case 499 

analyzed in this study. We show how streamflow errors from an atmospheric and land-surface hydrologic 500 

model, WRF-Noah-MP, propagate into a water management model, CALFEWS, and affect perceptions of 501 

system-wide water supplies, groundwater banking, and the annual revenue of irrigation districts. We show 502 

that the north-central California water management infrastructures serve their intended purpose, highly 503 

coupling the water balance dynamics of floods and droughts. The infrastructures likewise shape the 504 

residence times and conveyance of water balance errors across extreme events. We show that these errors 505 

have long, multi-year residence times and become more consequential during severe drought periods. 506 

This is concerning because the inferences we draw from simulating extreme drought years are more likely 507 

than other years to shape perceptions and trigger institutional and infrastructural changes. We also show 508 

that errors and their effects can be unique and path-dependent as illustrated in the north-central California 509 

system’s dependencies on different major water delivery projects (CVP vs. SWP), the network of water 510 

rights, and the complex water portfolios for each irrigation district. We show that ex-post corrections of 511 

raw WRF-Noah-MP outputs do not necessarily reduce biases in the simulation of key processes and, in 512 

some cases, can strongly degrade system simulations.  513 

Finally, our results indicate that the need for future research to more fully engage with how institutional 514 

and infrastructure context shapes the efficacy of bias-correction choices in our climate vulnerability 515 

assessments for complex water resources systems. We show that they can strongly distort our inferences 516 

of climate-driven vulnerabilities given the highly interdependent nature of the human and natural 517 

processes that WMMs simulate. The results of this study also highlight the necessity of considering 518 

alternative paradigms of water resources vulnerability assessments, such as exploratory modeling (e.g., 519 

(Hadjimichael et al. 2020), which can more fully incorporate and address the key errors and uncertainties 520 

that shape projections of climate change vulnerabilities. 521 

 522 
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