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1. Abstract
In line with the Sustainable D.C. 2.0 plan to combat climate change, Washington 
D.C. aims to decrease its greenhouse gas emissions by 100% by 2050. As solar 
energy is a clean, renewable energy form, its integration into the region’s power 
grids lowers energy costs and incentivizes sustainable development. We partnered 
with the Washington D.C. Department of Energy & Environment (DOEE) to 
determine how urban areas surrounding D.C. can better be incorporated into 
decisions regarding renewable energy policy. The team used NASA’s Prediction of 
Worldwide Energy Resources (POWER) solar data and a Light Detection and 
Ranging (LiDAR) derived digital surface model, to estimate and visualize rooftop 
solar potential for Maryland’s Prince George’s and Montgomery counties. POWER 
provided solar irradiance data adjusted for tilt angle while the digital surface 
model contributed aspect and slope data. This methodology factored out areas that
were unsuitable for solar panel installation while displaying areas that possess a 
high potential for energy return. The team found the total rooftop solar potential 
for the study area to be almost 32 million kW, which is equivalent to roughly 660 
kW per building. The methodology used to generate the solar potential maps can 
be applied to other regions of the country seeking to efficiently utilize solar energy.
The end users at the DOEE can use our resulting solar potential map and data 
table to effectively target buildings that have the highest potential to generate 
solar energy.

Key Terms
digital surface model (DSM), irradiance, LiDAR, NASA POWER, photovoltaic, 
remote sensing, solar potential

2. Introduction
2.1 Background Information
Currently, the United States continues to rely on nonrenewable sources of power 
like coal, natural gas, and oil. These finite sources of energy contribute to the 
emission of greenhouse gases (GHGs) and other pollutants promoting global 
climate change and increased exposure to air pollutants that impact human health.
As of 2020, the United States produced 79% of its total energy from nonrenewable 
sources and only 12% from renewable sources. Of the 12% of renewable energy 
consumed, 26% came from wind turbines, 22% came from hydroelectric power, 
and 11% came from solar while other sources like biomass and geothermal energy 
constituted the remaining 41% (U.S. Energy Information Administration [EIA], 
2021). Switching to renewable energy sources can combat the negative effects 
caused by the use of nonrenewable energy. Solar power, in particular, helps by 
reducing the emission of air pollutants and serves as an infinite source of energy to
aid in reducing global climate change. (Kalogirou, 2004).

Washington, D.C. has already begun the process of expanding its use of renewable 
energy sources. In an effort to transition the District into a city that is fully 
dependent on renewable energy, it has set goals within the Sustainable DC 2.0 
Plan to reach 100% renewable power generation by 2032 and zero GHG emissions 
by 2050. The District currently attributes 96% of its GHG emissions to energy 
consumption, of which 75% powers buildings (Department of Energy and 
Environment [DOEE], 2019). The cost of solar energy falls continuously and, as of 
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2021, the price of residential solar power has decreased by 64% compared to the 
2010 price point while other uses, such as commercial or utility fell by 69% and 
82% (National Renewable Energy Laboratory, 2021). Reductions in solar panel 
prices occurred after major decreases in the cost of materials and increases in 
production, investment, and efficiency advanced significantly in the last two 
decades (Pillai, 2015). The benefits of widening the installation of photovoltaic 
solar panels in the District include localized energy decreasing home utility costs 
by 50%, the creation of jobs locally, the reduction in air pollutants emitted, and no 
longer contributing to climate change through energy production (DOEE, 2019). 

The two surrounding Maryland counties, Prince George's and Montgomery, 
connect to the same power feeder lines as the District. The energy generated in 
these Maryland communities can aid in the District's goal of total renewable 
energy reliance by 2032 to ensure that greenhouse gas emissions from the 
District’s power feeders reach 0% by 2050. To understand more about the 
potential market for solar energy within these neighboring areas, a detailed map of
solar rooftop potential provided information to estimate the value and feasibility of 
expanding photovoltaic solar panels within the Maryland counties. Previously, a 
solar potential map explored the viability of rooftops throughout the District to 
provide solar energy and supply the District's consumption needs. This previous 
map, created by Mapdwell, a software company that specializes in solar potential 
mapping and assessment, encompassed the entire city of D.C. to estimate the total 
solar potential for rooftops. This Mapdwell study did not extend into Prince 
George’s and Montgomery Counties, where the District’s power feeders stretch, to 
analyze the feasibility of solar installation. Prior studies used Light Detection and 
Ranging (LiDAR) data in various GIS software programs to account for variables in
parameters like land cover and roof orientation (Prieto et al., 2019). To develop a 
solar potential map, the team crafted a digital surface model (DSM) and calculated
slope and aspect for different building footprints using LiDAR data. (Prieto et al., 
2019). NASA’s Prediction of Worldwide Energy Resources (POWER) provided 
meteorological quantities of solar energy fluxes from 2015 to 2021 which revealed 
solar irradiance for the optimal tilt angle and sun position (Stackhouse et al., 
2020). Building footprints displayed the locations of rooftops relative to the county 
and the surrounding environment. The team applied this methodology to our 
approximately 111-square kilometer (or 43-square mile) study area, which 
surrounds the power feeders that connect to both the District and Prince George’s 
and Montgomery Counties (Figure 1). 
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Figure 1. The study area comprises the Maryland communities immediately
surrounding Washington, D.C. that supply solar energy to the District through

cross-border electricity feeder lines (shown in orange). 

2.2 Project Partners & Objectives
We partnered with the DOEE to generate solar potential maps for surrounding 
Maryland counties and to further the goals set by the Sustainable D.C. 2.0 Plan. In 
the District, the DOEE is responsible for policy decisions that concern renewable 
energy and environmental issues. To incentivize the use of renewable energy—
more specifically, solar power—for residents in the District, they implemented 
solar energy credits. In 2020, 20% of solar energy credits were generated outside 
of the District, understanding the energy potential for surrounding areas will be 
crucial for partners in identifying where increased solar panel initiatives will 
produce future solar credits (Public Service Commission of the District of 
Columbia, 2021). The DOEE aims to encourage rooftop solar panel installations 
where the gridlines overlap between the District and these counties to increase the
amount of solar energy in their power system.

Using LiDAR and NASA POWER data, the total rooftop solar energy potential was 
calculated for the regions surrounding the District. The results were demonstrated 
through an ArcGIS StoryMap, which provides an interactive medium for exploring 
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the methodology and end products of our work that display how this study 
discovered the solar potential for Prince George’s and Montgomery counties with 
regard to energy generation for all powers feeders linked to the District. In 
providing the Washington, D.C. DOEE with solar potential maps by building, 
partners will be able to make informed decisions on solar panel installations based 
on the specific locations where solar panels will yield the most energy. The DOEE 
will also use our end products to gain better insight into the market potential for 
solar energy credits in the area, and how this demand may evolve.

3. Methodology
3.1 Data Acquisition
The team collected LiDAR and building footprint data from Maryland’s Mapping 
and GIS Data Portal (Maryland’s Mapping & GIS Portal, 2018a & 2018b), a web 
service run by the state’s government. We downloaded the 2018 LiDAR data as 
point cloud tiles in LASer (LAS) file format. Meanwhile, we downloaded the 
building footprint data as shapefiles and projected them directly into ArcGIS Pro. 
The polygons of the building outlines used were created in August 2018 but 
updated in December 2020. 
Solar irradiance data were obtained from the NASA Langley Research Center 
POWER Project. This dataset was composed of meteorological, climate, and solar 
information by month and year ranging from January 1990 to December 2019. The 
NASA POWER data, partially derived from Global Modeling and Assimilation Office
Modern Era Retro-analysis for Research and Applications, Version 2 (GMAO 
MERRA-2) model and the NASA Global Energy and Water Exchanges Surfaces 
Radiation Budget (GEWEX/SRB), provided meteorological and solar information for
the preprocessed dataset which accounted for cloud cover, sun duration, and 
position. An electrical feeder map (Figure A1) displays all of the Potomac Electric 
Power Company (PEPCO) power feeder lines that are connected between the 
District and Prince George’s and Montgomery counties. The DOEE provided this 
map of the power feeders to our team as a form of reference to determine the 
study area and the amount of data required for this project. All of the Earth 
Observation data and Ancillary data used in this study are displayed in Tables 1 
and 2. 

Table 1.
NASA Earth Observation Data used for our study

Dataset Dates Purpose Source

30-year 
Meteorological 
and Solar Monthly
& Annual 
Climatologies 

January 
1990 – 
December 
2019

Global Horizontal Irradiance 
(GHI), Diffused Horizontal 
Irradiance (DHI), and surface 
albedo data to be used as 
inputs to a Python code that 
calculates solar irradiance. 
Solar irradiance will then be 
used to determine the solar 
potential for tilted surfaces.

NASA 
POWER
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Table 2.
Ancillary Data used for our study

Specifications Type Use Source

LiDAR 2018 Vector Calculate aspect, slope, and 
shading of rooftop segments.

Maryland GIS 
Data Catalog

Building 
footprint dataset

Vector Create roof segmentation 
shapefiles.

Maryland GIS 
Data Catalog

Electrical Feeder
Map

Vector Visualize the extent of solar 
energy market of the District, 
used to refine the study area.

PEPCO

3.2 Data Processing
The main goal of our data processing methodology was to use LiDAR data and 
NASA POWER data to create a map of solar potential by building rooftop. We first 
processed the LiDAR data by creating DSM tiles from point cloud files that we 
downloaded in LAS format. For each DSM tile, we used ArcGIS tools to create 
slope and aspect polygons for each tile, and we clipped these to our building 
footprint polygons to analyze the distribution of different slope and aspect angles 
of different facets of each rooftop. Next, for each tile, we combined our slope and 
aspect polygons into a single feature class and dissolved them so that the feature 
class attribute table would contain one shape area value for each slope angle 
value. 
Simultaneously, we ran a NASA POWER Python script with Global Horizontal 
Irradiance (GHI), Diffused Horizontal Irradiance (DHI), and surface albedo 
parameters from NASA POWER’s 30-year Meteorological and Solar Monthly & 
Annual Climatologies data tables as inputs. This resulted in a table of the solar 
irradiance kWh/m2) for each rooftop slope angle between 10 and 90 degrees on the
15th day of each month in 1999. Next, we joined our slope-aspect feature classes 
with our solar irradiance table and wrote a Python script to calculate, tile by tile, a 
preliminary total solar potential value over all rooftops in the study area. 
We used the building footprint shapefile along with slope and aspect data from our 
DSM to create three polygon layers of roof segments that would be unsuitable for 
solar panel installation. These layers included flat roofs (areas with slope angles 
between 0 and 10 degrees), north-facing roof areas (segments with aspects 
between 0 and 67.5 degrees and 337.5 and 360 degrees), and a building footprint 
buffer layer. North-facing rooftops in the northern hemisphere do not receive 
adequate solar irradiance (Chace & Comis, 2018), flat rooftops require additional 
construction of racks (in Maryland, optimally angled 35-40 degrees) upon which 
panels may be mounted (Chace & Comis, 2018), and international fire code 
prohibits solar panel installation on roof edges (International Code Council, 2018). 
By applying these layers to filter certain roof segments out of our initial solar 
potential map, we eliminated large data spikes and were then able to calculate the 
solar potential for strictly viable rooftops in the study area. 

For our final steps, we merged all solar potential tiles into one polygon. The 
attribute table associated with this polygon contained a daily solar potential value 
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of each month of the year and a daily potential value averaged over a year for each
slope angle between 10 and 90 degrees. We then converted this polygon layer into 
a raster in order to calculate statistics such as minimum, maximum, and mean 
solar potential using ArcGIS Pro raster tools.

3.3 Data Analysis
The team used a validation process to analyze the accuracy of the generated solar 
potential maps. To perform a validation analysis, the team obtained and confirmed 
that our potential calculations yielded values of the correct order of magnitude. 
The outputs were then compared with those of Google’s Project Sunroof (Google’s 
Project Sunroof, 2017). This energy estimator product is designed to give users an 
insight into the amount solar energy potential a location possesses. The team used 
this resource to check the median electricity of a sample location in our study area.
More specifically, the team chose to focus our analysis on Silver Spring, Maryland 
(zip code 20910), where there exists an overlap between the data availability for 
Project Sunroof and the Maryland LiDAR data. This validation process allowed the 
team to gain an insight on the accuracy of the resulting solar potential values. 

4. Results & Discussion
The team estimated the study areas rooftop solar potential by building, reporting 
daily values in kilowatt-hours (kWh) for each month of the year and an annual 
average. The team calculated a daily total of close to 18 million kWh averaged over
a year within our study area. Figure 2 shows the daily average of solar potential in 
kWh. The average amount of daily solar potential averaged over a year per 
building footprint was derived to be 366 kWh. These values were calculated for an 
area of roughly 45.5 sqMi (118 sqKm).
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Figure 2.      The solar potential map of the study area displays areas that have the 
highest solar potential in dark red, while yellow is used to represent areas with the
lowest potential. The values represent total solar potential in an area defined by 
each LiDAR shapefile from Maryland’s Mapping and GIS Data Portal. Each area 
contains different number of buildings, typically between 20 to 200 buildings. The 
inset map shows a large rooftop in our study area, which displays how solar 
potential varies by individual roof segment due to the different slope and aspect 
values as well as the varying levels of solar irradiance. The inset map also shows 
how North-facing and flat roofs were masked out to be excluded from solar 
potential calculations.

4.1 Analysis of Results
To find the total potential of solar energy for each building footprint, the team first 
calculated the total potential for solar energy within the entire study area. Figure 2
revealed that our study area throughout Prince George’s and Montgomery counties
contained a daily total of 17.7 million kWh of potential solar energy averaged over 
a year. The average daily solar potential per building was calculated to be 366 kWh
and was created by dividing the total potential solar energy by the 48,365 
buildings recorded in the study area. Values shown in Figure 2 above are higher 
than the average solar potential per building due to unresolved discrepancies 
between the LiDAR tiles and not dividing the total daily average by the number of 
buildings counted. 

Because our study area lies within the Northern Hemisphere, there are seasonal 
differences that impact the amount of daily solar irradiance onto rooftops that 
fluctuate throughout the year. Summer months, May through August, provide the 
most solar irradiance with a peak in June, while the Winter months unsurprisingly 
provide the least solar irradiance with the minimum solar potential in December. 
Our study found that June contributed an average daily potential of 20.2 million 
kWh. December contributed only 13.1 million kWh of average daily potential. 

Alongside factors like seasonal changes in solar irradiance, the total solar 
irradiance that building rooftops in our study area receive is influenced by a 
multitude of factors such as tree cover, area of roof size, building shadows, and 
atmospheric conditions. Because of the variations that these factors cause, regions
that are close together geographically can differ greatly in solar energy potential. 
Figure A2 and Figure A3 are two examples that highlight this difference. Figure A2
represents a region on the eastern end within our study area that encapsulates a 
portion of the Hillcrest Heights neighborhood, which had a daily solar potential 
average of 1.4 million kWh and a daily average of 552 kWh per building. North 
Barnaby, a bordering neighborhood also in Hillcrest Heights visualized by Figure 
A3 revealed lower solar potential compared to Figure A2. The North Barnaby 
neighborhood contributed a total of 0.3 million kWh and a daily average of 465 
kWh per building. 

Throughout the course of this project, our team faced several limitations that 
placed constraints on the results of our analysis. The LiDAR and building footprint 
data served as the base for assigning values and locations for polygons. Both 
resources had uncertainties in their spatial resolution precision, meaning that the 
team could not determine with full certainty if the location of the buildings 
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matched exactly between both the LiDAR and building footprint data. One 
indication of this discrepancy was that the LiDAR data may have had inaccuracies 
in elevation measurements in the order of centimeters. Other potential limitations 
were uncertainties in the NASA POWER data. These physical uncertainties may 
occur from the use of physical calculations like cloud statistics when crafting the 
dataset and could result in inaccuracies in our analysis of solar irradiance 
(Stackhouse et al., 2020). Lastly, due to computational runtimes and the 
functionality of the geospatial analysis processes, the team chose to reduce the 
size of our study area to no longer encompass every location that the power feeder 
lines reached. While this decision excluded some portions of the study area, it 
allowed the team to produce results that met the needs of the DOEE and provided 
a potential solar energy total for a majority of our study area. 

The time variance of our solar potential matches our expectations (Figure 3). The 
potential varies with seasonality with higher average potential values for summer 
months when irradiance is the highest and lower average potential values for 
winter months when irradiance is the lowest.

Figure 3. The average daily values for potential per building, for each month of the
year.

The team also took steps to ensure the accuracy and precision of our results 
through the use of a validation analysis to support our findings. After applying our 
methodology to this specific area, we calculated that the median potential per 
building was 14.7 MW, with an interquartile range of 10.3 MW. Note that 1 MW is 
equal to 41.7 kWh/day. Values were changed from kWh to MW because the 
validation process from Project Sunroof used MW as the unit, making it easier to 
validate. According to Project Sunroof, Silver Spring’s median potential per 
building was 17.7 MW (Google’s Project Sunroof, 2017). Notably, Project Sunroof 
does not account for the 3-foot setback around the edges of each roof that is 
unsuitable for solar panel installation and it does not filter out North-facing or flat 
roofs (Google’s Project Sunroof, 2017). As such, although the value obtained from 
Project Sunroof is greater than that obtained from our calculations, it falls within 
the interquartile range of the value we calculated. This enables us to confirm that 
our methodology produces results of the correct order of magnitude.
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4.2 Future Work
In future works, we hope to extend our methodology to other regions to inform 
decisions about solar panel installation around the nation. Additionally, including a
comprehensive analysis of grayspace—areas of unused land—alongside the 
rooftops of buildings in our study may offer the possibility of maximizing solar 
potential over a given region. Accounting for tree shading, possibly using 
vegetation polygons created from a Normalized Difference Vegetation Index 
(NDVI), will also be an important improvement to our solar potential maps, as 
excluding the regions with heavy tree shading will provide a more accurate 
account of possible solar panel locations. The team also hopes to model 
socioeconomic distribution in the study area to highlight income variability to our 
partners and ensure equitable solar panel distribution. To make the solar potential 
maps more accessible to our partners, we also hope to develop a platform through 
which others can access our data post-processing.

5. Conclusions
DOEE's primary goal when partnering with NASA DEVELOP was to identify 
buildings with high solar potential so those building rooftops could be fitted with 
solar panels. The energy generated by these rooftops would push the District 
closer to its renewable energy goals and contribute to a growing solar renewable 
energy credit (SREC) market. Our final map, (Figure 2), and feature classes of 
solar potential by Maryland neighborhood (Table A1) will provide partners at 
DOEE with key information about where solar panels should be installed in 
Maryland to provide the highest amount of clean energy to Washington, D.C. This, 
in turn, will inform decisions regarding the expansion of the SREC market beyond 
District boundaries. 
Our team also created an ArcGIS StoryMap that DOEE may use as a tool to 
educate the District and Maryland residents on the merits of photovoltaic panels 
and make solar energy more widely accessible.

Overall, we found the study area to have a total estimated daily solar potential of 
17,706,177.50 kWh in an average year if solar panels were installed on all rooftops
deemed viable by this study. This is enough energy to power roughly 1,652.5 
homes for a year (U.S. EIA, 2020). Flat rooftops and gray spaces fitted with 
mounting racks may be viable for solar panel installation, which would increase 
predicted solar energy generation beyond our estimate. These results have also 
demonstrated that it is feasible to map and calculate the solar potential for a large 
area spanning several towns and cities using LiDAR point cloud data and 
atmospherically corrected solar irradiance data from NASA POWER. Our results 
will validate new solar panel installation initiatives in Maryland and empower the 
District to achieve 100% renewable energy by 2032, with 10% coming from solar 
energy by 2041, in accordance with the Clean Energy D.C. (CEDC) Omnibus Act of 
2018. Our methods have the capacity to be applied to other regions of the country 
seeking to efficiently utilize solar energy, and our documented methodology can be
reused by future NASA DEVELOP project teams as they calculate the solar 
potential for other study areas around the globe.
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7. Glossary
Earth observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time
Remote sensing – Process of detecting and monitoring the physical characteristics 
of an area by measuring its reflected and emitted radiation at a distance (typically 
from satellite or aircraft)
Digital surface model (DSM) – Representation of first LiDAR laser returns, 
including the highest features in a landscape and may include the ground
Solar irradiance – Power per unit area of light energy from the sun 
LiDAR – Light Detection and Ranging, a remote sensing method that measures the
distance traveled by a laser pulse emitted towards the earth before it is reflected 
by a surface
NASA POWER – Prediction of Worldwide Energy Resources, database of solar and
meteorological datasets from NASA research for support of renewable energy
Photovoltaic technology – Technology, such as solar panels, that convert light 
into electricity
Solar potential – Potential energy that can be generated by solar panels in a 
given area
Roof segment – A facet of a building’s rooftop that faces a particular 
cardinal direction and has a particular slope angle.
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Appendix A

  Figure A1. The PEPCO electrical feeder lines that are distributed throughout
Washington, D.C., and extend into Prince George’s and Montgomery counties in

Maryland. 

Figure A2. The map shows a portion of one of our tiles with the maximum total
solar potential. The maximum total solar potential was identified to be the eastern

residential area of Hillcrest Heights. The building footprint for this contained a
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daily total of 1,440,217.30 kWh and an average of 551.81 kWh per building) for an
area of 2.87 square miles (7.44 sqKm).

Figure A3. The map shows a portion of one of our tiles with the least total solar
potential. We identified one region of minimal total solar potential in Maryland’s
North Barnaby neighborhood. The daily solar potential averaged over a year for
this 0.87-square mile (2.25 sqKm) region was 291,413.90 kWh. On average, each
building in this region has the potential to generate roughly 464.8 kWh of solar

power. Therefore, on an average day of the year, each building in the region of the
study area with the lowest solar potential can generate enough energy to power an

average American home for roughly half of a month. 

Table A1. 
The Attributes Table for the one particular grid cell (or neighborhood) of the study 
area.
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