
Supplementary material

Appendix A: The radiative transfer model of ED2
In this appendix, we describe how the parameters of Table 1 (main text) translate in
Equations 45-47 from Longo et al. (2019a), who describe in detail the radiation model of
ED2.2. Each cohort k is assumed to be one single layer of vegetation of effective plant area
index with constant and homogeneous optical properties. The effective plant area indexФ

𝑘
of cohort k is defined as the sum of the wood area and the effective leaf areas:

Ф
𝑘

= Ω · 𝐿𝐴𝐼
𝑘

+ 𝑊𝐴𝐼
𝑘

where and are the leaf and wood area index of cohort k and is the PFT-specific𝐿𝐴𝐼
𝑘

𝑊𝐴𝐼
𝑘

Ω

clumping factor.

At any time, the top boundary condition of the radiative transfer model is provided by the

current forcing data. The visible and solar infrared downward irradiance is composed of a

direct (beam) and diffuse (isotropic) components. When intercepted by the cohorts, direct

irradiance can be either backscattered or forward-scattered as diffuse radiation. Following

Sellers (1985), the extinction of downward direct irradiance (Eq. A1) and the two-stream

model for hemispheric diffuse irradiance (Eqs. A2-A3) for each wavelength is given by :

Eq. A1

Eq. A2

Eq. A3

As compared to equations 45-47 from Longo et al. (2019), the emission terms have vanished

as we only focus on the short wavelengths and emissions are negligible in these spectral

domains. In addition, we replaced the wide bands m in the original publication by specific

wavelengths λ. In Equations A1-A3, and are the scattering and backscattering

coefficients, ☉ is the symbol for direct radiation, ⇓ and⇑ the symbols for downward and

upward diffuse radiations respectively, is irradiance, refers to the inverse of the optical
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depth, and is the effective cumulative plant area index, assumed zero at the very top, and

increasing downwards. and are the inverse of the optical depth per unit of effective

plant area index for direct and diffuse radiation, respectively and is the absorptivity.

For a radiation beam coming from a given angle of incidence Z, the inverse of the optical

depth per unit of plant area is given according to Sellers (1985), and Oleson et al. (2013) by:

where E(Z) is the average projection of all leaves and branches onto the horizontal plan,

further given after Goudriaan (1977) by:

with and computed as:

where is the leaf orientation parameter. For the diffuse radiation, we need to calculate theω
contribution of all angles and therefore the inverse of optical depth is calculated as:

The scattering parameters for each wavelength and cohort k are calculated just like in the

Community Land Model (Oleson et al. 2013; Lawrence et al. 2019), which is derived from

Goudriaan (1977) and Sellers (1985)

where ρλk and τλk are the reflectivity and transmissivity values at the wavelength λ that in

our study are computed from PROSPECT-5 simulations. The direct scattering and

backscattering coefficients are the same as Sellers (1985) and Oleson et al. (2013):
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Appendix B: Parameter data assimilation
The data assimilation approach we used in this study is adapted from Shiklomanov et al.

(2016; 2020). We took a similar Bayesian approach to discriminate liana and tree leaf spectra

using the leaf radiative model PROSPECT-5 and low and high liana coverage canopy spectra

using ED-RTM.

At the leaf level, we calibrated the set of parameters given a set

of observed reflectance values X according to the following mathematical scheme:

Eq. B1

where is the joint probability posterior distribution of the parameter set,𝑃 θ,  σ | 𝑋( )
is the modeled reflectance for a specific set of parameters and𝑃𝑅𝑂𝑆𝑃𝐸𝐶𝑇5 θ( ) θ 𝑃 𝑋 | θ,  σ( )

is the likelihood. The residual error was assumed to be normally distributed with a mean of 0

and standard deviation . , and are parameters and standard deviation priorσ 𝑃 θ( ) 𝑃 σ( )
distributions, respectively.

At the stand level, we used a similar calibration scheme, simply updating the model used

(ED-RTM) and the set of calibrated parameters:

Eq. B2

where is the soil water saturation used to estimate the soil reflectance spectrum andθ
𝑠𝑜𝑖𝑙

the remaining parameters are PFT-dependent (they vary for each of the nPFT considered

PFTs). In ED-RTM, PROSPECT-5 is first run for each PFT to generate the leaf spectra which are

then plugged into the canopy radiative transfer model.

The model goodness of fit after Bayesian calibration was estimated by computing several

error statistical metrics, namely the root mean square error (RMSE), the bias (Bias), and the

bias-corrected RMSE (SEPC), over three different regions of the spectrum: the visible

(400-700 nm), the near infrared (700-1400 nm) and the shortwave infrared (1500-2500)

following Shiklomanov et al. (2016):

Eq. B3
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where n refers to the number of available studies, mi to the number of observations for the

study i in the considered region of the spectrum, and N to the resulting total number of

observations for each region of the spectrum. In Equation B3, x and are the simulated and𝑥
observed reflectance values, respectively. We repeated the calculation of the statistical

metrics described above considering the different PFTs (at the leaf-level) or the different

levels of infestation (at the canopy level) as x and for both the simulated and the observed𝑥
spectra to estimate whether the posterior distributions reproduced the actual differences

and biases between scenarios.
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Appendix C: Model uncertainty analyses
PEcAn uncertainty analysis combines the variance of posterior distributions resulting from

the model calibration with a model univariate sensitivity analysis. Doing so, the relative

contribution of each parameter to the total predictive uncertainty can be estimated

(LeBauer et al. 2013). More precisely, the model output (e.g., simulated leaf and canopy

reflectances in the different bands or ecosystem productivity) response to one-at-the time

change of each parameter (median, median ± 1, 2, 3 standard deviations) is fitted using a

Hermite cubic spline function, which allows translating model input variability into output

variances. The relative parameter contribution to the overall variance is then simply the

fraction of the total output variance explained by each parameter. For the uncertainty

analysis of the leaf (PROSPECT-5) and canopy (ED-RTM) reflectances, the shortwave

spectrum was divided into three regions, hereafter referred to as visible (400-700 nm), near

infrared (700-1400 nm) and short-wave infrared (1500-2500 nm). For the uncertainty

analysis of the vegetation model (ED2), we considered the calibrated model parameters (ω,

Ω, b1Bl, b2Bl, τvis, ρvis, τIR, and ρIR) and extended the investigated output variables to the

forest carbon (e.g., GPP) and energy (e.g. understorey visible light) cycles.

Figure C1: Uncertainty analysis of the PROSPECT-5 (A), and ED-RTM (B) models. The bars represent the mean

contributions to the overall reflectance variance generated by the different studies used to ingest leaf,

canopy spectral data or both. The error bars represent the extremum contributions among studies. The

uncertainty analysis was achieved on liana and tree leaves (A), or over liana-free and liana-infested patches

(B). The uncertainty analyses are based on the posterior distributions (after calibration) and are shown for

several output variables: visible (400-700 nm, top row), near-infrared (700-1400 nm, middle row) and

short-wave infrared (1500-2500 nm, bottom row) reflectance.

5

https://www.zotero.org/google-docs/?8s9Txd


Figure C2: Uncertainty analysis of the ED2.2 model. The uncertainty analysis was achieved over the five years

of the vegetation model simulations based on the aggregated posterior distributions (after calibration).

Results are shown for the ecosystem GPP (top), and the light available in the understorey (bottom).

With regards to leaf reflectance, liana and tree leaves were both sensitive to the number of

mesophyll layers (mean partial variances of 36% for lianas and trees in the visible;

respectively 32% and 31% in the near-infrared, and 7% and 6% in the shortwave infrared),

see Figure C1. In addition, in each region of the spectrum and for both PFTs, Nlayers was

complemented by mainly two uncertain parameters: Cab and Car in the visible (49% and

14%, respectively when averaging out lianas and trees), Cw and Cm in the near-infrared (43%

and 25%) and in the shortwave infrared (83% and 11%).

At the canopy level, while liana parameters contribute little to variance decomposition in

patches with low levels of liana coverage, they became much more critical parameters in

liana-rich patches, summing up on average 45%, 61% and 77% of the variance in the PAR,

NIR and SWIR respectively (Figure C1). Similarly to the leaf-level, PROSPECT-5 parameters

played an important role in the uncertainty according to the region of interest (Cab in the

visible, Cw and Cm in the infrared), with a generally stronger impact of the leaf dry mass Cm as

it also determined plant LAI. In addition, canopy clumping (22% across all outputs and

studies) and leaf orientation (13%) substantially contributed to the overall output

uncertainty, with peaks of importance in the PAR and SWIR for Ω (31% and 26%,

respectively, across scenarios) and in the NIR for ω (31%). These results indicated that

ED-RTM calibrations were sensitive to those canopy structural traits.
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In ED2, the clumping factor, especially the one of the liana PFT, drove the overall model

uncertainty of the forest carbon and energy cycles, respectively illustrated by the ecosystem

GPP and understorey light in Figure C2. This was explained by the fact that clumping factor

posterior distribution was wide (coefficient of variation of 20%) and the model was very

sensitive to its change (model elasticity of 26%). Other sensitive parameters were either

more constrained (b1Bl and b2Bl), less critical for investigated model outputs (ω, ρvis, τvis) or

both (ρIR, τIR).
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Appendix D: Meta-analysis data

Figure D1: Mean leaf reflectance spectra of lianas (blue) and trees (green) as observed in the different

studies/sites collected through the meta-analysis.
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Figure D2: Mean canopy reflectance spectra of liana-infested (blue) and liana-free (green) forest stands as

observed in the different studies collected in the meta-analysis.

Table D1: Review of the studies examining liana and tree spectral differences and how they relate with leaf

and canopy structure and physiology. L = Liana leaf reflectance, T = Tree leaf reflectance. Results are shown

when all examined studies agree on the sign of the difference. When results from several studies diverged,

we marked it as inconclusive. The physiological explanation for the differences come directly from Marvin et

al. (2016).

Spectral region

(wavelengths)

Mechanisms controlling
reflectance

Relevance to Liana-Tree discrimination

Leaf-level Canopy level Physiology

Visible

(400-700 nm)

Chlorophyll and
carotenoid

concentrations
L ≥ T L > T

Lower pigment levels in liana
leaves

Red Edge

(680-700 nm)

Chlorophyll content,
water stress, biomass

L ≥ T L >T
Lower chlorophyll content in

liana leaves

Near Infrared

(700-1400 nm)

Leaf internal structure,
nitrogen concentration

T > L Inconclusive Physiological differences are
inconclusive

Shortwave infrared

(1500-2500 nm)

Leaf water content,
cellulose Inconclusive L > T

Leaf water content higher in
liana leaves
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Appendix E: Goodness of fit

Figure E1: Liana (blue) and tree (green) goodness of fit for the leaf spectra. In subplots A and B, the point

density corresponds to the numbers of observations/simulations (one point per nanometer and species

when the raw data were available, one point per nanometer and study/site otherwise). Data points from

those subplots were further aggregated in the histograms of subplot C.
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Figure E2: Leaf and canopy reflectance spectra as observed and simulated by PROSPECT-5 (top) or ED-RTM

(bottom), respectively. On the top row, an example of parameter calibration is shown (Castro (PNM), subplot

A) alongside with observed vs simulated reflectances for all studies together (B). Similarly, on the bottom

row, model performance after calibration is illustrated (Sanchez, C) next to the goodness of fit for all studies

together (D). In the examples, the points are the measurements while the envelopes encompass the 95%

confidence intervals and the solid line the median of the posterior distributions. In B and D, horizontal and

vertical error bars represent the observed confidence intervals of data (when communicated) and the

prediction intervals, respectively. In these scatterplots, observed and simulated reflectance values were

averaged (using a 50 nm window) to make the panel readable.
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Figure E3: Observed vs modelled leaf (A) and canopy (B) reflectances. In both subplots, values were grouped

by wavelength (between 450 and 2500 nm with a 50 nm increment) and the goodness of fit was evaluated

with a linear model for each wavelength (grey lines). The range of coefficients of determination for all

wavelengths are indicated in the bottom right corner of each subplot.

Table E1: Leaf and canopy reflectance spectral error statistics aggregated across the visible (400-700 nm), the

near infrared (700-1400 nm) and the shortwave infrared (1500-2500 nm). All metrics, namely the root mean

square error (RMSE), the bias (Bias), and the bias-corrected RMSE (SEPC), are unitless (dimension of

reflectance). Their mathematical definition is provided in Equation B3.

Visible Near infrared (NIR) Short wave infrared (SWIR)

RMSE BIAS SEPC RMSE BIAS SEPC RMSE BIAS SEPC

Leaf

Model vs data

Liana 0.0064 0.0021 0.006 0.0083 0.00067 0.0082 0.011 -0.00021 0.011

Tree 0.007 0.0026 0.0065 0.006 0.001 0.0059 0.01 -0.00054 0.01

Data vs data Liana - Tree 0.012 -0.0074 0.0098 0.02 0.019 0.0083 0.0075 0.0001 0.0075

Model vs model Liana - Tree 0.012 -0.0071 0.0092 0.02 0.018 0.0079 0.0085 -4.4E-05 0.0085

Canopy

Model vs data

Liana 0.016 -0.0079 0.014 0.025 -0.0024 0.025 0.012 -0.0012 0.012

Tree 0.015 -0.0075 0.013 0.026 -0.00046 0.026 0.012 0.0039 0.011

Data vs data Liana - Tree 0.013 -0.011 0.0074 0.045 -0.032 0.032 0.024 -0.018 0.016

Model vs model Liana - Tree 0.012 -0.0074 0.01 0.041 -0.035 0.022 0.025 -0.021 0.014
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Appendix F: Supplementary results

Figure F1: Posterior distributions of the model parameters after assimilation of the leaf (subplot A) and

canopy (subplot B) spectral data for the liana (blue) and the tropical tree (green) PFTs.

13



Figure F2: Liana (blue) and tree (green) leaf spectra, as resulting from the leaf and canopy spectral data

calibrations. In subplot A, liana and tree mean reflectance (ρL and ρT, respectively) and transmittance (τL and

τT, respectively) are plotted alongside with their differences (ρL - ρT and τL - τT) aggregated into broad bands

(visible and infrared). The light and dark grey envelopes respectively represent the 95% predictive and

confidence intervals of the differences (liana - tree) resulting from 500 liana and tree PROSPECT-5

simulations sampled from the posterior distributions.
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Figure F3: Mean changes of the energy (A) and Carbon (B) cycle fluxes resulting from the introduction of the

liana radiative model parameters together with their confidence intervals. Fluxes are coloured in red

(respectively green) when the mean relative changes of the corresponding fluxes are lower than -5%

(respectively higher than +5%).
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Figure F4: Simulated (green = “Reference” runs, blue = “Liana” runs) and observed (black) shortwave

reflected reflectance (A), latent heat (B), and Gross Primary Production (C). The solid lines represent the

mean while the shaded envelopes encompass the interannual variability (mean ± one standard deviation).

Including liana optical traits improved the simulated albedo (A), and slightly improved the simulated

evapotranspiration (B) and GPP (C) as well.
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Figure F5: Example of patch vertical structure on BCI, illustrated as the cumulative LAI (starting from the top

canopy) as a function of height. The radius of the data points are proportional to the cohort LAI. Liana

vertical clumping is visible at the top of the canopy.
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