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Abstract 

The purpose of this report is to present details of the Discontinuous 
Galerkin (DG) Finite Element Method (DG FEM). First the weighted-
residual (WR) form is introduced and then the Galerkin Finite Element 
(FE) (GFE) and the Petrov-Galerkin FE (PG FE) methods are 
discussed. The details of the implementation of the DG FEM are 
presented along with two examples, 2nd order and 4th order differential 
equations, and the performance of the method is discussed. 

Introduction 
Over the past 7 decades the FEM has been widely applied to a variety of problems in Structural 
Mechanics and related fields [1-5]. The quality of the FE mesh dictates the quality of the FE 
solution. Because of this, the current trend is to make the mesh finer and finer, irrespective of 
whether such refinements are actually needed. Many software products are available to make the 
meshing easy, quick, and efficient. In some problems, mesh distortions will occur because of 
large deformations and the accuracy of the FE solutions deteriorates. In such situations 
remeshing – deleting and adding elements – is needed. 
Methods that do not use elements are becoming popular, such as Element Free Galerkin [6], 
Meshless Petrov-Galerkin [7-8], Smooth Particle Hydrodynamics method and finite volume 
methods [9], or a FE method that allows construction of enhanced flexibility afforded by 
discontinuous elements, the DG [10-16] method. There are many advantages of these DG 
methods [14]: 

 DG methods allow choice of approximating polynomials and hence can have high 
accuracy 

 DG methods are highly parallelizable 
 Because they are inherently like the FEM, DG methods are well-suited to handle complex 

configurations  
 DG methods can use adaptive strategies since mesh refinement or making the mesh 

coarser can be achieved without the attention to continuity across element interfaces. 

While DG methods have been used in fluid dynamics and finite volume applications, very little 
literature exists in solid mechanics. The purpose of this report is to explain the details of the DG 
method by applying the method to structural mechanics problems governed by second order and 
fourth order differential equations. The purpose is not to illustrate the advantages cited above but 
rather explain the details of the method. First the weighted residual method, the Galerkin, and the 
PG methods are explained. Next, the DG method is explained with reference to second and 
fourth order differential equations. Then the effectiveness of the DG method is demonstrated by 
application to several beam problems. 
Weighted Residual (WR) Methods 
The weighted residual (WR) methods aim to find an approximate solution to the governing 
differential equation by controlling the errors. As an approximate solution is sought, there is an 
error left in the differential equation for the assumed set of functions (called trial functions). This 
error is multiplied by a weighting function, called the test function, and integrated over the 
domain and subsequently this error is minimized. 
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Second Order Differential Equation: Consider a second order governing differential equation 
 

  (1) 

with the boundary conditions at x = 0, u = and at x = l, . In Eq. (1), a, b,  and 
are constants. 
An approximate solution for u is sought by minimizing the error using a weight function w as 
 

 . (2) 

In the traditional WR methods, a trial function is chosen for u in the form  
 

  (3) 

 

where n is the number of n-term approximation for the solution. The functions φi (x), called the 
trial functions, need to satisfy all the boundary conditions, both kinematic and natural. 
Several choices are available for the weight or test function, w in Eq. (2). In the Galerkin method 
the w’s are chosen to be the same as the φ’s. That is  

 
  (4) 

 
In the PG method the test functions come from different sources as  
 
  (5) 

 
where  are independent functions. The requirements on  are that they need to be 
linearly independent. 
Equations (3) and (4), when substituted into Eq. (2) will lead to a system of linear algebraic 
equations  
 

  (6) 
where 

  (7) 
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  (8) 

 
and  
 

  (9) 

 

In the traditional method, outlined above, there are two problems. The function φi (x) needs to 
satisfy all the boundary conditions of the problem and should be differentiable up to the order of 
derivatives in Eq. (1). Satisfying these two conditions is not always easy. 

Galerkin Method: In the GFE, Eq. (2) is used to develop the element equations. The element 
matrices are assembled just like the conventional FEM and the boundary conditions are applied. 
The boundary conditions are applied after the element matrices are assembled. As such, the 
choice of trial functions, φi (x), is much simplified – the φi (x) need to be continuous and 
differential up to the order required by the governing differential equation. 
The GFE method is illustrated with the following example. 
Example -1: Consider the differential equation 
 

  (11) 

 

with the boundary conditions at x = 0, u = and at x = l, . 
 
The WR form for an element e, xe to xe+h can be written as 
 

 . (12) 

 
If Eq. (12) is formulated as a GFE, then the functional choices for u need to twice differentiable. 
Hence the following approximation for u is made in terms of the two nodal values of the element 
as 
 

 . (13) 
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The choices φj, j=1,4 are the Hermitian polynomials like those of the beam functions (see ref. 
17, Eq. 4.10) as  
 

  
  (14) 
 

where . Note that for an element with 2 nodes, only a linear approximation is 
possible. However, Eq. (12) requires u to be differentiable twice. For this reason,  are 
chosen at each of the nodes. This gives 4 degrees of freedom and a cubic approximation for u is 
possible. This leads to the choice of the Hermitian polynomials as shape functions shown in Eq. 
(14).  
 
Noting that the second derivatives of u are needed in Eq. (12). These are obtained as  
 

 (15) 

 
In writing Eq. (15) the following chain rule is used.  
 

 (15a) 

 
Substituting Eqs. (13) in Eq. (12) gives 
 

  

  (16) 
 

Using the Galerkin method, j are chosen as the trial functions φ , Eq. (16) reduces to  
 

 

  (17) 
 
for j=1,2,3, and 4. 
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Eq. (17) leads to the element equations 
 

  
 
where  
 

 [k]=  

  

 , (18) 

and 

 . 
 

If a 2-element solution is considered, assembling the matrices for the entire domain 0≤x≤l i.e., 
0≤x≤2h, for a model with two equal size elements of length h, leads to (see Figure 1). 

 
 

 [k]= , 

 
 

  (19) 

 

  
 

The boundary conditions are u1=0 and  Substituting these into Eq. (19) gives 
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 .  

  (20) 
 
Solving the system of equations,  
 

 . (21) 

 
The exact solution of this problem in Eq. (11) is 
 

  
 
The exact solution is reproduced by the 2-element GFE method solution in Eq. (21) at the nodes 
1, 2, and 3. 
 
PG Method: As mentioned previously, in the PG method the weight functions come from 
different spaces i. e. j ≠ ߮j. Two choices for the j are considered for the problem in Eq. (11). 
The first choice of the j is  

 

 j, for j=1 to 4 are 1,  



and the second choice is a completely non-intuitive choice of 
 

 j, for j=1 to 4 are ,  (23) 
 
These weight functions are used in Eq. (16). For the first choice the element matrices are 
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 [k]=  (24) 

 

 {f*} = . (25) 

 
Consider once again a 2-element solution, each with an element length of h. The assembled 
matrices will be 
 

 [k]=  (26) 

 
and   

 {f}=  (27) 

 

Prescribing the boundary conditions and  gives  

 

  (28) 

Solving 
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 . (29) 

 
This solution exactly agrees with the solution obtained using the Galerkin method obtained in 
Eq. (21). 
 

The second choice of ,  as the weight functions, leads to the element matrices 
 

 [k]=  (30) 

 

 {f}= . (31) 

 

Assembling the element matrices and applying boundary conditions  and  leads 
to  
 

 . (32) 

 
Solving 
 

 .  (33) 
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This solution agrees exactly with the Galerkin and the PG solution obtained with the first choice 
of weight functions, showing independence of the choice of the weight functions in the PG 
method. 
Weak Form 
As mentioned previously, use of Eq. (2) requires the choice of test functions that are 
differentiable twice. As the order of the governing differential equation increases, it becomes 
more difficult to select trial functions that are sufficiently differentiable. This can be avoided by 
reworking the functional in Eq. (2). Eq. (2) can be transformed by integration by parts as 
 

 . (34) 

 
In Eq. (34) the order of the derivatives of u is lowered to the first order. As such, any trial 
function φi that is chosen needs to be differentiable once. Also note that the weight function only 
needs to be differentiable once. Since the weight function w is the analyst’s choice and there are 
no requirements except that they are linearly independent, the function w can be chosen to be 
differentiable as many times as possible. Also note that the natural boundary condition is now a 
part of the functional. Thus, trial functions φi need to satisfy only the essential boundary 
conditions. However, if a GFE or PG FE is constructed, the essential boundary condition can be 
handled after the global stiffness is assembled. 
 
The example in Eq. (11) and (12) is reworked using the weak form and the element equations for 
a general eth element are developed. Recall from Eq. 12 that the W-R form for an element e, xe to 
xe+h can be written as 
 

 . 
 
Integrating by parts, one obtains 
 
 

 . (35) 

 
Clearly, from Eq. (35) the trial functions for u and weight functions w need to be differentiable 
once. The trial functions for u are chosen as  
 
  (36) 
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where u1 and u2 are nodal values of element e. The choices for φ1 and φ2 can be conveniently 
chosen as  
 

  (37) 
 

where .  Note that the  in Eq. (37) are linear functions of . 

 
Galerkin Method: For the Galerkin method, the test functions w are chosen as the trial functions 
themselves i.e., . Substituting the trial and test functions in Eq. (35) gives 
 

  
and  (38) 

  

 
Rewriting Eq. (38) in the matrix form 
 

 . (39) 

 
Eq. (39) represent the element relationship of an eth element of length h. 
Now consider a 2-element model of equal elements of length h (see Figure 1).  
 



16 

 

 
Figure 1. Various idealizations. 

 
Assembing the element matrices gives 
 

 . (40) 

 

The boundary conditions are  and . Substituting these boundary conditions 
in Eq. (40) gives 
 
 

 . (41) 

 
 
Solving for u2 and u3 from Eq. (41), 
 

  (42) 
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Eq. (42) agrees with the exact values given by the Galerkin and PG methods. 
 
A 4-element model with equal size elements of size a is also considered (see Figure 1). The final 
equations after boundary conditions are 
 

  (43) 

 
where a = h/2. Solving Eq. (43) gives  
 

 . (44) 

 
Eq. (44) agrees with the exact values. 
 
 
PG Method: In the PG method the test functions are different from the trial functions of Eq. 
(36). Choosing and substituting trial and test functions in Eq. (35) gives 
 

  

and  (45) 

 . 

 
Rewriting Eq. (45) in the matrix form  
 
 

 . (46)  
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Now consider a 2-element model with equal element lengths, h (see Figure 1). Assembling the 
element matrices gives 
 

 . (47) 

 

The boundary conditions are  and . Substituting these boundary conditions 
in Eq. (47) gives 
 

  (48) 

 
Solving for u2 and u3 from Eq. (48), 
 

 . (49) 

 
These are the same values obtained in Eq. (42) with the Galerkin method. 
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SIDE BAR-1 
 

Quadratic Element: In this side bar, a quadratic element GFE and PG FE 
are demonstrated. Consider an element with 3 nodes, two end nodes (1 
and 3) and a mid-side node (2) as shown in Figure 1. The field variable u 
can be approximated by a 2nd degree polynomial. The trial functions for 
this element are 
 

 
 

where  
 

 
 

Galerkin method: Because Galerkin method is used, the test functions will 
be chosen as 
 

 
 

Substituting the  in weak form in Eq. (35) leads to 
 

 
 

Substituting the boundary conditions, , leads to 
  

 
 

Solving and recognizing that one obtains 

 

 
 

 
This result is identical to the exact solution. 
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Petrov-Galerkin method: The test functions for the PGFE are chosen as  
 

 
 

Substituting the  in weak form in Eq. (35) leads to 

 

 
 

Substituting the boundary conditions, , leads to  

 

 
 

Solving and recognizing that  one obtains 

 

 
 

This result is exactly same as the Galerkin and the exact solutions. 
 

 
Discontinuous Galerkin Finite Element Method 
In the conventional GFE method, continuity of primary variables and reciprocity of tractions 
across the element interfaces are maintained. In the DG method, as the name implies, the 
continuity of primary variables across the element boundaries is not explicitly enforced. As such 
the number of unknown primary variables is larger compared to the conventional Galerkin 
method. In the DG method the governing differential equation is written as two different 
differential equations of smaller order than the original governing equation. This is very similar 
to the procedures followed in the mixed methods [2, 9, 17]. Next the weak forms are developed 
for each of the differential equations. In the weak form, numerical fluxes for the variables in the 
differential equations are used. Various kinds of numerical fluxes are proposed in the literature 
and used to connect the variables across the inter-element boundaries [10-16]. 
Details of the method are illustrated in the section with two problems – a second-order 
differential equation and a fourth-order differential equation.  
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Second Order Differential Equation: Consider once again the differential equation 
 

  (50) 

 

with the boundary conditions u1= 0 and .  
 
2-Element Solution: To analyze this problem by the DG method a 2-element idealization is used 
in the following with equal size elements of length h. The first step in this method is rewrite Eq. 
(50) as two first order differential equations: 
 

  (51) 

 

where τ is a new variable. The next step is to develop weak forms for the two equations in Eq. 
(51). This is accomplished by first writing the WR statements and then by integrating by parts as 
 

  
and  

  (52) 

where v(x) and w(x) are the two weight functions.  
 
In the DG method, Eqs. (52) are used to develop matrix equations between the nodal 
displacements {u} and the secondary variables {as 
 

  
and  (53) 

  
where 

  

  (54) 
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In the DG method the variables are listed element by element; i. e. in Eq. (54) the 
subscript denotes the nodes and the superscript denote the element number. Using the first of Eq. 
(53),  can be written as 
 

  (55) 
 

and substituting in the 2nd equation in Eq. (53) gives 
 

  (56) 
 
Eq. (56) is used to solve for the nodal displacements {u}. The details of the development of the 
matrices  are presented below. 
 

Starting from Eq. (52), the weak forms are developed for each element in the domain  
by integration by parts. For each element e, , the weak form is 
 

  (57) 

 

  (58) 

 
and similar equations for each of the elements in the domain. 
 

In Eqs. (57) and (58),  are called numerical fluxes which are approximations for u and τ 
at the ends of element e. There are three possibilities, , at the ends of the element: . 
Here  is a location where essential boundary condition is prescribed,  is a location where 
natural boundary conditions are prescribed, and  is a location where neither essential nor 
natural boundary conditions are prescribed, i.e., these are internal points. At these  locations, 
the average and jump operators (denoted by {u} and , respectively), are defined in the 
DG method as 
 

  (59) 
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and similar definitions for τ. In Eq. (59) uh- and uh+ are the left and right side values of u at x=h 
and  are the direction cosines from the left and right sides. Note that 

. The jump operator turns out to be . As mentioned 
previously, different numerical fluxes have been proposed by various authors [11,12,14]. In this 
report, interior penalty (IP) numerical fluxes are used and are presented in Table 1 [14]. 
 

The next step is to assume trial functions for u and τ and test functions for v and w as 
 
  (60) 

 

where  are the nodal values of u and τ, respectively,  at the two ends of the 
element, and inside the element are interpolated using the shape functions 

 The shape functions are chosen to be linear as  
 

Also note that the same linear functions  are used for u and τ in Eq. (60). Since the 
Galerkin method is used, the test functions  are the same as the trial functions 

, and the test functions  are the same as the trial function . 
 

Element-1: Substituting the  in the weak form of Eq. (57) and recognizing that the ends of the 
element can be written as h and 0,  leads to 
 

   

 , (61) 

 

where  are values of u’s and τ’s, respectively, at the two ends of element 
1.  
Similarly, Eq. (58) can be written as 
 

  

  (62) 
 . 
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In Eqs. (61) and (62) there are terms like (u . v) and (w) at the two ends of the elements. In the 
DG method, continuity at the inter-element boundaries is NOT explicitly imposed like in the 
GFE method. 
 
Considering element 1, the values of the test functions vj can be written as 
 

  
 
and  (63) 
  

 . 
 

Similar values can be written for  With these values, Eqs. (61a) reduce to 

 

  

  (64) 
 . 

 

Using the IP numerical fluxes in Table 1,  is a location of prescribed natural boundary 
condition, gD, and  =0 as required by the essential boundary condition. That is 
 

  

 
Substituting these values in Eq. (64) gives 
 

   and     .      (65) 

 
Substituting the IP numerical fluxes in Eq. (62) leads to 
 

 , (66) 
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where 
 

 . (67) 

 
Substituting Eq. (67) in Eq, (66) leads to 
 

  and  (68) 

 

Table 1. IP Numerical Fluxes* 
  ே߁           ஽߁             

 
 

 

 
 
  

*  is the prescribed essential boundary condition,  is the prescribed natural boundary 
condition, and  is the penalty term1. 

 
Element-2: Following similar procedures as was done for element-1 leads to 
 

 (69) 

 
and 
  

 (70) 

 
1 The penalty term is used as  /he) in the literature. See references 11,12,14,15, and 16. Hence this definition is retained in this 
report. 
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Utilizing the IP numerical fluxes in Table 1 gives 
 

 , 

 

 , 

and 

 , 
 

as x=2h is a  location where (du/dx)=1 is prescribed. Substituting these values in Eqs. (69) 
and (70) gives 
 

  (71) 

 
and  
  

         (72) 

 
Equations (65) and (71) can be written in matrix form as 
 

 . (73) 

 



27 

Similarly, equations (68) and (72) can be written as  
 

 . (74) 

 
Equations (73) and (74) can be concisely written as 
 

  
 
and  (75) 
  

                                                           
 

Note that  is a symmetric matrix and has the same form as a ‘mass’ matrix [14]. Also note 
that this matrix is always invertible. Therefore, the {τ} can be eliminated from Eqs. (75) and the 
final DG final matrix can be written as 
 

  (76) 

 
The LHS matrix, in the parenthesis, is in general, not symmetric but is invertible. 
The nodal primary variables can be solved using Eq. (76). The current 2-element solution gives 
 

  (77) 

 

for . Results for  are presented in Table 2 along with the exact values. 
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4-Element Solution: Consider a 4-element model as shown in Figure 1 with element lengths 
equal to a, where a= 2h/4. With this model the DG method gives the following matrices, similar 
to Eq. (69) and (70).  
 

  

  (78) 
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and 

 (79)

 
Eliminating {from Eq. (78) and subsitutiing in Eq. (79) as was done for the 2-element solution 
gives, with = 10,  
 

 . (80) 

 

These values agree well with the exact solution. A solution obtained with  is presented 
in Table 2. 
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Table 2. Comparison of DG solution for Various Idealizations (l = 2h) 
Exact Solution is  

 
2-element solution with h=1 

 
x 
 

  Exact 

0 0.140 0.013 0 
h -2.010, -1.990 -2.000, -1.999 -2.0 

2h -2.0 -2.0 -2.0 
 

 
4-element solution with h=1 

 
0                                                             0.106 0.005    0    

h/2 -1.262, -1.238 -1.250, -1.250 -1.25 
h -2.001, -1.999 -2.0, -2.0 -2.0 

3h/2 -2.250, -2.250 -2.250, -2.250 -2.25 
2h -2.0 -2.0 -2.0 

 

 

 

Example-2: Consider the differential equation 
 

   (81) 

 
Both 2- and 4- element solutions are attempted. The left-hand side (LHS) of Eq. (79) will remain 
the same and the right-hand side (RHS) needs to be evaluated with . As such, integrals 
 

  

 
need to be evaluated. For the 2-element solution the RHS is  
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  (82) 

 
and for the 4-element solution the RHS is 
 

  (83) 

 
 
 
Table 3 presents these solutions along with the exact solution. Excellent agreement is observed 
between the two sets of solutions. 
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Table 3. Comparison of DG Solution for Various Idealizations (l = 2h) 

 

Exact Solution is  
 

2-element solution with h=1 

x   10                100     Exact 

0                                0.096                                            0.007                                           0  
 h                           -2.333, -2.334                              -2.333, -2.334                                -2.333  
2h                             -2.667                                               -2.667                                     -2.667 

 

4-element solution with h=1 

 0                                   0.064                                          0.035                                         0 
h/2                          -1.360, -1.348                                -1.354, -1.354                             -1.354  
h                             -2.332, -2.334                                -2.333, -2 .334                            -2.333  
3h/2                        -2.811, -2.814                                -2.812, -2.812                             -2.8125  
2h                                     -2.667                                      -2.667                                      -2.667 
___________________________________________________________________________ 

 

    

    

    

Fourth Order Differential Equation: The DG method is now applied to a 4th order differential 
equation. The governing differential equation for an Euler-Bernoulli beam problem is (see  
Figure 2) 
 

  (84) 

 
where w is the deflection w=w(x), q = q(x) is the distributed loading on the beam and EI is the 
flexural rigidity of the beam. The beam is subjected to essential boundary conditions on w and θ 
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(slope of the deflection curve) at either end of the beam and natural boundary conditions on the 
moment M and shear force V. The relationships between w, M, and V are (see Reddy [18] Page 
76). 
 

    (85) 

 
Following similar procedure as in the 2nd order equation, Eq. (84) is written as two 2nd order 
equations as 
 

  

and  (86) 

   

The WR form of Eq. (86) is set up using weight functions α(x) and β(x) as 

 

  

and  (87) 

   

 
where l is the beam length. For an n-element idealization, the WR statement of Eq. (84) for each 
element of length h will be 
 

  

and  (88) 

 . 

 
Equations (88) are integrated by parts twice to transfer the differentiations to the weight 
functions as 
 

  (89) 
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Similarly, 
 

  (90) 

 
Rewriting Eqs., (89) and (90) using numerical fluxes and changing xe to xe+h to 0 to h 
 

  (91) 

 

 . (92) 

 

In Eqs. (91) and (92),  are the numerical fluxes for , 
respectively, at the ends of the eth element. As in the 2nd order equation there are three 
possibilities for  at the two ends of the element e. These are  where  is the 
location where essential boundary conditions are prescribed,  is the location where 
natural boundary conditions are prescribed, and  is the location where neither 
boundary condition is prescribed; usually these are interior points in the beam. 
 
As previously mentioned, the IP numerical fluxes are used and are presented in Table 4. The next 
step is to choose trial and test functions for w and M, and α and β, respectively. As each beam 
element has two end nodes and w and θ are needed at each end of the element to describe its 
deformation, a total of 4 degrees of freedom -  at the two end nodes 1 and 2, 
respectively, are needed. The trial functions are 
 

  (93) 

 
and similar functions for the moment M 
 

 . (94) 
 
The φi‘s in Eq. (93) and (94) are the well-known Hermitian polynomials shown in Eq. (14). 
Because a Galerkin method is used, the test functions for α and β will be chosen as ߮j, j=1,4. 
Substituting the trial and test functions in Eq. (87) and (88) leads to 
 



35 

 
 

 
  (95)

 
for j=1,2,3, and 4, and  
 

  

  (96) 

 . 

 

The derivatives with respect to x are related to derivatives with respect to  as 
 

  

  (97) 
and 

  

 

Also note that . In Eqs. (95) and (96) the values of ( ),  (0)j jh  , 

( ),  and (0)j jd d
h

d d
 
 

 are needed.  These can be  written conveniently, as in Table 5.  
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Table 4. IP Numerical Fluxes for Euler-Bernoulli Beam Problems 
  ஽߁    

 

 

 

 

In this Table,  is the prescribed essential boundary condition;  is the prescribed 
natural boundary condition;   is the penalty term; 

  ; 

     =    = 
h h h h h h

n n            ; 

 and     =    = 
h h h h h h

w w n w n w w        . 

 

Table 5. Values of  

         
              at h, ( ) at 0, (  at h, ( ) at 0, (  

Φ1 0 1 0 0 
Φ2 0 0 0 -h 
Φ3 1 0 0 0 
Φ4 0 0 -h 0 

 

Substituting the trial and test functions into Eq. (95) leads to 
 

  (98) 

 

 
  (99) 
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where  
  

 

  
 

  

 
and 
 

 . (100) 

Substituting the trial and test functions into Eq. (96) leads to 
 

  

   
 
where 
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and    
 

         (101) 
 
As previously mentioned, in the DG FEM, the elements are NOT assembled as in the traditional 
FEM. Elements are processed individually. The connections between elements are enforced via 
the four terms involving the numerical fluxes in Eq. (91) and (92) for each value of j. The 
process is demonstrated in the two examples that are discussed next. 
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a) Cantilever beam with an end load. 

 
b) Cantilever beam with uniformly distributed load. 

 
c) Cantilever beam with an end moment. 

 
d) Simply supported beam with a central load. 

 
Figure 2. Cantilever and simply supported beam problems studied. 

 
EXAMPLES 
Example-1: The first example is a cantilever beam with an end load (see Figure 2(a)). The 
boundary conditions of the problem are: at . At the free end (x=l), 

. The beam is modeled with 2-elements, each of length h. Equations (99) and 
(101) need to be applied to each of the elements. Note that all the values in these equations are 
known except the first 4 terms. These will be evaluated using the numerical fluxes presented in 
Table 4. 
Element-1:  
 

j=1: This is a location of  and here  (see Table 5). This is a  location where  is 

prescribed to be zero. Therefore . 
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j=2: This is also a location of  and here . This is a  location where w is 
prescribed to be zero. Therefore . 
 

j=3: This is a location of and here  needs to be evaluated. From the numerical flux 
table 
 

  

 

(In writing the above equation,  is used.) 

 

j=4: This is also a location of and here . 

Therefore 

  

 
 
Element-2:  

j=1: This is a location of  and therefore . 

  

  

j=2: This is a location of and therefore   Hence 

 

j=3: This is a location of  and here  This is a location of , 
where natural boundary conditions are prescribed. Hence 

  

j=4: This is a location of  and here . This gives, 

  

Because this is a location of , . Thus, this term is . 
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Now consider the Eq. (101). Both the elements need to be processed with this equation. 
 
Element-1: 

For j=1 and 2, this is a  location. As such  

  

  
 

For j=3:  

  

 

For j=4:   

 

Element-2:  

For j=1:   

 

For j=2:   

 

For j=3: prescribed load 

For j=4: zero moment is prescribed 

 
Using the matrices  and the terms involving numerical fluxes 
for elements 1 and 2, the global equations can be written as 
 

  (102) 
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and 
 

 , (103) 

 
where 
 

  

  (104) 

 , 

 

  (105) 

 

  (106) 

  (107) 
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and 
 

 , (108) 
 
because q=0 and there is a concentrated load at the free end. Equations (102) and (103) can be 
concisely written as 
 

  
 
and  (109) 
  

 . 

 

Using the first of Eq. (109),  can be solved as 
 

 . (110) 
 

Substituting these values of in the second of Eq. (109) gives 
 

 . (111) 

 
Eq. (111) is used to solve for the displacements at all the nodes of the model. The secondary 
variables {M} can be determined from Eq. (110) using the displacements obtained in Eq. (111). 
 
At the element interfaces, the displacements (and moments, M, and shear forces, V) will be 
discontinuous. In the current model the will not be identical. The 
discrepancy between the values depends on the penalty parameter, , chosen by the user.  

 
The cantilever beam was also analyzed with an end moment and uniformly distributed load. (see 
Figure 2(b)). The {R} vector for an end moment will be  
 

  (112) 
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and for uniformly distributed load of intensity  will be  
 

  (113) 

 

The results for these three loads are presented in Table 6 for three penalty parameters,  = 10, 

100, and 1000. From the results in this table clearly a penalty parameter, =100 gives accurate 
results. The current DG 2-element solution agrees extremely well with the exact solution. 
 
 

 
Figure 3. Various idealizations for cantilever and simply supported beam problems. 

 

 

 

Table 6. Comparison of DG Solution for Cantilever Problem  2-Element Solution 
(see Figures 2 and 3) 

 

 
Concentrated End Load 

x                               Exact 
h  0.834, 0.832 0.834, 0.832 0.831, 0.835 0.833 
h  -1.495, -1.504 -1.5, -1.5 -1.5, -1.5 -1.5 

2h   2.667 2.667 2.667 2.667  
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2h  -2.0 -2.0 -2.0 -2.0   
 

Uniformly distributed load  
h  0.709, 0.708 0.709, 0.708 0.703, 0.712 0.708 
h  -1.162, -1.171 -1.167, -1.167 -1.166, -1.167 -1.167 

2h  2.0 2.0 2.0 2.0 
2h  -1.333 -1.333 -1.333 -1.333 

 
Concentrated End Moment,  

h  0.5, 0.5 0.5, 0.5 0.5, 0.5 0.5 
h  -1.0, -1.0 -1.0, -1.0 -1.0, -1.0 -1.0 

2h  2.0 2.0 2.0 2.0 
2h  -2.0 -2.0 -2.0 -2.0 

 

The exact solutions for these problems are: 

For concentrated load, P at the free end:  

For a uniformly distributed load q0:  

For concentrated moment, M0 at the free end:  = M0x2/2 

Example-2: 
 
The second example considered is a simply supported beam of length l with either a central 
concentrated load P or a uniformly distributed load q0 (see Figure 2(d)). Using the symmetries in 
the problem, only one-half of the beam is modeled using 2 elements, each of length h. The 
boundary conditions are  at x=0, and . After 
using numerical fluxes, the matrices  for this problem are 
 

  (114) 

 



46 

  (115) 

 
and 
  

 . (116) 

 
The {R} vector for the concentrated load will be  
  

  (117) 

 
and for the uniformly distributed load of intensity q0 will be given by Eq. (113). 
The results for displacements for these two loadings are presented in Table 7, again for three 
penalty parameters, = 10, 100, and 1000. Again, clearly =100 is sufficient to yield accurate 
results. However, the secondary variables evaluated using Eq. (111) and Eq. (110) are very 
inaccurate for these penalty parameters. Note that the secondary variables are NOT presented in 
Table 7. (The inaccuracy for the secondary variables is NOT surprising, as the moment and shear 
force are second and third derivatives of displacements. Displacements need to be very accurate 
to yield accurate values of moments and shear forces.) With this in mind, the problem is 
reworked with the penalty parameter set in the range . The moments and shear 
forces yielded accurate results, as shown in Table 8 and Figure 4. 
 

Note that the secondary variables can also be computed using the element shape functions j of 
Eq. (14) and Eqs. (85) and (93) as 
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  (118) 

 
These values of the secondary variables are identical to those presented in Table 8. 
 
 
 

Table 7. DG solution for a Simply Supported Beam  2-Element Solution in Half the Beam 
(see Figures 2 and 3) 

 

 
Concentrated Load, P 

x                                   Exact 
0  -1.0 -1.0 -1.0 -1.0 
h  0.920, 0.913 0.917, 0.916 0.916, 0.918 0.917 
h  -0.745, -

0.754 
-0.750, -0.750 -0.750, -0.750 -0.75 

2h  1.333 1.333 1.333 1.333  
 

 

Exact solution is  
___________________________________________________________________________ 

 
0  -2.667 -2.667 -2.667 -2.667 
h  2.373, 2.376 2.376, 2.374 2.371, 2.379 2.375 
h  -1.830,- 

1.828 
-1.833, -1.833 -1.833, -1.833 -1.833 

2h  3.333 3.333 3.333 3.333 
 
 
 

Exact solution is  
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Table 8. DG Solution for a Simply Supported Beam – Primary and Secondary Variables 
(2-element solution in half the beam (see Figures 2 and 3)) 

 

Element Primary Variables Secondary Variables 
 Conc. Load, P* UDL, q** Conc. Load, P* - UDL, q** 

1 

 
               

1.0E-6 3.5E-6  8.7E-5 -0.0830 

 -1.0 -2.6667  0.5007 1.5033 
 0.9167 2.3750  -0.5000 -1.5834 
 -0.75 -1.8333  0.5000 1.5017 

       
       

2 
 0.9167 2.3750  -0.5000 -1.5834 
 -0.75 -1.8333  0.5000 0.4988 
 1.3333 3.3333  -1.000 -2.0833 
 2.7E-11 -8.3E-8  0.4996 0.4992 

       
 
*Nondimensional values:  
**Nondimensional values:   
 
 
 

 
Side Bar-2 

In this side bar, forces and moments obtained by the conventional 
FEM using a 2-node beam element are obtained and compared to 
the results in Table 8. The beam element stiffness matrix from refs. 
2 and 17 (see page 151 Eq. 4.15 of ref. 17) is 

  (119) 

A two-element solution for this stainless steel (SS) beam yields 
exactly same displacements as shown in Table 8 for both the 
loading conditions. The nodal forces and moments at the nodes of 
the two elements can be computed for each element by multiplying 
the element displacements with the stiffness matrix. The forces and 
displacements are shown in Figure 5 and they satisfy the reciprocity 
of tractions at the element interface, x=h, The differences between 
the conventional finite element secondary variables and those of the 
DG method are due to the conventions of the shear forces and 
bending moments in the beam theory. The force and moments 
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shown in Figure 5 satisfy element and global equilibrium 
conditions. 

 
Figure 4. Computed values of nondimensional secondary variables for SS beam examples. 

 
Figure 5. Nondimensional values of forces and moments by conventional FE method. 
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Example-3: 
 
The third example considered is a SS Beam with two type of loading on the beam as shown in 
Figure 6. This problem can be easily analyzed by using the principle of superposition. The two 
loads P are symmetric, but the central moment produces antisymmetric deformations with 
respect to the center of the beam. As such the beam is analyzed with symmetric loads first and 
then again with antisymmetric boundary conditions, as shown in Figure 7. The final solution will 
be obtained by superposition of these two problems.  
 

 
Figure 6. SS Beam with Two Symmetric Point Loads and a Central Moment 

 

 
Figure 7. Superposition of two problems – Symmetric and Antisymmetric. 

 
Symmetric problem: This problem is very similar to the problem already worked for the central 
concentrated load. As such, for a two-element solution, with elements of size h, the matrices 

 given in Eqs. (114) and (116) are used. The load vector {R} in Eq. (117) needs 
to be modified. The load is positioned at the boundary of two elements and hence there are three 
possibilities: 
 

  
or 

  (120) 
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or 

  
  
The three loadings shown yield identical results for the nodal displacements and are shown in 
Table 9. Furthermore, any combination of loads that give rise to a total load of P at x=h gives the 
identical results shown in Table 9. 
 
Antisymmetric problem: This problem is very similar to the symmetric problem but with 
antisymmetric boundary conditions shown in Figure 7. The matrices  for this 
problem are as follows:  
 

  (121) 

 

  (122) 

 
and 
 

  (123) 
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The load vector {R} is  

  (124) 
 
The results of the two problems are presented in Table 9 along with the superposed solution. 
 

Table 9. DG Solution for Example-3: Simply Supported Beam with Complex Loading 
(2-element solution in half the beam (see Figures 6 and 7)) 

Element Symmetric Central 
 Load, P* Moment M0** 

1 

 1.0E-6 2.5E-7 

 -1.5 -0.1667 

 1.3333 0.1250 

 -1.0 -0.0417 

2 

 1.3333 0.1250 

 -1.0 -0.0417 

 1.8333 2.5E-7 

 1.0E-6 0.3333 

*Nondimensional values:  

**Nondimensional values:  

Superposed Solution along the length 

x= 0    

h         

2h       

3h       

4h  
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Example-4: 
 
The fourth example considered is a cantilever beam with two supports and a hinge, as shown in 
Figure 8. The beam is loaded by a uniformly distributed load, . The hinge is at x=h. The hinge 
cannot carry moments and hence there is a slope discontinuity at this location, but the deflections 
are continuous. Two models were developed. The first model had 3 elements while the second 
model has 5 elements with smaller size elements near the hinge, as shown in Figure 8.  
 

 
Figure 8. Cantilever beam with a hinge and two supports. 

 
The hinge and the supports at x=2h and 3h present new challenges that were not encountered in 
the earlier examples. As such, details of application of Eqs. (99) and (101) for the 3-element 
model are presented below.  
 
Element-1:  
 

j=1 and 2: This is a location of  and here  and  (see Table 5). This is a  

location where  and w are prescribed to be zero. Therefore  and 
. Thus  

 

j=3: This is a location of . This is a hinge location and so at this location the slope is 
independent. As such . 
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j=4: This is also a location of . Here, because of the hinge, w is continuous, i.e., . 
Thus, 

  

 
Element-2: 
 
j=1: This is a hinge location and so at this location the slope is independent. As such  
 

  

 
j=2: Here, because of the hinge, w is continuous. Thus  
 
 . 

 

j=3: This is a location of , the location of the middle support. Hence 
 

  
 

j=4: This is a location of , the location of the middle support. Hence 
 

 . 

Element-3: 
 

j=1: This is a location of , the location of the middle support. Hence 
 

  

 

j=2: This is a location of , the location of the middle support. Hence 
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j=3: This is a location of , the location of the middle support. Hence 
 

  

 

j=4: This is a location of , the location of the middle support. Hence 
 

  

 
Next, the second equation in Eqs. (101) need to be processed for all three elements. 
 
Element-1:  
 

For j=1 and 2, this is a  location. As such,  
 

  

  
 

For j=3:  

  
 

For j=4:  

 

Element-2:  
 

For j=1:   

 



56 

For j=2:  

 

For j=3:  

 

For j=4:  

 

Element-3:  
 

For j=1:  

 

For j=2:  

 

For j=3:  

 

For j=4:   
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The matrices  for the 3-element model are as follows:  
 

  (125) 

 

  (126) 

 

  (127) 
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The loads {R} are 

     (128) 

Table 10. DG Solution for Example-4: Cantilever Beam with a Hinge and Two Supports 
Subjected to Uniformly Distributed Load, q0 

x/h * * 
 3-Ele. Model 5-Ele. Model Exact 3-Ele. Model 5-Ele. Model Exact 

0.75 --- 0.1099 0.1099 --- -0.2227 -0.2227 
1.0- 0.1667 0.1667 0.1667 -0.2292 -0.2292 -0.2292 
1.0+ 0.1667 0.1667 0.1667 0.1875 0.1875 0.1875 
1.25 --- 0.1196 0.1198 --- 0.1888 0.1888 
2.0 0 0 0 0.0833 0.0833 0.0833 
3.0 0 0 0 -0.02083 -0.02083 -0.02083 

*  

 
The exact solution has been obtained and is as follows:  
 

For ,  

 

 (129) 

 

 
 
The results in Table 10 show that the both 3- and 5- elements DG solutions reproduced the exact 
solution accurately. 
 
Concluding Remarks 
The details of the Discontinuous Galerkin Finite Element Method (DG FEM) are presented. The 
weighted-residual form is introduced and the Galerkin FE (GFE) and the Petrov-Galerkin FE 
(PG FE) methods are discussed. The details of the implementation of the DG FEM are presented 
along with several examples to demonstrate the performance of the method. 
In the DG method, the continuity of the nodal variables across the element interfaces is not 
explicitly imposed like the GFE or PG FEM; the continuity is imposed through numerical fluxes. 
In this report the interior penalty (IP) numerical fluxes are used and implemented. 
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Two simple problems involving second order and fourth differential equations are presented. The 
GFE, PG FE, and DG FE methods are applied in these problems to demonstrate the differences 
among the methods. The numerical solutions are compared to the exact solutions to establish the 
validity of the method. In both problems, a reasonably large penalty parameter is sufficient to 
yield accurate results. 
Next the DG method is demonstrated with reference to a cantilever beam problem with three 
different loadings, a simply supported beam with three different loadings, and a complex 
cantilever problem. The DG method is also applied to a continuous beam problem with complex 
boundary conditions. The results of the DG method are compared to the exact solutions. The DG 
method yielded accurate results when a large enough penalty parameter was used.  
All the computations presented in this report were carried out using Microsoft Excel and the 
implementation details are presented in the Appendix. 
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Appendix A. 

All the matrix operations in this report are performed using Excel spread sheets. This appendix 
demonstrates how easy it is to perform matrix operations efficiently and accurately using Excel. 
All the computations involved for the second order differential equation in Eqs. 73-77 are 
presented. In addition, for a simply supported beam modeled with 2-elements in one half of the 
beam, the final LHS matrix in Eq. 105 (for a penalty parameter of 100) and its inverse is 
presented. Next, the two loadings (a central concentrated load and uniformly distributed load) are 
presented along with the final solution { for these loadings. 
 
Matrix Operations: Figure A-1 demonstrates the matrix operations - matrix inverse, matrix 
multiplication and addition.  
Matrix Inverse: The matrix to be inverted is input in the area occupied by B11 to E14. To capture 
the inverse the area occupied by G11 to J14 is first highlighted. The next step is to enter the 
command ‘=MINVERSE(B11:E14)’ and press CTRL and SHIFT together and press ENTER. 
The inverse will appear in G11 to J14. (On a Mac the command is slightly different - Check the 
operational manual.) 
Note that all the rules of matrix inverses apply to this computation as well. The matrix needs to 
be square and must have an inverse. If the matrix is singular, errors will appear in the target area. 
Matrix multiplication: Two matrices can be multiplied very easily. The matrix in G11 to J14 is 
multiplied with matrix in B20 to E23. Before this is performed, highlight the area G20 to J23. 
Then enter the command ‘=MMULT(G11:J14,B20:E23)’ and press CTRL and SHIFT together 
and press ENTER. The result will appear in G20 to J23. 
Note that all the rules of matrix multiplication will apply to this computation as well. The 
number of columns of the first matrix should be same as the number of rows of the second 
matrix.  
Matrix addition: Two matrices, A and B, need to be added. Here the command is very simple. 
Matrix A is in the area B27 to E30. The matrix B is the area G27 to J30. To add these matrices 
together, first highlight the area D34 to G37 and then enter the command ‘=B27:E30+G27:J30’ 
and press CTRL and SHIFT together and press ENTER. The result will appear in D34 to G37. 
Note that all the rule of the matrix addition will apply to this computation as well. The two 
matrices need to be compatible. 
2nd Order Differential Equation: 

A 2-element solution for the differential equation  with the boundary 

conditions u1= 0 and  is presented in Figure A-2. Equations (73) to (76) with 
the solution in Eq. (77) are presented in this figure. 
Simply-Supported Beam: 
A simply supported beam with a 2-element solution in half of the beam is presented in Figure A-
3. Only the final matrices are presented, as the model involves 8x8 matrices and they are too 
large to be presented here. 
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2
3
4
5
6
7
8
9
10
11 0.666667 0.333333 0 0 2 -1 0 0
12 0.333333 0.666667 0 0 -1 2 0 0
13 0 0 0.666667 0.333333 0 0 2 -1
14 0 0 0.333333 0.666667 0 0 -1 2
15
16
17
18
19
20 0.5 0.5 0 0 -1.50 -1.00 0.5 0
21 -0.5 0 0.5 0 1.5 0.5 -1.00 0
22 0 -0.5 0 0.5 0 1 -0.50 -0.50
23 0 0 -0.5 0.5 0 -0.50 1 -0.50
24
25
26
27 100 0 0 0 -1.5 -1.00 0.5 0
28 0 -100 100 0 1.5 0.5 -1.00 0
29 0 100 100 0 0 1 -0.50 -0.50
30 0 0 0 0 0 -0.50 1 -0.50
31
32
33
34 98.5 -1.00 0.5 0
35 1.5 -99.50 99 0
36 0 101 99.5 -0.50
37 0 -0.50 1 -0.50
38
39
40

Matrix-A Matrix-B

[A]+[B] = (B27:E30+G27:J30) CTRL+SHIFT+ENTER

Matrix Operations in EXCEL

Matrix Inverse of Matrix in B11:E14
MINVERSE(B11:E14) and CTRL+SHIFT+ENTER

Matrix Multiplication of Two Matrices
MMULT(G11:J14,B20:E23) and CTRL+SHIFT+ENTER

Addition of two matrices

F G H I J KA B C D E

 
Figure A-1. Matrix Operations.
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pen 100 Penatly term (h_e); h is length of the element
h 1

0.333333 0.166667 0.000000 0.000000 4.00 -2.00 0.00 0.00
0.166667 0.333333 0.000000 0.000000 -2.00 4.00 0.00 0.00
0.000000 0.000000 0.333333 0.166667 0.00 0.00 4.00 -2.00
0.000000 0.000000 0.166667 0.333333 0.00 0.00 -2.00 4.00

0.50 0.50 0.00 0.00 3.00 2.00 -1.00 0.00
-0.50 0.00 0.50 0.00 -3.00 -1.00 2.00 0.00
0.00 -0.50 0.00 0.50 0.00 -2.00 1.00 1.00
0.00 0.00 -0.50 0.50 0.00 1.00 -2.00 1.00

-0.50 0.50 0.00 0.00 -3.00 -1.50 1.50 0.00
-0.50 0.00 0.50 0.00 -1.50 -2.00 1.00 0.50
0.00 -0.50 0.00 0.50 1.50 1.00 -2.00 0.50
0.00 0.00 -0.50 -0.50 0.00 0.50 0.50 -1.00

100.0000 0.0000 0.0000 0.0000 97.000000 -1.500000 1.500000 0.000000
0.0000 -100.0000 100.0000 0.0000 -1.500000 -102.0000 101.000000 0.500000
0.0000 100.0000 -100.0000 0.0000 1.500000 101.000000 -102.0000 0.500000
0.0000 0.0000 0.0000 0.0000 0.000000 0.500000 0.500000 -1.000000

Matrix R (RHS of Eq. 74) Matrix {u } Eq. (77)
0.010307 -0.000076 0.000076 0.000000 1.000000 0.010307

-0.000076 -1.002462 -0.997538 -1.000000 1.000000 -2.000076
0.000076 -0.997538 -1.002462 -1.000000 1.000000 -1.999924
0.000000 -1.000000 -1.000000 -2.000000 0.000000 -2.000000

d2u/dx2=2 with u=0 at x=0 and du/dx=1 at x=l; 2- element idealization

Matrix B-2 (Eq. 74) LHS of Eq. (76)

Inverse of LHS of Eq. (76)

Matrix  M (see Eq. 73) Inverse of Matrix M

Matrix B_1 (Eq. 73) Inverse of M times B_1 

Matrix K  (Eq. 74) Matrix K times Inverse of M times B_1

 
Figure A-2. 2nd order differential equation. 
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Simply Supported Beam Solutions 

-14 -10 18 -3 -36 -5 0 0
-4.3E-14 4 3 1 3 1 0 0

-27 5 -97 9 103 -3 3 -1
414 5 -591 -95 597 105 6 -27

27 1 109 -9 -91 3 -15 1
-414 -3 591 99 -597 -101 5.45E-14 27

0 0 -6 3 -6 3 12 7.11E-15
0 0 -423 31 405 -23 18 -214

LHS of Eq. 105

 

-0.094475699 -0.08003473 -0.10801 0.006463 -0.09205 0.008283 -0.09175 0.000304
4.62244E-15 2 -1.5 1 -1.5 1 -2 -5E-17
0.001277171 -1.49521175 1.331197 -0.99832 1.334862 -0.99813 1.834877 4.18E-05
-0.19581351 0.810474095 -1.19837 0.999917 -1.18563 1.00737 -1.68391 0.001

-0.001277171 -1.50478825 1.335469 -1.00168 1.331804 -1.00187 1.83179 -4.2E-05
0.19581351 1.189525905 -0.80163 1.000083 -0.81437 0.99263 -1.31609 -0.001

-7.27972E-15 -2 1.833333 -1.5 1.833333 -1.5 2.666667 7.8E-17
-0.054352463 -0.0710237 -0.03712 -0.01119 -0.04809 -0.01007 -0.03836 -0.00458

Inverse of LHS of Eq. 105

 

RHS for Conc. load RHS for UDL
0 w_1^(1) -0.00459 0.5 w_1^(1) -0.18660
0 _1^(1) -1 -0.08333 _1^(1) -2.66667
0 w_2^(1) 0.91744 0.5 w_2^(1) 2.375695
0 _2^(1) -0.84195 0.083333 _2^(1) -2.199940
0 w_1^(2) 0.9159 0.5 w_1^(2) 2.374305
0 _1^(2) -0.65805 -0.08333 _1^(2) -1.466720

0.5 w_2^(2) 1.333333 0.5 w_2^(2) 3.333333
0 _2^(2) -0.01918 0.083333 _2^(2) -0.083520

 
Figure A-3. Simply supported beam with 2-elements in half of the beam. 


