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Assessing risk due to small sample size in probability of detection 

analysis using tolerance intervals 
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ABSTRACTCASE 

Small sample size (e.g. 6-30) poses risk in results of probability of detection (POD) analysis using tolerance intervals. This 

method is also called as the limited sample or LS POD. The analysis is performed either during NDE procedure 

qualification or for assessment of reliability of an NDE procedure. The risk is primarily due to sampling error. Smaller 

samples are not likely to be random to the population or representative of the population. The small samples are likely to 

be biased. Biased samples have smaller standard deviation compared to the population. POD analysis with small biased 

sample can lead to overestimation of POD. Many sampling schemes are available in statistics to mitigate sampling risk. 

Primary objective of POD analysis is to determine a decision threshold from signal response measurements of a sample 

such that it is less than or equal to population decision threshold for 90% POD. Sampling error implies that this NDE 

reliability condition is violated. One of sampling types is called a representative sample. Representative samples reduce 

variance in POD estimates but also reduce magnitude of the error. Sampling sensitivity analysis for some sampling types 

is performed here using repetitive random sampling or Monte Carlo method. Six sampling types are considered for 

comparison. Some of the sampling types are similar to drawing a representative sample. LS POD model assumes random 

sampling. Therefore, random sampling is used as a basis for comparison with each sampling type. The sampling types 

used in the analysis are, A. Nominal and worst-case sampling, B. Worst-case sampling, C. Nominal case sampling, D. 

Random sampling, E. Random target, and sub-target sampling. F. Nominal target and sub-target sampling. Results of 

Monte Carlo simulation indicate that type F sampling can mitigate sampling risk and is also more practical to implement. 

Type A sampling may also mitigate the sampling risk, but it may be less practical to implement.  

Keywords: nondestructive evaluation, probability of detection, statistical sampling 

1. INTRODUCTION 

MIL-HDBK-1823A1 and associated mh18232 software address NDE POD testing for two types of datasets. The first type 

of dataset is that of the signal response “â” (read as a-hat) versus known flaw size “a”. In analyzing such data, the â data 

is represented on the y-axis and the “a” data on the x-axis and the data may be transformed using a logarithmic function, 

if needed, to provide a linear relationship around the signal response decision threshold level. A generalized linear model 

(GLM) is fitted to the data using maximum likelihood estimate (MLE) for analysis. In this analysis, noise data, defined as 

the signal response in a region where there is no flaw, is also obtained. The noise data is used to estimate false call rate or 

probability of false positive calls (POF).  

The second type of dataset considered is called hit-miss data, which contains the known flaw size and the corresponding 

detection result (i.e. hit or miss). For numerical analysis, a hit is assigned a numerical value of 1 while a miss has numerical 

value of 0. False call data (i.e. a hit is recorded where no flaw exists) is also recorded and used to determine the POF using 

the Clopper-Pearson binomial distribution function. Typically, POD increases with increasing flaw size and POF decreases 

with increasing flaw size. POF shall be required to be less than a certain limit to prevent adverse impacts on cost and 

schedule necessary to take corrective actions to address the false positive calls. ASTM E28623 also provides a hit-miss 

POD data analysis method that is consistent with MIL-HDBK-1823A. 

There are other POD analysis approaches that are not covered by MIL-HDBK-1823A. Binomial point estimate method of 

verifying reliably detectable flaw size is given by Rummel4. Current work is in probability of detection (POD) analysis 

using tolerance intervals5,6. This work is limited to POD analysis and simulation approach for single hit limited sample 

POD7 or LS POD. Broadly, LS POD covers signal response-based data for both single hit and multi-hit POD applications 

including modeling of transfer functions7-13. Smaller sample size is usable in LS POD analysis. In practice, signal responses 

from smaller sample size of flaws may not be random to the population. LS POD assumes that the sample is randomly 

drawn from the population. Thus, there is increased risk that the small sample is non-representative to the population and 

is a biased sample. In statistics, sampling bias is defined as a bias in which a sample is collected in such a way that some 

members of the intended population have a lower or higher relative sampling probability than others. It results in a biased 
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sample, which is a non-random sample of a population. If sampling bias is not accounted for, results can be erroneously 

attributed to the phenomenon or NDE technique under study rather than to the method of sampling. 

Depending upon sample bias, results may be non-conservative. This paper explores several sampling schemes beyond 

simple random sampling in the Monte Carlo simulation and performs sampling sensitivity analysis.  Results of such 

analysis may be used in choosing a sampling scheme for empirical LS POD analysis.  

2. POPULATION AND SAMPLE SIGNAL RESPONSES 

Fig. 1 illustrates how a decision threshold that is based on a simulated signal response for a sample of fixed size flaws 

relates to a decision threshold for the simulated population of signal responses in achieving 90/95% POD/Conf. Sample 

distribution is indicated by a dotted line and population distribution is indicated by a continuous line. For simplicity, these 

are shown as smooth normal distribution curves.  Sample decision threshold at 90/95% POD/conf. i.e. 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

is 

indicated by a circle marker and population decision threshold at 90/95% POD/conf. i.e.   𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 is indicated by a 

diamond marker. The thicker outline area has 96.2% area of population distribution. Here, the decision threshold POD 

margin over 90% is 6.2%. 

In the example below, the sample estimated decision threshold 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

 is conservative compared to the population 

decision threshold 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

, meeting following condition termed as reliability condition 1 for POD, 

 𝑎̂ 𝑡ℎ𝑟,𝑃𝑂𝐷,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

≤ 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

. (1) 

 

Fig. 1: Illustration of population and sample distributions in computation of POD 

Thus, the sample in Fig. 1 has provided acceptable result for reliability condition 1. If maximum acceptable POF is 1%, 

then decision threshold corresponding to 1% POF, is denoted by 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

.  If sample size for noise measurements is 

small then threshold computed for 1% POF with 95% confidence is denoted by 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1/95
𝑠𝑎𝑚𝑝𝑙𝑒

.  𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

, should also 

meet following condition termed as reliability condition 2 for POF to meet the maximum allowable POF requirement.  

 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 ≤ 𝑎̂𝑡ℎ𝑟,POD,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

, or (2A) 

 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1/95
𝑠𝑎𝑚𝑝𝑙𝑒

 ≤ 𝑎̂𝑡ℎ𝑟,POD,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

. (2B) 

Individual noise measurement is always linked to corresponding signal response measurement as it should be measured in 

the unflawed areas immediately surrounding the corresponding signal measurement. This poses a difficulty in measuring 

population of noise. However, sample size for noise measurement can be very large and a distribution defined by a very 

large sample can be considered to be the population of noise. A large sample size is recommended for noise measurement7. 
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Either 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 or 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1/95
𝑠𝑎𝑚𝑝𝑙𝑒

 can be used with likely insignificant differences in POF calculations in relation to 

meeting condition 2. 

An example of LS POD analysis7 is provided in Fig. 2. It also illustrates calculation of  𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 for checking condition 

2. 

 

Fig. 2: Plot for LS POD analysis for input data from Table 1 

In practice, the population distribution is likely to be unknown. Therefore, such comparison is not practical. There is a 

need to study factors or cases of signal variation that contribute to the signal variation. Moreover, there is also a need to 

study distribution or sampling fraction of these cases. Since it is impractical to draw a small random sample from the 

population, an option will be to draw a representative sample. Representative sample would cover all sections of the 

population distribution approximately in their respective sampling fractions. Such sample would then provide results that 

are as good or better than theoretical random sample. This hypothesis can be investigated using Monte Carlo modeling 

which uses repetitive sampling to assess confidence in the chosen sampling scheme. Some types of sampling schemes will 

be investigated. Objective of such investigation is to determine which sampling schemes provide reduction in sampling 

error and provide conservative results such that there is a high confidence that reliability conditions are met. It is proposed 

that Monte Carlo sampling sensitivity analysis may be performed to design a sampling protocol and mitigate or reduce 

sampling risk.  

3. PROBABILITY SAMPLING SCHEMES 

There are many schemes in probability sampling. 

1. Simple normal distribution random sampling: 𝑘1-tolerance factor statistics is used in LS POD. A random sample is a 

group or set chosen in a random manner from a larger population. 

2. Systematic sampling:  Systematic sampling (also known as interval sampling) relies on arranging the study population 

according to some ordering scheme and then selecting elements at regular intervals through that ordered list. 

Systematic sampling involves a random start and then proceeds with the selection of every kth element from then 

onwards. This is currently not used in LS POD. 

3. Stratified sampling:  Stratified sampling scheme generates a representative sample. It is acceptable for 𝑘1-tolerance 

factor statistics used in LS POD. A representative sample (e.g. stratified sample) is a group or set chosen from a larger 

statistical population according to specified characteristics. When the population embraces several distinct categories, 

the population distribution can be organized by these categories into separate "strata." Each stratum is then sampled 

as an independent sub-population, out of which individual elements can be randomly selected. The ratio of the size of 

this random selection (or sample) to the size of the population is called a sampling fraction. There are several potential 

benefits to stratified sampling. In computational statistics, stratified sampling is a method of variance reduction when 

Monte Carlo methods are used to estimate population statistics from a known population. A representative sample is 
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generally expected to yield the best collection of results. Using stratified random sampling, researchers must identify 

characteristics, divide the population into strata, and proportionally choose individuals for the representative sample. 

A stratified sampling approach is most effective when following three conditions are met, 

a. Variability within strata are minimized, 

b.  Variability between strata are maximized, and 

c.  The variables upon which the population is stratified are strongly correlated with the desired dependent variable. 

 

Stratified sampling has advantages over other sampling methods. The advantages are, 

a. Focuses on important subpopulations and ignores irrelevant ones, 

b. Allows use of different sampling techniques for different subpopulations, 

c. Improves the accuracy/efficiency of estimation, and 

d. Permits greater balancing of statistical power of tests of differences between strata by sampling equal numbers 

from strata varying widely in size. 

 

Stratified sampling also has disadvantages. These are, 

a. Requires selection of relevant stratification variables which can be difficult, 

b. Is not useful when there are no homogeneous subgroups, and 

c. Can be expensive to implement.   

 

Other sampling schemes, such as probability proportional to size (PPS) sampling and multistage cluster sampling schemes, 

are not covered here. If a sample is neither random nor representative, it may be a biased sample. 

 

Signal response population can be divided into two strata, worst-case and nominal responses. One could divide the signal 

response population in three strata too e.g. from left side to right side as worst-case, nominal-case and ideal-case. In this 

work, for simplicity population is divided in two strata only. NDE signal response sample is likely to be a nominal response 

sample, if nominal parameters are used to make flaw specimens. Thus, obtaining nominal response data is practical. Worst-

case or lower responses are attributed to off-nominal flaw part conditions with chance of occurrence ~30-50%. Thus, 

obtaining worst-case response data is more difficult as it is difficult to control parameters that would consistently produce 

flaws with worst-case responses. 

 

 
Fig. 3: Example of strata in population of signal responses with sampling fraction for a worst-case = 0.30 and sampling fraction for 

nominal case = 0.70. 

Goal of NDE procedure is to detect a target size flaw reliably i.e. with minimum 90/95% POD/Conf. Generally, signal 

response is monotonic with flaw size in neighborhood of flaw size. This implies that smaller signal response is expected 

for smaller size flaws and larger signal response is expected for larger size flaws. If smaller size flaws are used in NDE 

procedure qualification and if smaller size flaws can be detected reliably, then the target size flaw should be detected 

reliably too. The smaller size flaws are referred to as sub-target flaws and a mix of target and sub-target flaws can be used 

as a sampling scheme too. Here, there will be difference in mean responses between the target and sub-target flaws. The 

mean of responses may be same as that for assumed population (for simulation only) or may be representative of nominal 

responses. 
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Fig. 4: Example of strata in population of signal responses with sampling fraction for worst-case = 0.50 and sampling fraction for 

nominal case = 0.50. 

4. SAMPLING CONCERNS IN LS POD 

In LS POD analysis, 𝑘1-factor statistics is used. It assumes that the signal response sample is random or representative of 

the population. Assumption of random sample is likely to be met, if a large sample covering all sections of population is 

used. However, for a large sample, other POD analysis methods are also available, which may be preferred over LS POD. 

It may not be practical to draw a small random sample due to many factors. Comparison of factors affecting population 

and sample signal responses is provided in Table 1 to elaborate that a sample may not be representative of the population, 

especially a small sample. 

 
Table 1: Comparison of factors affecting population and sample signal responses 

Factor or Parameter Population Signal Responses from 

Target Size Flaws 

Sample Signal Responses from Target Size Flaws 

Flaw Type Real flaws (naturally occurring) Artificially manufactured flaws (ideal conditions) 

Flaw Location In real parts Specimens made using controlled fabrication process 

(ideal conditions) 

Part Geometry All part surface geometries (cylindrical, 

spherical, and flat etc.)  

Simple specimen surface geometry compared to part (e.g. 

flat) (ideal conditions) 

Material All applicable material types  One or selected material type/alloy is used (nominal 

condition) 

Surface Finish All applicable surface finishes  Fixed value smooth surface finish is assumed (nominal 

condition) 

Flaw Morphology Applicable variation in flaw 

morphology  

Flaw morphology is controlled by controlling flaw 

manufacturing process (nominal condition) to produce 

predictable size flaws 

Flaw Orientation All applicable orientations of flaws  Nominal orientation of flaws is assumed 

 

Many factors i.e., surface roughness, part geometry, grain structure, flaw morphology affect signal response to a different 

degree individually. Each factor has its own variability (i.e. normal distribution). The variability of signal response is due 

to combined effect of variability of all factors.  A small sample is not representative of the population, because it cannot 

capture the random variability of each factor affecting signal response. Small sample is also not random because the 

specimens used are likely to be a mix of nominal and ideal conditions of the factors. Therefore, smaller sample is less 

representative and non-random (or biased) to the population.  
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LS POD small sample data comes from flaw specimens designed specifically for LS POD. The specimens are produced 

using controlled manufacturing process resulting in uniform flaw morphology and predictable flaw size. Specimens have 

simple geometry and smooth surface. Material specification is usually nominal and has uniform material properties that 

affect signal response. The LS POD specimens are a subset of overall population of signal responses. LS POD sample is 

likely to provide higher signal response due to smooth surface, simple geometry and nominal material and, less signal 

response variability due to uniform flaw morphology obtained using tightly controlled manufacturing process including 

tight tolerance on specimen material, geometry, and surface finish. Such a sample, that has higher average signal response 

value and lower standard deviation, would then be in the right side of the signal response distribution for the population.  

It is described as nominal sample, as mostly nominal conditions are used in manufacturing of the flaw sample.   

 

The left side of the signal response distribution for the population is described as worst-case signal responses. There is a 

small probability that the real flaw/part conditions will provide lower signal response values compared to the nominal 

signal response values during inspection of real parts. The worst-case values are likely to be captured in a carefully 

designed large sample as flaws with off-nominal values of signal variation contributing factors can be included. 

 

Concern 1: For random sampling, there is a higher variability of decision threshold and there is higher error in POD values 

for smaller sample size (e.g. 6). In LS POD model, 90/95% POD/confidence is assured for both random and representative 

samples. 

Concern 2: A small sample generated using fabricated flaw specimens is not likely to be random due to well controlled 

process of fabricating flaw specimens to nominal conditions. Such a process can provide predictable size flaws but the 

flaws are likely to produce nominal signal responses. 

Concern 3: If a sample is biased to higher signal response values, it causes overestimation error in POD estimation which 

is further compounded by Concern 1 for the small sample size. 

 

Decision threshold from sample is calculated as, 

 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90/95 = 𝑎̂𝑚𝑒𝑎𝑛 − 𝑘1,90/95𝜎,  (3) 

where, 𝑎̂𝑚𝑒𝑎𝑛 = mean of signal responses, 

σ = standard deviation of signal responses, and 

𝑘1,90/95 = 𝑘1 tolerance factor. 

5. SAMPLING CASES AND SIMULATION INPUTS AND OUTPUTS 

Sampling types for Monte Carlo simulation are described below. 

A. Nominal and worst-case sampling: A split percentage is chosen e.g. 50/50% split is chosen to divide population 

between nominal and worst-case. 

B. Worst-case sampling: A split percentage is chosen e.g. 50/50% split is chosen to divide population between 

nominal and worst-case. Here, only worst-case samples are used. 

C. Nominal (case) sampling: A split percentage is chosen e.g. 50/50% split is chosen to divide population between 

nominal and worst-case. Here, only nominal samples are used. 

D. Random sampling (theoretical or non-empirical) 

E. Random target and sub-target sampling (theoretical or non-empirical) 

F. Nominal target and sub-target sampling: A split percentage is chosen e.g. 50/50% split is chosen between target 

and sub-target flaws. 

 

Many factors provide variability and therefore the net effect needs to be modeled in Monte Carlo simulation. For simplicity, 

it is assumed that all factors contribute equally to the signal variation. For “n” sources of signal variation, individual source 

standard deviation is assumed to be 1 √𝑛⁄  of the overall standard deviation. Typically, 3 sources are chosen in the 

simulation. Using very high number of sources have smoothing effect. For crack like flaws, three independent factors 

affecting signal response can be identified as flaw/crack tightness or gap between crack faces, flaw orientation, and flaw 

shape morphology.  

 

Sampling sensitivity analysis should be performed in conjunction with single hit LS POD analysis7. Input for LS POD 

analysis is illustrated below. 

1. Average signal response from target size flaws for sample (𝑎̂), e.g. 33 
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2. Standard deviation of signal response for sample, (𝜎∗), e.g. 2.109 

3. Sample size for identical flaws or replicates, (N), e.g. 6 

4. Average signal response in unflawed areas, (𝛽0), e.g. 2.76 

5. Standard deviation of noise, (σ), e.g. 0.698 

6. Number of noise measurements (n), e.g. 1200 

7. Selected decision threshold (𝑎̂𝑡ℎ𝑟
𝑠𝑎𝑚𝑝𝑙𝑒

), e.g. 26.66 

 

This input is then programmatically used in the sampling sensitivity analysis. There are additional fields in the sampling 

sensitivity analysis. Sampling sensitivity analysis input fields are given below. These are variables, except where stated, 

and valid values are within certain ranges. Sampling sensitivity analysis fields are provided below. 

1. Average signal response from target size flaws for sample (𝑎̂), e.g. 33 

2. Standard deviation of signal response for sample, (𝜎∗), e.g. 2.109 

3. Sample size for identical flaws or replicates, (N), e.g. 6. Although sensitivity analysis will use a range of sample 

sizes. 

4. Average signal response in unflawed areas, (𝛽0), e.g. 2.76 

5. Standard deviation of noise, (σ), e.g. 0.698 

6. Number of noise measurements (n), e.g. 1200 

7. Selected decision threshold (𝑎̂𝑡ℎ𝑟
𝑠𝑎𝑚𝑝𝑙𝑒

), e.g. 26.66 

8. Decision threshold for 90/95% POD/Conf. ( 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷, 90/95
𝑠𝑎𝑚𝑝𝑙𝑒

), e.g. 26.66 

9. Assumed standard deviation of signal response for population (𝜎∗,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛), e.g. 4.947 

10. Estimated standard deviation of signal response for population with stated confidence (𝜎𝑒𝑠𝑡,95
∗,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

), e.g. 4.947. 

This estimate uses 𝜎∗,𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 and 𝑘1 factor for 90/95% POD/Conf. and sample size. This item is for reference 

only.  

11. Percentage of nominal values, e.g. 70% 

12. Percentage of sub-target sample values, e.g. 100% 

13. Sub-target average response factor, e.g. 0.85. This implies that if target mean response is 100, then sub-target 

mean response is 85. 

14. Sub-target standard deviation factor, e.g. 1. Sub-target standard deviation is obtained as target flaw standard 

deviation multiplied by the factor. 

15. Number of signal response variation sources, e.g. 3 

16. Monte Carlo repeats, e.g. 25. 500 or more are recommended but smaller number is used to save computing time. 

 

In Monte Carlo simulation, the population distribution is given in input field 9. 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷, 90%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 is computed. Also, 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 

is computed. Sample size is varied from 3 to 30 at an interval of 1 unit.  

 A sample is drawn for sampling cases A through F. Then LS POD analysis is performed to determine sample decision 

threshold 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

. The simulation is repeated for chosen number of times. See input field 16. 

𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷,90/95
𝑠𝑎𝑚𝑝𝑙𝑒

 is compared with 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷, 90%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 and 𝑎̂𝑡ℎ𝑟, 𝑃𝑂𝐹,1%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

. For successful sampling, reliability conditions 1 and 2 are 

satisfied. Monte Carlo repeats provide percentage of times the two conditions are exceeded. Another comparison that is 

possible is with respect to random sampling i.e. case D.  Using data for all Monte Carlo repeats, percentage difference in 

average signal response from that in case D is calculated. For example, for case A the difference is calculated using, 
 

   𝑎̂%,𝐴−𝐷 =  100 (𝑎̂𝐴

𝑠𝑎𝑚𝑝𝑙𝑒
− 𝑎̂𝐷

𝑠𝑎𝑚𝑝𝑙𝑒
) /𝑎̂𝐷

𝑠𝑎𝑚𝑝𝑙𝑒
.  (4) 

The difference is calculated for cases A, B, C, E and F. Using data for all Monte Carlo repeats, percentage difference of 

average standard deviation from that in case D is calculated. For example, for case A the difference is calculated using, 

 

 𝜎∗
%,𝐴−𝐷 =  100 (𝜎∗

𝐴

𝑠𝑎𝑚𝑝𝑙𝑒
− 𝜎∗

𝐷

𝑠𝑎𝑚𝑝𝑙𝑒
) /𝜎∗

𝐷

𝑠𝑎𝑚𝑝𝑙𝑒
.  (5) 

The difference is calculated for cases A, B, C, E and F. 
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6. ANALYSIS EXAMPLES FOR VARIOUS CASES 

Example input data from Section 5 is used here. An example of Monte Carlo simulation of decision threshold data for case 

A is provided in Fig. 5. For LS POD, smaller sample size is attractive due to cost savings. Here, sample size of 6 or 7 is 

chosen to highlight whether reliability conditions 1 and 2 are met for various sampling cases. 

 

Fig. 5: Example of case A i.e. nominal and worst-case sampling results for Monte Carlo simulation 

Each sample size has 25 data points corresponding to 25 Monte Carlo repeats. “Upper Line” in Fig. 5 is drawn at  

𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐷, 90%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

. It is used to assess whether reliability condition 1 is met. “Lower Line” is drawn at 𝑎̂𝑡ℎ𝑟,𝑃𝑂𝐹,1%
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

. It is used to 

assess whether reliability condition 2 is met. The spread in LS POD computed decision threshold for each sample size is 

shown by an error bar on the data. The box in the error bar is mean of the data and ends are at 95 percentiles of data from 

the opposite end. The data range for the LS POD computed threshold decreases like an exponential decay curve with 

increasing sample size. LS POD computed threshold mean increases like a saturating exponential curve with increasing 

sample size. This indicates that, smaller size may provide larger error; and sometimes it may not meet the reliability 

condition 1 and/or reliability condition 2. 

An example of Monte Carlo simulation of decision threshold data for case B is provided in Fig. 6. 

 

Fig. 6: Example of case B i.e. worst-case sampling results for Monte Carlo simulation 
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Worst case sampling seems to meet both reliability conditions 1 and 2 for sample size of 6 and larger; and provides smaller 

range in decision threshold. Therefore, results for case B seem to be better than those for case A. Traditionally, the approach 

for NDE procedure qualification is to choose worst-case flaws, such as fatigue cracks, as fatigue cracks provide 

conservatism. 

An example of Monte Carlo simulation of decision threshold data for case C is provided in Fig. 7. 

 

Fig. 7: Left plot gives an example of case C i.e. nominal (case) sampling results for Monte Carlo simulation. Right plot gives 

percentage of threshold values that do not meet reliability conditions 1 and 2; and percent values that do not meet 90% POD. 

Percent threshold values providing POD less than 90% are indicated by marker “o”. This is similar to assessment of 

reliability condition 1. This is a direct comparison to 90% POD. Percent threshold values exceeding the 90% POD 

threshold are indicated by “*” markers. This is an assessment of reliability condition 1. The differences in corresponding 

“*” and “o” marker values are due to computation procedure. Computing POD is an iterative process and has limitations 

in accuracy. 

Percent threshold values providing POF greater than 1% are indicated by diamond shaped markers. This is assessment of 

reliability condition 2. This example indicates that nominal sampling may satisfy reliability condition 2 for POF, but has 

high percentage failure in meeting reliability condition 1 for POD. 

An example of Monte Carlo simulation of decision threshold data for case D is provided in Fig. 8. 

 

Fig. 8: Left plot gives an example of case D sampling results for Monte Carlo simulation. Right plot gives percentage of threshold 

values that do not meet reliability conditions 1 and 2 and percent values that do not meet 90% POD. 
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Since LS POD analysis assumes random sampling, results indicate that LS POD calculated threshold provides 90/95% 

POD. For smaller sample size, the data indicates that POF may be higher than 1% rendering the NDE qualification of 

decision threshold unusable. However, random sampling is not possible for a small sample size, therefore it is for 

theoretical assessment only. Here, reliability condition1 is met. 

An example of Monte Carlo simulation of decision threshold data for case E is provided in Fig. 9. 

 

Fig. 9: Left plot gives an example of case E i.e. random target and sub-target sampling results for Monte Carlo simulation. Right plot 

gives percentage of threshold values not meeting reliability conditions 1 and 2 and percent values that do not meet 90% POD. 

The data for mixed target and sub-target sampling, i.e. case E, indicates that, for sample size > 6, reliability condition 1 

and 2 are met. Thus, using Monte Carlo simulation, a sampling scheme (e.g. case E) may be validated to provide high 

confidence in meeting condition 1 and 2. 

 

Fig. 10: An example of case F i.e. nominal target and sub-target sampling  results for Monte Carlo simulation. Nominal target fraction 

is chosen to be 0% in this run. 

The data indicates that 100% sub-target nominal flaw sampling, i.e. case F meets both condition 1 and 2 for sample size 

of 5 and greater; and is set to provide higher than 90% POD. The case provides positive margin to 90/95% POD/Conf. 

requirement. It is practical to make sub-target nominal flaws and therefore, this kind of sampling is attractive. It is similar 

to the transfer function approach, where artificial flaws are used in part configuration specimens and simple geometry 

specimens along with realistic morphology flaws in simple geometry specimens. 
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As an example, using data for all Monte Carlo repeats, percentage difference of average signal response from case D is 

calculated using Eq. (4) and difference of average standard deviation from case D is calculated using Eq. (5). These 

quantities are provided in Table 2. These values are calculated for values of input data for sampling sensitivity analysis in 

Section 5. 

Table 2: % Difference in mean signal response and standard deviation from case D  

CASE % Difference in Mean 

Signal Response from 

Case D 

% Difference in Mean 

Standard Deviation 

from Case D 

A. Nominal and worst-case sampling -2.1 39.6 

B. Worst-case sampling -7.4 -48.6 

C. Nominal (case) sampling 3.2 -29.8 

E. Random target and sub-target sampling 

(theoretical or non-empirical) 

-20.0 0.0 

F. Nominal target and sub-target sampling -16.8 -29.8 

 

Negative values in second column implies lower mean decision threshold compared to random sampling. Negative values 

in third column implies lower standard deviation of decision threshold compared to random sampling. Therefore, lower 

values are desirable if they meet condition 1 and 2; and provide a method of managing conservatism in LS POD sampling. 

7. CONCLUSIONS 

Estimating standard deviation of signal response is the most critical parameter for LS POD. Underestimation can lead to 

claiming POD/Conf. 90/95% when it is not true. Therefore, the standard deviation of sample data should also agree with 

other similar data to increase the confidence in the measured standard deviation of signal response.  

Sampling sensitivity analysis can be performed to choose type of the sample. After sample is chosen, there is also a need 

to assess what type of sample data was chosen and redo the analysis. Decision threshold calculation results depend upon 

the type of sample chosen in NDE validation or POD assessment. Proportion for nominal to worst-case split affects the 

results, where either nominal or worst-case signal response measurements or both are used. A 50-50 split ratio value is a 

moderate value. An 80-20 split ratio is biased to the larger proportion. Similarly target flaw to sub-target flaw split 

proportion affects results, where either target or sub-target flaw measurements or both measurements are used. A 50-50 

split ratio value is a moderate value. An 20-80 split ratio will be biased to the larger proportion. In risk discussion, the 

nominal to worst-case split ratio is an important factor and the ratio value shall be substantiated with empirical data.  

Type A sampling, Nominal to worst case split proportion sampling: Type A (bimodal) sampling may provide an 

approximate representative sample of the population. Here, estimation of standard deviation of signal response 

measurement is robust and conservative. If worst-case values can be measured and included in the sample, this option 

reduces risk and is recommended.  

Type B, Worst-case sampling: This option also may provide adequate decision threshold for reliable flaw detection. 

However, gathering a sample of worst-case flaws may be challenging. 

Type C, Target flaw nominal case sampling: This sampling does not work in validating NDE procedure reliability and 

should be avoided.  

Type D, Random sampling: Random sampling with larger sample size can provide representative sample of the population. 

It is impossible get a random sample for a small sample size.   

Type E, Random target and sub-target sampling: This sampling scheme has benefits similar to that of type F sampling but 

is not recommended, because it is impossible get a random sample for a small sample size. 

Type F, Target and sub-target nominal sampling. This sampling scheme is practical. Although type F sampling does not 

provide a representative sample, it can provide a conservative sample that can be used for LS POD analysis. It can be used 
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successfully to create equivalent random sample properties for sub-target flaws. It is recommended as a lower risk option, 

if it is not practical to produce worst-case signal responses. 100% sub-target nominal flaws provide lower values of 

decision threshold, but also sub-target flaws may have smaller standard deviation in repeated calculation of the decision 

threshold. Thus, this option allows adjusting conservatism in choosing flaw sample used to validate NDE procedure by 

meeting reliability conditions 1 and 2.   

Sampling sensitivity analysis should be performed for appropriate sampling types to manage risk in LS POD results. 

Sampling sensitivity analysis provides equivalent random sample properties (mean and standard deviation) which are used 

in LS POD analysis. Sampling sensitivity analysis can be used to design sampling type and inputs for the selected sample 

(e.g. nominal responses from a sub-target flaw size, sample size etc.) and creation of equivalent random sample so that 

resulting LS POD analysis has low risk of not meeting reliability conditions. 
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