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ABSTRACT 

This research uses machine-learned computational analyses to predict the cognitive performance 

impairment of rats induced by irradiation. The experimental data in the analyses is from a rodent 

model exposed to ≤ 15 cGy of individual Galactic Cosmic Radiation (GCR) ions: 4He, 
16O, 28Si, 48Ti, or 56Fe, expected for a Lunar or Mars mission. This work investigates rats at a 

subject-based level and uses performance scores taken before irradiation to predict impairment in 

Attentional Set-shifting (ATSET) data post-irradiation. Here, the worst performing rats of the 

control group define the impairment thresholds based on population analyses via cumulative 

distribution functions, leading to the labeling of impairment for each subject. A significant finding 

is the exhibition of a dose-dependent increasing probability of impairment for 1 to 10 cGy of 28Si 

or 56Fe in the Simple Discrimination (SD) stage of the ATSET, and for 1 to 10 cGy of 56Fe in the 

Compound Discrimination (CD) stage. On a subject-based level, implementing Machine Learning 

(ML) classifiers such as the Gaussian Naïve Bayes, Support Vector Machine, and Artificial Neural 

Networks identifies rats that have a higher tendency for impairment after GCR exposure. The 

algorithms employ the experimental prescreen performance scores as multidimensional input 
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features to predict each rodent’s susceptibility to cognitive impairment due to space radiation 

exposure. The receiver operating characteristic and the precision-recall curves of the ML models 

show a better prediction of impairment when 56Fe is the ion in question in both SD and CD stages. 

They, however, do not depict impairment due to 4He in SD and 28Si in CD, suggesting no dose-

dependent impairment response in these cases. One key finding of our study is that prescreen 

performance scores can be used to predict the ATSET performance impairments. This result is 

significant to crewed space missions as it supports the potential of predicting an astronaut’s 

impairment in a specific task before spaceflight through the implementation of appropriately 

trained ML tools. Future research can focus on constructing ML ensemble methods to integrate 

the findings from the methodologies implemented in this study  for more robust predictions of 

cognitive decrements due to space radiation exposure. 

1. INTRODUCTION 

The current record for the longest single flight a NASA astronaut spent on the International 

Space Station is 340 days (NASA, 2020), and travelers aboard are partially shielded from Galactic 

Cosmic Radiation (GCR) and Solar Particle Events by Earth’s magnetic field (Chancellor et al., 

2014). Missions to Mars will last about three years, the majority of which occurring beyond the 

magnetosphere. Astronauts are expected to receive close to 40 cGy of GCR based on the 

assessment of data obtained from Curiosity’s radioisotope thermoelectric generator onboard a trip 

to Mars in 2011 (Zeitlin et al., 2013). 

Animal surrogate models are commonly used as ground-based analogs to quantify the effects 

of single and multiple GCR ions on astronauts’ operational performance. This type of study helps 

NASA in defining human permissible outcome limits (POLs)1 and space permissible exposure 

limits (SPELs)2 for future mission success (NASA, 2015). Several studies show wide-ranging 

health problems in rodents triggered by ionizing radiation exposure. In these animal model studies, 

cancer (Cucinotta et al., 2011; Sridharan et al., 2015; Blattnig and Chappell, 2016), cardiovascular 

issues (Baker et al., 2011; Boerma, 2015), and Central Nervous System (CNS) damage (Rabin et 

al., 2005; Cucinotta et al., 2014; Parihar et al., 2015; Cekanaviciute et al., 2018) represent 

pathologies frequently attributed to a deleterious ionizing radiation dose. Moreover, exposure to 

high-energy protons, or High-atomic number and Energy (HZE) ions produces CNS damage 

leading to decremental behavioral changes in rodents (Cucinotta et al., 2014; Rabin et al., 1998, 

2015; Lonart et al., 2012; Haley et al., 2013; Britten et al., 2012, 2014, 2018, 2020; Parihar et al., 

2016, 2018; Hadley et al., 2016; Jewell et al., 2018; Carr et al., 2018; Mange et al., 2018; Blackwell 

et al., 2018; Shukitt-hale et al., 2018; Kiffer et al., 2019). Such cognitive deficits jeopardize 

astronauts’ safety and mission success, as spaceflights require constant alertness and readiness to 

address critical situations. Many studies utilize the novel object recognition, Barnes maze, Morris 

water maze, active avoidance, open field, or operant responding as the appropriate behavioral 

assays to evaluate rodents’ cognitive impairment (Rabin et al., 1998, 2011, 2015; Lonart et al., 

2012; Haley et al., 2013; Britten et al., 2012; Parihar et al., 2016, 2018; Hadley et al., 2016; Jewell 

et al., 2018; Carr et al., 2018; Shukitt-hale et al., 2018; Kiffer et al., 2019). Another test that 

assesses executive cognitive functions in rats is the Attentional Set-shifting (ATSET) test (Birrell 

and Brown, 2000; Young et al., 2010), which is a seven-stage test analog to the human Wisconsin 

 
1 POLs: Acceptable maximum decrement or change in a physiological or behavioral parameter, during or after a 

space flight mission, as the result of exposure to the space environment.  
2 SPELs: Quantifiable limit of exposure to a space flight factor over a given length of time. 
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Card-Sorting Test (WCST) (Grant and Berg, 1948; Eling et al., 2008). The WCST estimates 

cognitive flexibility such as attention, perseverance, working memory, abstract thinking, and set-

shifting.  

Previous work reveals cognitive deficits in rats during different stages of the ATSET depending 

on the ion type and dose of radiation exposure. Performance in the Simple Discrimination (SD) 

stage is impaired after 5 cGy of 28Si (Britten et al., 2018), Compound Discrimination (CD) and 

Compound Discrimination Reversal (CDR) after 20 cGy of  48Ti (Hadley et al., 2016), and SD and 

CD after ≤ 15 cGy of 56Fe or ≤ 10 cGy of 4He (Jewell et al., 2018; Burket et al., 2021). These 

decrements and most behavioral deficits in the studies listed above are reported as a change in the 

irradiated cohort’s test score from the corresponding non-irradiated group’s score (Rabin et al., 

2005, 2011, 2012, 2015, 2019; Cucinotta et al., 2014; Acharya et al., 2015; Parihar et al., 2015; 

Cekanaviciute et al., 2018; Shukitt-hale et al., 2018; Britten et al., 2020). We define this non-

irradiated group as sham. This difference is represented using bar plots with means and standard 

error of means, accompanied by a statistical t-test such as the Mann-Whitney to specify the 

significance of the difference between groups. While these statistical tests and plots are valuable, 

given the low sample size in such studies and the extent to which an affected individual score 

impacts the skewness of the population data, seen as the mean of the sample scores deviating 

significantly from their median, these averages alone likely represent an inadequate 

characterization of the change in the overall population performance. Furthermore, inter- and intra-

individual variabilities in responses to brain stimulation paradigms (Fiske and Rice, 1955; 

Loevinger, 1957; López-Alonso et al., 2014; Wyrobek and Britten, 2016; Sherman Paul and 

Sladky John, 2018) lead to inconsistent means across sample populations and disqualify their 

inferences on the general population.  

The application of Machine Learning (ML) techniques in clinical psychology and psychiatry 

provides a means to predict impairment in people, such as in Alzheimer disease, given the 

multidimensional records provided for each patient (Yu et al., 2015; J. Long et al., 2016; Z. Long 

et al., 2016; Balagopalan et al., 2020). Rather than subject based ML techniques, space radiation, 

cognitive impairment studies typically show results from traditional statistical analyses and infer 

conclusions on subjects belonging to parallel groups being irradiated (Rabin et al., 2005, 2011, 

2012, 2015, 2019; Cucinotta et al., 2014; Acharya et al., 2015; Parihar et al., 2015; Cekanaviciute 

et al., 2018; Shukitt-hale et al., 2018), or using some biophysics-based models at the neuron level 

to describe changes in morphology that can affect cognition (Alp and Cucinotta, 2018; Cacao et 

al., 2018). However, given the abundance of data collected during such studies, it is possible that 

multidimensional feature data about each subject before radiation exposure is sufficient to build 

robust data-driven approaches for predicting post-irradiation impairment at the subject level. 

The current study uses data obtained from the assessment of the performance of rat models in 

the ATSET test before and after irradiation with a single GCR ion beam (4He, 16O, 28Si, 48Ti, 56Fe) 

(Lonart et al., 2012; Britten et al., 2018). Statistical methods are applied to the experimental 

behavioral data to determine thresholds for impairment based on the performance of the sham rats 

as a group. Then, ML techniques with potential to discriminate the uniqueness of each subject are 

utilized to predict their impairment after irradiation. The ML model learns the cognitive aspects of 

each rat based on the corresponding prescreen ATSET scores, which are the scores calculated 

during a pre-selection process before irradiation. The ML algorithms implemented in this study 

are Support Vector Machines (SVM) that take a geometric approach to draw spatial boundaries 

between different classes, Gaussian Naïve Bayes (GNB) that use a probabilistic approach based 

on Bayes Rule, and Artificial Neural Networks (ANN) that allow iterative training through 
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components of the network to better fit the data on hand. Since each of these ML classifiers has a 

different underlying mathematical underpinning, each might capture existing unique patterns in 

the data. Based on the ion/dose given during irradiation, the model predicts the rat impairment 

three months post-irradiation. 

The paper is structured as follows. First, details about the adopted statistical tools and ML 

algorithms are given in the Methods section (Section 2). This section includes an in-depth 

description of the various parameters explored and the cross-validation techniques used to address 

the class imbalance, mitigate the small sample size, and generalize the analysis to independent 

validation data. Next, we apply our methods to the data, evaluate the prediction performance of 

our model, and present the findings of our modeling efforts in the Results section (Section 3). 

Lastly, we discuss the results and describe the benefits of the current in silico analyses and potential 

impact for crewed Lunar and Mars missions in the Discussion section (Section 4). Limitations of 

the current modeling efforts are addressed along with viable paths for future work.  

2. MATERIALS AND METHODS 

The work in this paper follows the computational analysis process illustrated in Figure 1, which 

serves as a visual guide to locate specific algorithms within the text. This section describes the 

behavioral test generating the data used, the datasets with their preprocessing, and the different 

computational tools employed to achieve the ultimate goal of determining which rats are impaired 

after irradiation. In the materials and methods, we follow NASA STD-7009, a technical standard 

for modeling and simulation practices related to NASA’s mission. We follow suggested rules for 

the credible practice of modeling and simulation in healthcare to ensure data pedigree, results 

robustness and limitations, and model reproducibility (NASA, 2019; Erdemir et al., 2020). 

2.1. Behavioral Test 

Data used in this paper is collected from a behavioral experiment, known as ATSET, performed 

by Dr. Richard Britten’s research group at East Virginia Medical School (EVMS; Norfolk, VA). 

Subjects (N=432) are male Wistar rats, about 10-month old at the time of irradiation, maintained 

on a reversed 12:12 light-dark schedule and kept on a strict food and exercise regimen for the 

entire duration of the study to match the physical fitness imposed on astronauts (Lonart et al., 

2012; Hadley et al., 2016; Jewell et al., 2018; Wyrobek and Britten, 2016; Britten et al., 2018). 

Rats are group-housed and have ad libitum access to autoclaved chow and municipal water by 

bottle till around seven days prior to the start of ATSET paradigm, when they are single-housed 

and switched to a food diet of 6 g of CheeriosTM (General Mills, Minneapolis, MN) per day, 

varying the amount on a daily basis to maintain each subject at 85% of its weight on the first day 

of the testing. Their exercise regimen consists of gradually increasing training on a motor treadmill 

(Véras-Silva et al., 1997) to reach a maintenance regimen of 30 min at 25 m/min, twice a week, 

for the entire duration of the study (except when at the irradiation lab and during the week of 

ATSET testing, both prescreen and post-irradiation phases). 

The ATSET is a constrained cognitive flexibility test consisting of seven stages where the rats 

forage for a food reward buried in a bowl associated with a digging media and/or scent depending 

on the stage (Shepp and Eimas, 1964). These stages, in successive order, are Simple 

Discrimination (SD), Compound Discrimination (CD), Compound Discrimination Reversal 

(CDR), Intra-Dimensional Shifting (IDS), Intra-Dimensional shifting Reversal (IDR), Extra-

Dimensional Shifting (EDS), and Extra-Dimensional shifting Reversal (EDR) (Lonart et al., 2012; 
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Hadley et al., 2016). Depending on the skills required at each stage, different cognitive skills are 

required; therefore, different brain regions might be activated. In each stage, the food reward is 

buried four cm in the digging media within one of two bowls, and each bowl is associated with a 

scent and digging media. Depending on the stage, one cue is relevant, and the other is not, and the 

rat learns to associate the reward with the relevant cue. A list of the of rewarded and nonrewarded 

associative cues for both prescreen and post-irradiation screening is in Tables 1 and 2 of the 

published work (Jewell et al., 2018). At each stage, rats are given up to 30 trials to get the food 

reward, for at most three minutes each trial, and are required to succeed in six consecutive attempts 

in order to reach the criterion. If a rat does not reach the criterion or the score is incomplete, the 

rat is rested overnight and re-tested the following day. Each stage is granted at most two days. 

In both the prescreen and post-irradiation procedures, and before the SD stage, an additional 

Habituation (HAB) stage is carried out where the rats get accustomed to the test maze and the 

handlers and are trained to forage for a food reward. In that stage, rats are required to dig for their 

reward of Cheerios placed in the digging medium with no scent and at different depths. Those that 

passed are rested overnight before being tested for their ability to conduct SD. Those that fail to 

retrieve the buried reward are excluded from further analysis. All testing is conducted during the 

dark cycle, keeping the experiment time fixed for each individual rat. 

The prescreen ATSET is conducted before rats are sent to BNL for irradiation, and only the 

first four stages are administered. The associative cues used in these stages are all scents. Any rat 

failing two or more stages in that test is dropped from further consideration. Furthermore, as 

described below, only those that pass the prescreening phase qualify for the study, similar to the 

high level of cognitive ability anticipated to become an astronaut. All irradiation is administered 

to the whole rat body at NASA Space Radiation Laboratory, Brookhaven National Laboratory 

(NSRL, BNL), and rats are placed in a well-ventilated custom-made irradiation jig constructed of 

black polyacrylic plastic. Sham rats are placed in an identical irradiation jig that remained in the 

preparation room. Table 1 lists the single-beam ion type and dose, along with each sample size. 

The post-irradiation ATSET, including all seven stages, is conducted 12 ± 2 weeks after 

irradiation. The timeline is shown in Figure 2. The cues in this step are flipped from those in the 

prescreening since the test is for cognitive flexibility rather than memory, and cues can be found 

in published work (Jewell et al., 2018).  

2.2. Data 

The dataset examined in this work is provided by the experimental lab in a tabular form. Initial 

findings on post-irradiation data was previously published (Jewell et al., 2018; Parihar et al., 2016; 

Britten et al., 2020; Burket et al., 2021) but prescreen scores are specifically retrieved for this 

study. Data is available through Dr. Britten. 

2.2.1. ATSET Scores Columns 

For each stage of the ATSET, the number of correct and incorrect attempts to reach the criterion 

are recorded in the lab, along with the time it takes for each correct attempt. The data analysis 

carried out in this paper utilizes three derived scores: 

• The number of Attempts To Reach Criteria (ATRC), which is the sum of correct and 

incorrect attempts. If a rat does not reach the criterion of a stage on the first day, the ATRC score 

is 30 plus the total number of attempts on the second day (Lonart et al., 2012; Hadley et al., 2016; 

Jewell et al., 2018; Britten et al., 2014, 2016, 2018). 
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• The Failure Ratio (FR), which is the ratio of incorrect attempts to total number of attempts, 

including the first and second days. The FR score is calculated to differentiate between rats having 

similar ATRC but a different ratio of incorrect attempts in ATRC. 

• The Mean Correct Latency (MCL) time for each rat, which is calculated as the average 

time it takes for all successful attempts. If a rat fails the first day, then MCL considers only the 

second day’s successful attempts. 

Each of these three scores has a smaller value for higher performer rats. The highest scores 

correspond to impaired rats (see Section 2.4.1). A pass/fail score for the HAB stage is also 

recorded, but since this study considers only the rats that passed habituation, this column is omitted 

from the datasets. 

2.2.2. Ion and Dose Columns 

After the prescreen at EVMS lab, the rats receive a single-ion whole-body irradiation at BNL. 

The number of rats exposed to each dose is given in Table 1. Sham rats have a dose of 0. 

2.2.3. Data Pre-processing and Visualization 

The sample sizes in Table 1 are for the SD stage in the ATSET and typically get smaller for 

subsequent stages due to the fact that a condition on earlier days of the test may prevent the rats 

from proceeding in the experiment when they fail two stages. Therefore, as part of the data pre-

processing, a sample is omitted if the computational algorithm requires all stages. 4He, 28Si, and 
56Fe data present the most likely successful opportunity for comparison as the dataset is complete 

for doses of 1, 5, and 10 cGy; hence, these are the ions and doses that will be considered in the 

model. 

2.3. Population Analyses 

This section describes the population statistical analyses performed on the data. The results 

aggregate data points and indicate a group behavior, not necessarily representative of each rat in 

the group. 

2.3.1. Data Visualization 

A common group visualization method that researchers utilize to depict qualitative trends in 

groups is a bar plot presenting the means and the standard error of the means in each data group. 

Bar plots for post-irradiation ATRC scores in all ATSET stages are presented in this paper, with 

indication to which groups are significantly different from the sham group via the Mann-Whitney 

test. 

Similarly, box plots qualitatively emphasize the variability of scores within a cohort. 

2.3.2. Cumulative Distribution 

A cumulative distribution function (CDF) informs the percentage of subjects that attained a 

certain score. It is the area under the curve of the density function. The cumulative distribution 

plots have an x-axis holding values of an ATSET score and a y-axis having the percent of rats that 

reached the criterion with that or a lower score value. The current research utilizes these plots to 

derive impairment thresholds as described below. 

2.4. Two-Step Approach to Predict Subject Impairment 
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The training and cognitive assessment of astronauts happen on Earth away from the GCR effect. 

In parallel, the sham group of rats are presumed the role model in the datasets, and irradiated rats 

that have ATSET scores comparable to the sham group are considered non-impaired. From a 

computational perspective, an impaired subject is one that has performance metrics that are less 

than those seen in the worst performers in the sham cohort. The choice of the threshold for 

impairment depends on what percentage of the control group is considered operating at acceptable 

capacity. This research takes the impairment at 5% worst performers in the non-irradiated cohort, 

or stated differently, at 95% impairment. After the threshold is determined, each rat is labeled as 

impaired or not based on their score. The dataset is fed to an ML classifier to learn an association 

between the input and output features. Here, the input features are GCR ion dose and the prescreen 

scores, and the output feature is the impairment label associated with cognitive performance post-

radiation.  

2.4.1. Step 1: Impairment Thresholds  

The impairment threshold is determined based on the percentage of samples in the sham group 

that are considered “normal” or non-impaired. A population statistical analysis finds the threshold 

that separates them from the impaired rats. This work utilizes the CDF described in Section 2.3.2. 

The score at or below which 95% of the sham group pass a stage defines the impairment threshold 

score. 

2.4.2. Step 2: Predict Impairment via ML 

Machine learning classifiers predict impairment at a subject-based level. Having data carrying 

a label suggests using supervised ML techniques. Data samples are split into two subsets, a training 

set and a testing set. The training set first provides the classifier with the given dose and some 

prescreen scores as input features and the impairment label as target feature. The classification is 

referred to as binary since the output belongs to one of two classes: the positive class (class of 

impaired), or the negative class (class of non-impaired). Each classifier follows a specific ML 

algorithm to learn an association between the input features and the target feature and adjusts the 

parameters of the model to accommodate the given samples; this phase is called the “training” 

phase. Then the classifier receives the second unseen subset of data, i.e., the testing set, with only 

the input features, and predicts the output feature; this concludes the “testing” phase. A comparison 

between the predicted values in this stage and the actual impairment labels informs the classifier 

reliability. For ML methods, a third validation set is ideal, but a common practice for data with a 

small sample size, as is the case here, is to use a cross-validation technique to establish model 

predictive characteristics, as described in Section 2.5.4. 

 Below are various ML classifiers utilized in this study. Scikit-Learn for Python is the ML 

library used to generate the results in this paper (Pedregosa et al., 2011; van Rossum and The 

Python Development Team, 2018).  

2.4.3. Evaluating ML Performance 

Many metrics are available to evaluate the performance of each ML model. They are based on 

comparing the predicted impairment labels in the testing phase and the actual output impairment 

labels of rats. A review of these metrics and some useful definitions are below (Tharwat, 2018; 

Fawcett, 2004; Hossin and Sulaiman, 2015): 

• True Positive (TP): the number of impaired samples that are correctly classified as impaired 

by the ML-based model. 
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• True Negative (TN): the number of non-impaired samples, which are correctly classified as 

non-impaired by the ML-based model. 

• False Positive (FP): the number of non-impaired samples that are wrongfully classified as 

impaired by the model. 

• False Negative (FN): the number of impaired samples that are wrongfully classified as non-

impaired by the model. 

• True Positive Rate (TPR) = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, and varies from 0 for not classifying any positive 

correctly to 1 for classifying all the positives correctly. 

• False Positive Rate (FPR) = 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
, and varies from 0 for not misclassifying any negative 

as positive to 1 for misclassifying all negatives as positives. 

• Accuracy = 
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, and varies from 0 for not classifying any negative or positive 

correctly to 1 for classifying all of them correctly. Accuracy is the most common metric to 

evaluate a classifier. However, when the data is highly imbalanced, the accuracy tends to 

lean to the majority class. 

• Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, and varies from 0 for not classifying any positive correctly to 1 for not 

misclassifying any negative as positive. An increase in precision indicates a decrease in the 

number of false positives. 

• Recall = TPR = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. An increase in recall indicates a decrease in the number of false 

negatives, i.e., it is less likely that a positive prediction is missed. Different models offer 

different trade-offs between precision and recall evaluations. It is more important to 

increase the recall at the expense of precision when it is more important to classify a positive 

even when this yields more false positives. 

• The Precision-Recall (PR) curve holds the recall on the x-axis and precision on the y-axis. 

A PR curve is produced by plotting multiple Precision-Recall pairs when varying a model’s 

classification cutoff value; this is the number between 0 and 1 that determines if an output 

feature leads to a positive or negative classification label.  

• The Area Under the Curve (AUC) of PR curve is a measure that can be used to compare the 

performance of multiple classifiers based on their precision and recall curves. In general, a 

higher AUC-PR indicates a better classifier. A random guess yields an AUC-PR equal to 

the ratio of the sample size of the minority class, which, in this work, is the number of 

impaired rats divided by the total number of rats. 

• The Receiver Operating Characteristic (ROC) curve holds FPR on the x-axis and TPR on 

the y-axis. Just like the PR curve, the ROC curve is built by varying the cutoff classification 

value that separates positives from negatives. A random guess is represented by a diagonal 

straight line going from the bottom left to the top right of the plot, and a “better-than-

chance” classifier gives FPR-TPR pairs that sit above this line. 

• The Area Under the Curve (AUC) of ROC curve can be used to compare the performance 

of multiple classifiers based on their TPR and FPR. The model is generally better when the 

AUC-ROC is higher. A random guess yields an AUC-ROC of 0.5.  
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• F1 = 
2·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, the harmonic mean between precision and recall is the square of the 

geometric mean divided by the arithmetic mean. This metric serves as a comparative tool 

between classifiers and varies from 0 if no true positives are detected to 1 for perfect 

classification. 

• Matthews Correlation Coefficient (MCC) = 
𝑇𝑃·𝑇𝑁−𝐹𝑃·𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)( 𝑇𝑁+𝐹𝑁)
, varies 

between -1 for total disagreement between predictions and actual labels and 1 for perfect 

prediction. A random guess has an MCC of 0.  

2.5. ML Algorithms 

2.5.1. Gaussian Naïve Bayes 

Gaussian Naïve Bayes (GNB) is a probabilistic classifier that is based on Bayes conditional 

independence rule. The probability that a testing sample belongs to a certain output class depends 

on probabilities deduced from the samples in the training set.  

A simple way to understand the algorithm is as follows. Given a testing sample with some input 

features like dose and prescreen scores, for each possible output class (here classes are negative: 

non-impaired and positive: impaired), the probability of belonging to the class is: 

𝑃𝑟(𝑐𝑙𝑎𝑠𝑠|𝑖𝑛𝑝𝑢𝑡)  =
Pr( 𝑐𝑙𝑎𝑠𝑠)

Pr (𝑖𝑛𝑝𝑢𝑡)
∏ Pr(𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒|𝑐𝑙𝑎𝑠𝑠)𝑛

𝑖=1 . 

The sample in the testing data is assigned the class with the largest predicted probability given 

the corresponding input features (Rish, 2001; Micheal, 1997). This research uses uniform priors 

for the GNB model, starting the untrained classifier by assuming a 50% chance for either one of 

the two output classes. 

2.5.2. Support Vector Machines 

Support Vector Machine (SVM) is an ML classifier that uses a geometric approach to separate 

samples based on their label, i.e., their output feature class. It builds a hyperplane in the input 

features space to maximize the margin of separation among classes of the output feature. The 

hyperplane is linear if the data is separable. The hyperplane is nonlinear when using a kernel that 

transforms the data into a higher dimensional space where the classes are linearly separable, then 

transforms it back to the original feature space. This study shows results using the Gaussian radial 

basis function as a kernel (Boser et al., 1992). The testing phase consists of placing the samples of 

the testing set in the input feature space and deciding on their class based on their geometric 

location on either side of the hyperplane (Boser et al., 1992; Noble, 2006).  

2.5.3. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are inspired by the biological learning and memory 

retention in the system of interconnected neurons. ANNs are built from layers of neurons called 

nodes and links between neurons. Each of the nodes stores an activation function specified by the 

user. Each of the links between nodes (inspired by neuron connectivity) from a layer to the adjacent 

one is associated with a weight that gets adjusted at each back-propagation step, as in Figure 3. 

The first layer of nodes called the input layer, stores the input features, the last layer, called the 

output layer, gives the predicted class, and the in-between layers are called the hidden layers. 

Information from the input features of the training samples travel from the input to the output 

layers, where each node, except those in the input layer, receives numbers from the connected 

nodes in the previous layer, multiplies them by the links’ weights, sums them up, and applies an 
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activation function to pass one number to the nodes in the next layer. At the output layer, the 

algorithm compares the predicted value to the sample’s output feature and assesses the error over 

the training set. It then propagates backward to adjust its weights and repeats the process until it 

reaches a stopping criterion designed by the user. The testing set’s input features feed into the 

ANN, and their output is predicted and compared to their actual label in order to quantify the 

algorithm’s performance by some metric such as the accuracy, AUC-ROC, AUC-PR, MCC, and 

F1 score. More information about the variations in types of ANNs can be found in the literature 

(Hecht-nielsen, 1992; Micheal, 1997; Goodfellow et al., 2016).  

In the current effort, due to the small sample size (see Table 1), the ANN is feed-forward with 

one hidden layer of sixteen nodes and another of eight nodes each harvesting a Rectified Linear 

Unit (ReLU) activation function. The output layer applies a Sigmoid activation function to predict 

values between 0 and 1, translatable into the sample’s predictable probability of impairment. 

2.5.4. Cross-Validation, Class Weighting 

Through all the ML classifiers implemented in this work, it is necessary to take measures to 

accommodate the low sample size and the class imbalance in the data, along with finding the 

optimal hyperparameters for each model.  

To make the most use of the small sample size in the dataset, Leave-One-Out Cross-Validation 

seen in Figure 4 is implemented, where all samples except one serve as the training set and the 

remaining one sample as the testing set. For a dataset of N samples, the cross-validation refers to 

repeating this process N-1 times, each time leaving a different sample out for testing (Efron, 1982). 

An ML algorithm learns an association between the input and output features by inspecting the 

samples of the training set and optimizing an error function to improve a classification metric, 

typically the accuracy. For an imbalanced dataset, i.e., a dataset that contains the majority of 

datapoints belonging to one class (the negative class in this case), a high accuracy can be achieved 

by simply labeling all samples as belonging to the class with the largest sample size. The dataset 

in this research includes less impaired rats than non-impaired. Take, for example, the sham rats, 

labeling the worst 5% performers as impaired; a classifier can resort to allocating all of them to 

the negative class for a 95% accuracy, thereby missing all impaired rats. When translating such 

result to astronauts, the impairment of the minority of impaired astronauts, or the positive class, is 

totally dismissed. Due to the severity of the risk that an impaired astronaut can pose to a mission’s 

success, identifying individuals in the positive class is of high interest. This issue is also common 

in applications outside of space behavior, such as in fraud detection or illness detection (Di Martino 

et al., 2012; Wang et al., 2016; Johnson and Khoshgoftaar, 2019). A popular solution is to assign 

a different weight to each class, giving higher importance to the minority class to reduce bias 

towards the majority class.  

3. RESULTS 

Experimental data of the rodent ATSET performance are plotted in Figures 5 and 6. These 

graphs compare sham and each group irradiated with one of 4He, 28Si, and 56Fe ions at a dose of 1, 

5, or 10 cGy. Next, cumulative distribution plots depict the threshold corresponding to 95% of the 

sham population in each of the seven stages of the post-irradiation test for the ATRC and MCL 

scores. The current study focuses on analyzing ATRC scores of the SD and CD stages. Rats scoring 

at or above the threshold are labeled impaired while the others are non-impaired. The third part of 

this section employs the four stages of prescreen ATSET test scores and the dose applied and 
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implements GNB, SVM, and ANN classifiers to predict post-irradiation impairment in the SD and 

CD stages.  

3.1. Post-Irradiation ATRC Data Visualization 

ATRC scores are visualized in Figure 5 as bar plots for the sham group and those irradiated 

with 4He, 28Si, or 56Fe ions, showing means and associated standard error of the means. The 

statistically significant difference is ascertained using the Mann-Whitney U test. Stages CDR, IDS, 

and IDR for 4He, 28Si, and 56Fe irradiated rats show at most one dose group to be significantly 

different from the corresponding sham, and stages SD and CD show a significant difference in at 

least one dose group. We also note in Figure 5 (A), (B), and (C) that an applied dose of 10 cGy of 

any of the three ions shows a significant difference from shams in the ATRC scores of the CD 

stage. In addition, a dose-effect is prominent after exposure to 56Fe ion in the SD and CD stages. 

Bar plots for MCL and FR scores are in the Supplementary Tables. They show a less significant 

difference in MCL scores than ATRC but a difference in FR scores comparable to the difference 

in ATRC when performing the Mann-Whitney U test.  

Figure 6 box plots show how data are spread out in the different quartiles. These plots show the 

large variance in the CDR stage for the sham rats and a higher median than its counterpart for the 

groups irradiated with any dose of 4He (A panel) or 28Si (B panel) ions. This suggests that ML is 

not suitable for the CDR stage due to the high variability in performance among rats.  

Based on the above observations, we choose to build our ML predictive models using post-

irradiation ATRC scores in the SD and CD stages to measure behavior after exposure. 

3.2. Cumulative Distributions and Impairment Thresholds 

The cumulative distribution plots of the sham data, in Figures 7 and 8, show the results of the 

evaluation procedure for an impairment threshold for an SD or CD stage. In these plots, the y-axis 

refers to the percent of rats that reached the criterion in at-most the number of attempts on the x-

axis. The horizontal “dashed” line identifies the cumulative 95% level and the vertical line, 

associated with the 0 cGy dose (blue circles, sham data), identifies the impairment threshold. The 

impairment threshold is 16 for the SD post-irradiation stage as seen in Figure 7 and 36 for the CD 

post-irradiation stage in Figure 8. These thresholds determine the impairment label of the samples 

used in the supervised ML techniques of the following section. 

After determining an impairment threshold, the percentage of rats that are impaired is calculated 

for different ions at a dose of 1, 5, or 10 cGy, and results are plotted in Figure 9 for the SD stage 

and Figure 10 for the CD stage. These plots can be interpreted as the probability of a rat exhibiting 

impairment or susceptibility to impairment. More details about these results and their implication 

are in the Discussion section. 

Following the same framework implemented for ATRC scores, the MCL score’s threshold of 

impairment is 53 in the SD stage and 72 in the CD stage. The cumulative distribution MCL plots 

(not shown here) do not show a higher percentage of impaired rats for most irradiated groups. 

As for the FR scores described in Section 2.2.1, defining an impairment threshold for sham rats 

does not serve as a good baseline for the behavior of shams, as two very differently performing 

rats can have the same FR. For example, a rat that reaches criterion in nine attempts, where it gets 

three wrong and six correct, gets the same FR score of 1/3 as a rat that reaches the criterion in 24 

attempts by successively getting five correct and one wrong three times in a row, until finally 



12 

 

learning and getting six correct attempts for criterion. We therefore proceed the analyses without 

using these scores. 

All ATRC and MCL impairment scores are reported in Supplementary Table 1, for the seven 

stages of post-irradiation ATSET. 

3.3. Machine Learning Prediction 

As described in Section 2.4.2, we use ML models to predict the impairment label, that is, a rat 

is impaired or not. Tables 2 and 3 show the ML performance scores via different metrics as a result 

of implementing GNB, SVM, and ANN classifiers to predict impairment of 56Fe irradiated rats. 

The results for the 4He and 28Si irradiated rats can be found in Supplementary Tables 2 and 3. 

Because 95% of sham and most irradiated rats are non-impaired, causing an imbalance between 

the positive class (impaired) and the negative class (non-impaired), we train the classifiers with 

class weighting as described in Section 2.5.4 to prevent a bias towards the majority class. 

Table 2 reflects classifying sham rats along with those irradiated with 1, 5, or 10 cGy of 56Fe; 

and Table 3 includes sham and only the 10 cGy 56Fe irradiated rats. The reason to prefer showing 

these cases is that based on Figures 5 (C) and 6 (C), any dose of 56Fe produces higher ATRC scores 

than the sham, and an incremental effect is depicted in the height of the bar plots and box plots 

when rats are exposed to a higher dose, as also depicted in the percentage of impaired rats in 

Figures 9 (C) and 10 (C). Therefore, we expect the classifiers to be able to perform better than 

random chance when presented with the sham and the rats irradiated with any dose of 56Fe, and to 

perform even better when asked to discriminate between the effect of 0 and 10 cGy of 56Fe than 

when presented with multiple doses of 56Fe. 

Indeed, in each table, all classifiers have comparable success in predicting impairment 

exceeding a random guess; that is, we observe an accuracy score above 50%, an AUC-ROC above 

0.5, an AUC-PR above the corresponding baseline of about 0.14, and a positive MCC. We also 

notice mostly higher numbers in Table 3 than in Table 2 as we anticipated. It is noteworthy to 

mention that SVM gives an MCC of almost 0 when classifying impairment in the CD stage and 

has the lowest F1 score. GNB and ANN perform better than SVM in the CD stage and almost 

identically to each other.  

Furthermore, this study compares the ML prediction for the 4He, 28Si, and 56Fe ions and checks 

if the prediction is better than random chance for all ions. An efficient way to perform and visualize 

this comparison is by plotting the ROC and PR curves (Micheal, 1997; Fawcett, 2004; Tharwat, 

2018). A classifier is a better predictor when it reveals a larger AUC- ROC, and its ROC curve is 

closer to the upper left corner of ROC space, and when the AUC-PR is larger, and the 

corresponding PR plot is closer to the upper right corner in PR space. Impairment prediction via 

ANN is compared in Figure 11 for the SD stage and in Figure 12 for the CD stage. For each ion, 

the corresponding curves include sham rats and those irradiated with 1, 5, or 10 cGy of the 

designated ion. 

4. DISCUSSION 

The main objective of this paper is to predict rodent performance impairment in stages of the 

ATSET at a subject level after single GCR ion irradiation. Traditional population-based analyses, 

such as the Mann-Whitney test, show the presence of cognitive deficits as a trend at a group level, 

but are insufficient for our purpose to individualize the effect. We utilize statistical tools, i.e., the 

cumulative distribution function, to define the cognitive impairment threshold by analyzing the 
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post-irradiation scores of the shams’ cohort at the group level. We then employ ML algorithms to 

pinpoint the impaired rats from their groups. Therefore, as discussed in this section, ML models 

supplement population-based statistical analyses through their strong predictive capabilities to 

extend the results to a subject-based level.   

4.1. Machine Learning Prediction 

An interesting observation from the application of ML techniques to the prediction of cognitive 

impairment relates to the need to utilize the prescreen scores as an additional feature to enhance 

classification. In the absence of the prescreen scores, the classifiers in this study rely exclusively 

upon the dose as input feature and would predict all rats exposed to one dose to be either impaired 

or not based on the majority class. Since most rats are non-impaired regardless of the radiation 

exposure level, as seen in Figures 9 and 10, then the ML model would not be able to single out 

any impaired rat. Results from the inclusion of prescreen scores as additional input features 

indicate that the ability to predict impairment is potentially dependent on the individual measured 

cognitive capability of rat subjects before and after irradiation.  

Indeed all scores in Tables 2 and 3 reflect better-than-chance prediction capability when 

considering sham and 56Fe irradiated rats, as shown in Section 3.3, with an accuracy score above 

50%, an AUC-ROC above 0.5, an AUC-PR above the approximate baseline of 0.14, and a positive 

MCC. A better-than-chance prediction shows that the model is capable of establishing a relation 

between the input features and the impairment. In particular, because Table 2 considers sham rats 

and those exposed to 1, 5, or 10 cGy of 56Fe ions and shows better-than-chance predictive 

capability in both SD and CD stages, then we can predict and ascertain the presence of dose-effect 

for 56Fe, as also depicted in the percentage impaired rats at different doses in Figures 9 (C) and 10 

(C). We discuss this dose-effect further in Section 4.2. Here we mention that experimental studies 

show cognitive deficits in rodents exposed to 56Fe irradiation at doses as low as 20 cGy in the 

Barnes maze (Britten et al., 2012) and 10 cGy in the novel object recognition test (Cherry et al., 

2012; Patel et al., 2017).  

In Figure 11 (A) and (B) involving the SD stage, the ROC and PR curves of the ANN prediction 

reveal AUC-ROC of 0.39, 0.62, and 0.69 for 4He, 28Si, and 56Fe, respectively, and AUC-PR of 

0.08, 0.16, and 0.37, respectively. These numbers show that the ANN is more capable of 

distinguishing SD impairment after irradiation with 56Fe than after exposure to 28Si and is less 

robust in the 4He ion case where the AUC-ROC and AUC-PR are both below their “random 

chance” scores of 0.5 and 0.13, respectively. The ability of a classifier to distinguish impairment 

indicates that it can establish a relation between the dose and prescreen scores on the one hand and 

the impairment label on the other. Similarly, in Figure 12 (A) and (B) for the CD stage, the AUC-

ROC are 0.53, 0.35, and 0.66 for 4He, 28Si, and 56Fe, respectively, and the AUC-PR are 0.18, 0.06, 

and 0.32. These numbers show that the ANN can distinguish CD impairment after irradiation with 
56Fe more than 4He and is limited in its predictive ability in the 28Si case. The relevance of this 

result is that we can identify which rats are at a higher risk of impairment if such risk exists. 

Moreover, traditional statistical methods already allude to the presence of such risk at a group 

level: the average ATRC CD score of a 10 cGy 4He or 56Fe irradiated rat is higher than that of a 

rat exposed to10 cGy of 28Si as seen in Figure 5 (A), (C) and (B) respectively, and the percentage 

of irradiated rats in that stage is higher for 4He and 56Fe than it is for 28Si as seen in Figure 10 (A), 

(C) and (B) respectively. 

4.2. Percent of Impaired Subjects 
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To further understand the difference among ions in the prediction capability of the ANN, we 

inspect the percentage of rats that are impaired for different ions and different doses plotted in 

Figure 9 for the SD stage and Figure 10 for CD. In Figure 9 (B) and (C), the higher the dose of 

irradiation with 28Si or 56Fe ions, the higher the percentage of impaired rats in SD, with a more 

distinctive response for 56Fe. This indicates a dose-response in the SD stage, when rats are 

irradiated with 28Si or 56Fe ions. It is presumed that the SD stage is mainly regulated by the medial 

prefrontal cortex (Jewell et al., 2018), one of the regions involved in the novel object recognition 

test, in which literature shows deficit after irradiation with 28Si or 56Fe ions (Rabin et al., 2014; 

Patel et al., 2017).  

We note that the Mann-Whitney test does not find a statistically significant difference between 

the sham cohort and the 1 or 5 cGy 56Fe irradiated rats in the SD stage as seen in Figure 5 (C), 

although the ML algorithms and the cumulative distribution plots are able to depict some severely 

impaired rats in those groups. This is because the statistically significant difference reports how 

each irradiated group is different than the sham cohort when comparing their population medians, 

whereas our approach is interested in individuals’ impairment. Section 3.2 gives an SD threshold 

score of 16, and looking at Figure 6 (C) the impaired rats are outliers, far from the median. 

Therefore, when our results indicate a dose-effect, if it seems contradictory to the results from 

traditional statistical methods, keep in mind that we are investigating the cognitive impairment or 

extreme deficits, not just the low cognitive performance.  

Figure 10 (C) shows the dose-effect from exposure to 56Fe in the CD stage, where rats irradiated 

with any dose are at least four times more susceptible to impairment than sham rats. Additionally, 

Figure 6 (C) shows that the higher the 56Fe ion dose, the more the variability among subjects as 

seen from the interquartile range increasing with the dose. We hypothesize that an 56Fe radiation 

dose of less than 1 cGy causes deficits in the CD stage. A prominent effect at 10 cGy of 4He ion 

is detected, suggesting a dose in the range of 5 - 10 cGy of 4He is responsible for inducing cognitive 

deficit in the brain regions and pathways involved in the CD stage. For the 28Si ion, we notice in 

Figure 10 (B) that 5 cGy shows a similar effect to that of no radiation at all, whereas 1 and 10 cGy 

show a higher number of impaired rats, which leads to more difficulty for the classifier to relate 

impairment to radiation. This is seen in the low-performance metrics of the ANN, as detailed in 

Supplementary Table 2. Further testing with more rodent subjects would be beneficial to clarify 

this non-monotonic dose-response to 28Si irradiation. 

The literature suggests that SD and CD are regulated by different parts of the brain (Jewell et 

al., 2018; Britten et al., 2021), potentially justifying the disparity between the classification 

prediction capability in SD and CD performance for different ions. Particularly, Figures 11 and 12 

suggest that 56Fe or 28Si irradiation causes damage in areas of the brain regulating the SD stage, 

while 56Fe or 4He irradiation affects the parts regulating the CD stage. However, the damage by 
4He (or 28Si) irradiation may involve other aspects of cognitive damage not quantified by SD (or 

CD respectively), or 4He (or 28Si) ion is not as deleterious as the other two ions. The fact that 56Fe 

irradiation affects both the SD and CD stages suggests that multiple areas or pathways in the brain 

are affected by the irradiation. 

We comment in Section 3.2 about the cumulative distribution MCL not showing a higher 

percentage of impaired rats for most irradiated groups. The ML classifiers are thereby unable to 

predict MCL impairment. This suggests that the time spent by a rodent subject to retrieve a food 

reward correctly does not necessarily increase even if their ATRC increases when irradiated. This 

is not surprising as the MCL bar plots in Supplementary Figure 1 show no significant difference 

between the sham and various groups irradiated with 4He, 28Si, or 56Fe ions. 
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4.3. Limitations 

Although the results from our ML models in Figure 11, Figure 12, Table 2, and Table 3 are 

better than random chance, one might wonder why they are this low. In other words, why do the 

ML models result in so many misclassifications if they are well trained? We inspect our dataset 

samples closely and observe many cases where two rats having similar or even equal scores in the 

prescreen test and being irradiated with the same dose of an ion result in different impairment 

labels. Such cases are also seen in the sham group. An ML model treats these two samples the 

same and predicts the same impairment label, leading to one misclassification. With our dataset of 

low sample size, these discrepancies heavily affect ML performance and result in more 

classification errors.  

It may be possible to get higher ML performance scores if one implements a more systematic 

approach and takes time to tune the algorithm parameters for optimization. However, that would 

not change the key conclusions of this study, related to the better-than-random-chance prediction 

capability. 

Like most data in the effect of GCR radiation research, the data used in this study is limited by 

the low sample size (Table 1). This leads to a higher error range when performing population 

analyses and requires additional steps of bootstrapping and cross-validation in ML to take 

advantage of all possible data points (see Section 2.5.4). 

Another limitation in the data on hand is reproducibility, a recurrent topic of discussion in the 

health and biomedical sciences research community. Data used in our study include lab runs that 

occurred from years 2014 to 2018. This implies many changes in human and animal involvement, 

such as including multiple cohorts of rats though with the same specs and employing different 

animal handlers. As minimal as they are kept, these unavoidable changes can still affect behavioral 

testing and scoring, as is often addressed in rodents psychology literature (Gulinello et al., 2018; 

Voikar, 2020). This limitation will be more pronounced when validating our results with data from 

other experimental studies.  

Behavioral studies have shown high inter- and intra-individual variabilities in animals and 

humans in response to brain stimulation paradigms (Fiske and Rice, 1955; Loevinger, 1957; 

López-Alonso et al., 2014; Wyrobek and Britten, 2016; Sherman Paul and Sladky John, 2018). 

These variabilities are manifested when the same subject responds differently in the ATSET if the 

test is done another time and may provide a potential explanation for rats with similar prescreen 

scores having different impairment labels. Further variations arise due to the use of the outbred 

Wistar rats (Wyrobek and Britten, 2016). 

There may be other factors contributing to the performance change after irradiation that are not 

captured in the current datasets. More behavioral tests and biomarkers should be investigated on 

the same subjects. Additional pertinent variables about each rodent subject, such as daily vital 

signs and exact time of the day when the assay was administered, should be recorded during the 

experiments even if not deemed necessarily useful at the time. These variables can be fed to the 

ML models to capture the agents responsible for performance alterations of some individuals 

versus others. It is advisable to capture video recordings of the rodents. With the advancement of 

ML algorithms and artificial intelligence and the growing computer power, more tools are 

available every day to glean from data that the human brain cannot readily extract. Those tools can 

use the additional variables and test recordings provided by lab technicians to unravel potential 

hidden relationships between dose exposure and cognitive impairment. 

One should be cautious in extrapolating any results from a single-ion beam exposure 

experiment directly to spaceflight, as astronauts will be exposed simultaneously to a variety of 
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ions during deep space missions. Building models to combine the effects of single-ion exposure is 

an ongoing area of investigation. NSRL has recently built a simplified 5-ion mixed field beam that 

simulates the top 5 contributors to GCR radiation (Simonsen et al., 2020). Researchers now have 

the opportunity to use the facility to irradiate rodents with a mixed-beam and use the data to test 

and validate their models for predicting combined effects from single-beam exposure (Pani et al., 

2016; Huang et al., 2019). In addition, microgravity and isolation/confinement are also space 

factors that can potentially affect the cognitive performance of astronauts. Incorporating the 

simultaneous effects of these stressors with radiation is another active research area (Kokhan et 

al., 2019; Chappell et al., 2020; Willey et al., 2021). 

4.4. Outlook 

The ML algorithms that we employ in this study hold different mathematical backgrounds, i.e., 

GNB is probabilistic, SVM is geometric, and ANN is network-based. Each one of them has its 

limitations but can still predict better than chance. For example, GNB assumes that the input 

features are independent, SVM that they are linearly separable, and ANN is computationally 

expensive. With more data available, a future direction could be to build an ML ensemble method 

to take advantage of the strengths of each classifier for a more robust and generalized 

computational framework. 

In investigating the effects of GCR on rodents, there is limited behavioral and physiological 

data, driving impairment predictions on a group level rather than subject level, assuming that all 

individuals in a group have the same susceptibility to impairment. For an impairment prediction 

tailored to each subject, we recommend administering more animal studies with a larger sample 

size and work towards understanding the translation of the results to humans. This is imperative 

given the severity of potential effects of astronauts’ cognitive deficits on mission success and 

safety.  

 

 

5. AUTHOR CONTRIBUTIONS 

MM procured, cleaned, and preprocessed the data in the database, guided the technical direction 

of the study, contributed to discussions, performed the population statistical analyses including 

impairment thresholds and percentages, implemented the Artificial Neural Network algorithm, 

created all visualizations in the manuscript, and composed the first draft of the manuscript. SG 

managed conceptualization and technical task coordination, led discussions, guided the technical 

direction of the study, and provided critical peer review and interpretation of the results. MP 

implemented the Support Vector Machine algorithm and contributed to discussions. CG 

implemented the Support Vector Machine algorithm. AI implemented the Gaussian Naïve Bayes 

algorithm. RB provided the data from own previous experiments and helped in the interpretation 

of the experiment and data. RP coordinated the project, led discussions, guided the technical 

direction of the study, and provided critical peer review and interpretation of the results. JM 

coordinated the project, ensured the implementation of the model credibility criteria, led 

discussions, guided the technical direction of the study, and provided critical peer review and 

interpretation of the results. All authors contributed to manuscript revisions, read, and approved 

the submitted version. 



17 

 

6. ACKNOWLEDGEMENTS 

This study would not have been possible without the expertise of the Cross-Cutting Computational 

Modeling Project team at Glenn. The authors are grateful for NASA’s Human Research Program 

for supporting this work, specifically Langley Research Center’s space radiation team for the 

invaluable discussions and Johnson Space Center’s CBS portfolio for their guidance throughout 

the research. The investigation generating the data used in this study was funded by NASA grant 

support NNX14AE73G. 

 

 

 

 
Figure 1: Visualization of the ML procedures as a guide to follow and locate specific algorithms within the text. 

 

Figure 2: Lab experimental timeline for each run. ATSET stages are listed in the performed order. Initial findings 
from generated data was previously published (Jewell et al., 2018 (Fe); Parihar et al., 2016 (Ti); Britten et al., 2020 
(Si); Burket et al., 2021 (He)). 
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Figure 3: The ANN structure used in this study. The first hidden layer contains 16 nodes and the second one has 8. 
Each link has a weight. “∑” before a node indicates that its input is the sum of the weighted outputs from previous 
nodes. “ ”refers to a ReLU activation function and “ ”refers to the Sigmoid. 

 

Figure 4: Leave-One-Out Cross-Validation. The blue samples consist of the training set, and the yellow one is the 
testing sample. This runs N times with different testing set for each run. 
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Figure 5: Bar plots showing the mean and standard error of the means of ATRC scores for different ATSET stages 
post-irradiation with (A) 4He, (B) 28Si, or (C) 56Fe ions. The numbers above the bars are the sample size. Asterisks 
refer to groups that are significantly different from the sham group using the Mann-Whitney test. 
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Figure 6: Box plots showing the median, quartiles, and outliers of ATRC scores for different ATSET stages post-
irradiation with (A) 4He, (B) 28Si, or (C) 56Fe ions. Fifty percent of the data falls within, 25% above, and 25% below 
the box. The median, which is the middle score, is the horizontal line inside the box. The diamonds or individual 
data points far from the box represent the outliers. 

Figure 7: Cumulative distribution plots of the ATRC scores in the SD post-irradiation stage for rats irradiated with 
(A) 4He, (B) 28Si, or (C) 56Fe ions. The vertical dashed line shows the impairment threshold at 16 when ruling 95% of 
the sham population (in blue) as non-impaired. 

Figure 8: Cumulative distribution plots of the ATRC scores in the CD post-irradiation stage for rats irradiated with -
(A) 4He, (B) 28Si, or (C) 56Fe ions. The vertical dashed line shows the impairment threshold at 36 when ruling 95% of 
the sham population (in blue) as non-impaired. 

Figure 9: The percentage of impaired rats in the post-irradiation SD stage for an ATRC impairment threshold of 16. 
Colors refer to different doses. Plots are for (A) 4He, (B) 28Si, or (C) 56Fe irradiated rats. 
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Figure 10: The percentage of impaired rats in the post-irradiation CD stage for an ATRC impairment threshold of 
36. Colors refer to different doses. Plots are for (A) 4He, (B) 28Si, or (C) 56Fe irradiated rats. 

Figure 11: Impairment prediction in the SD stage using the ANN classifier. Each line corresponds to sham rats and 
those irradiated with 4He (blue), 28Si (orange), or 56Fe (green) ion at any of the given doses: 1, 5, 10 cGy. (A): The 
ROC curve of the neural network. The dotted diagonal represents random chance. A “better-than-chance” 
prediction translates into an AUC above 0.5. (B): The PR curve of the neural network. Each dotted horizontal line 
represents the ratio of impaired rats in the corresponding group. A “better-than-chance” prediction translates into 
an AUC larger than the AUC of the corresponding baseline.  

Figure 12: Impairment prediction in the CD stage using the ANN classifier. Each line corresponds to sham rats and 
those irradiated with 4He (blue), 28Si (orange), or 56Fe (green) ion at any of the given doses: 1, 5, 10 cGy. (A): The 
ROC curve of the neural network. The dotted diagonal represents random chance. A “better-than-chance” 
prediction translates into an AUC above 0.5. (B): The PR curve of the neural network. Each dotted horizontal line 
represents the ratio of impaired rats in the corresponding group. A “better-than-chance” prediction translates into 
an AUC above the AUC of the corresponding baseline. 
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Table 1: Sample size at the first stage of the ATSET post-irradiation for each ion/dose combination provided by Dr. 
Richard Britten’s research group by March 2020 and is inclusive of the experimental results previously published 
(Jewell et al., 2018 (Fe); Parihar et al., 2016 (Ti); Britten et al., 2020 (Si); Burket et al., 2021 (He)). “Sham” is used to 
indicate non-irradiated rats. 

Ion\Dose(cGy) 0 1 1.5 3 5 10 15 

Sham 62       

4He  19   20 15  

16O   6  18 11  

28Si  15  14 63 45 15 

48Ti    8 16 12 10 

56Fe  9  15 26 17 16 

 

 
Table 2: Performance of classifiers when predicting impairment of sham and 1, 5, or 10 cGy 56Fe irradiated rats in 
the post-irradiation ATRC scores of the SD and CD stages. The input features are the dose (0, 1, 5, or 10 cGy) and 
the prescreen ATRC scores. 

Impairment 
threshold 

ML algorithm % Accuracy AUC-ROC AUC-PR MCC F1 score 

SD ATRC ≥ 16 
GNB 66 0.68 0.33 0.21 0.35 

SVM 81 0.65 0.37 0.30 0.41 

ANN 71 0.69 0.37 0.25 0.38 

CD ATRC ≥ 36 
GNB 72 0.64 0.28 0.30 0.42 

SVM 74 0.58 0.30 0.07 0.22 

ANN 75 0.66 0.32 0.30 0.43 

 

 
Table 3: Performance of classifiers when predicting impairment of sham and 10 cGy of 56Fe irradiated rats in the 
post-irradiation ATRC scores of the SD and CD stages. The input features are the dose (0 or 10 cGy) and the 
prescreen ATRC scores. 

Impairment 
threshold 

ML algorithm % Accuracy AUC-ROC AUC-PR MCC F1 score 

SD ATRC ≥ 16 

GNB 84 0.71 0.37 0.45 0.54 

SVM 83 0.71 0.60 0.38 0.48 

ANN 86 0.70 0.32 0.48 0.56 

CD ATRC ≥ 36 

GNB 79 0.59 0.22 0.29 0.39 

SVM 50 0.62 0.23 0.03 0.21 

ANN 79 0.55 0.25 0.29 0.39 
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Supplementary Materials 

 

 

SUPPLEMENTARY FIGURES 

 

  

 

Supplementary Figure 1: Bar plots showing the mean and SEM of MCL scores for different ATSET stages 
post-irradiation with (A) 4He, (B) 28Si, or (C) 56Fe ions. The numbers above the bars are the sample size. 
Asterisks refer to groups that are significantly different from the sham group using the Mann-Whitney 
test. 
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Supplementary Figure 2: Box plots showing the median, quartiles, and outliers of MCL scores for different 
ATSET stages post-irradiation with (A) 4He, (B) 28Si, or (C) 56Fe ions. 
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Supplementary Figure 3: Bar plots showing the mean and SEM of FR scores for different ATSET stages 
post-irradiation with (A) 4He, (B) 28Si, or (C) 56Fe ions. The numbers above the bars are the sample size. 
Asterisks refer to groups that are significantly different from the sham group using the Mann-Whitney 
test. 
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Supplementary Figure 4: Box plots showing the median, quartiles, and outliers of FR scores for different 
ATSET stages post-irradiation with (A) 4He, (B) 28Si, or (C) 56Fe ions. 
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SUPPLEMENTARY TABLES 

 
Supplementary Table 1: Impairment thresholds in ATRC and MCL scores in all 7 stages of the ATSET. These 
threholds are determined by considering the 15% worst performing sham rats as impaired (85% 
Threshold), the worst 10% (80% Threshold), and the worst 5% (95% Threshold). 
 

ATSET Score and Stage 85% Threshold 90% Threshold 95% Threshold 

ATRC SD 12 13 16 

ATRC CD 13 20 36 

ATRC CDR 41 42 44 

ATRC IDS 11 13 17 

ATRC IDR 12 14 19 

ATRC EDS 12 14 22 

ATRC EDR 13 14 15 

MCL SD 47 51 53 

MCL CD 42 53 72 

MCL CDR 49 55 79 

MCL IDS 36 44 49 

MCL IDR 47 54 79 

MCL EDS 28 44 70 

MCL EDR 34 43 48 

 

Supplementary Table 2: Performance of classifiers when predicting impairment of sham and He, Si, or Fe 
irradiated rats in the post-irradiation ATRC scores of the SD and CD stages. The input features are the dose 
(0, 1, 5, or 10 cGy) and the prescreen ATRC scores. 

Ion Impairment 
threshold 

ML 
algorithm 

% Accuracy AUC-ROC AUC-PR MCC F1 score 

He 

SD ATRC ≥ 16 
GNB 44 0.29 0.07 -0.25 0.03 

SVM 77 0.56 0.14 -0.06 0.07 

ANN 63 0.39 0.08 -0.04 0.12 

CD ATRC ≥ 36 
GNB 70 0.61 0.20 0.17 0.29 

SVM 88 0.52 0.33 0.31 0.36 

ANN 76 0.53 0.26 0.24 0.33 

Si 

SD ATRC ≥ 16 

GNB 58 0.61 0.21 0.10 0.23 

SVM 77 0.55 0.17 0.12 0.24 

ANN 62 0.62 0.16 0.13 0.26 

CD ATRC ≥ 36 

GNB 62 0.43 0.08 -0.10 0.06 

SVM 86 0.35 0.07 -0.07 0.00 

ANN 68 0.37 0.07 0.01 0.13 

Fe 

SD ATRC ≥ 16 

GNB 66 0.68 0.33 0.21 0.35 

SVM 81 0.65 0.37 0.30 0.41 

ANN 71 0.69 0.37 0.25 0.38 

CD ATRC ≥ 36 

GNB 72 0.64 0.28 0.30 0.42 

SVM 74 0.58 0.30 0.07 0.22 

ANN 75 0.66 0.32 0.30 0.43 
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Supplementary Table 3: Performance of classifiers when predicting impairment of sham and 10 cGy of 
He, Si, or Fe irradiated rats in the post-irradiation ATRC scores of the SD and CD stages. The input features 
are the dose (0 or 10 cGy) and the prescreen ATRC scores. 

Ion Impairment 
threshold 

ML 
algorithm 

% Accuracy AUC-ROC AUC-PR MCC F1 score 

He 

SD ≥ 16 
GNB 58 0.38 0.07 -0.21 0.00 

SVM 82 0.54 0.14 0.14 0.22 

ANN 74 0.50 0.11 0.16 0.23 

CD ≥ 36 
GNB 79 0.59 0.22 0.29 0.39 

SVM 46 0.55 0.21 0.00 0.20 

ANN 82 0.52 0.21 0.33 0.42 

Si 

SD ≥ 16 
GNB 63 0.53 0.14 0.15 0.28 

SVM 70 0.60 0.21 0.16 0.29 

ANN 64 0.52 0.14 0.16 0.28 

CD ≥ 36 
GNB 61 0.42 0.09 0.04 0.17 

SVM 39 0.23 0.06 -0.33 0.00 

ANN 57 0.32 0.07 -0.10 0.09 

Fe 

SD ≥ 16 
GNB 84 0.71 0.37 0.45 0.54 

SVM 83 0.71 0.60 0.38 0.48 

ANN 86 0.70 0.32 0.48 0.56 

CD ≥ 36 
GNB 79 0.59 0.22 0.29 0.39 

SVM 50 0.62 0.23 0.03 0.21 

ANN 79 0.55 0.25 0.29 0.39 

 

 
 


