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ABSTRACT
Traditional risk-based design processes seek to mitigate op-

erational hazards by manually identifying possible faults and
corresponding mitigation strategies—a tedious process which
critically relies on the designer’s limited knowledge. Resilience-
based design, on the other hand, seeks to embody generic hazard-
mitigating properties in the system to mitigate unknown hazards,
often by modelling the system’s response to potential randomly-
generated hazardous events. This work creates a framework to
adapt these scenario generation approaches to the traditional
risk-based design process to synthetically generate fault modes,
by representing them as a unique combination of internal com-
ponent health-states which can then be injected and simulated in
a model of the system failure dynamics. The design process may
then reduce the risk of unknown internal hazards by iteratively
mitigating the effects of these modes. The performance of this
approach is evaluated in a model of an autonomous rover, where
cluster analysis shows that elaborating the faulty state-space in
the drive system using this approach uncovers a wider range of
possible hazardous trajectories and failure consequences within
each trajectory. However, this increase in hazard information
gained from exhaustive mode sampling comes at a high compu-
tational expense, highlighting the need for advanced, efficient
methods to search and sample the faulty state-space.
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1. INTRODUCTION
One key motivator for the incorporation of resilience in com-

plex engineered systems is that one cannot always foresee the
hazards which the system may encounter in operations [1–3].
Since individual hazard scenarios that are likely to unfold are not
fully known, it is desirable for the system to have generic hazard-
mitigating properties and behaviors, to achieve what is referred to
as “graceful extensibility” [4]–the ability of the system to adapt
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to surprise events. That is, rather than solely designing the sys-
tem to specifically mitigate a certain set of identified hazards (as
is traditionally done in the FMEA process [5, Chp. 10]), one
additionally wishes to design the system to be able to mitigate
hazards which are unknown and have not yet been identified.
While many approaches for resilience incorporation have

been presented, most (e.g., [6–8]) do not consider unknown haz-
ards directly, instead focusing on improving the system’s dynamic
response to known hazards. We place methods that do account
for unknown hazards in three categories:

* Discursive design approaches involve enabling the identi-
fication of potential fault modes by providing information
(e.g., historical data [9–11] or failure archetypes [12]) to
help the designer better expand their understanding of po-
tential failure causes and behaviors. While these approaches
enable the designer to identify more events that would have
otherwise been unknown, they are limited by the historical
data that exists.

* Structural design approaches involve changing the struc-
tural, behavioral, and parametric properties of the system to
achieve a desired level of inherent resilience. This includes
network structure-based design–where the network structure
of the system is modified to prevent failures from propagat-
ing and provide redundant functionality in the case of a
failure [13–15]–and capacity-based design–where a buffer
is placed on the system’s known failure limits to account for
failure causes outside the designer’s knowledge [16]. While
these approaches enable the designer to incorporate the
generic property of resilience into the system, they are lim-
ited in their ability to determine how the generic resilience
should be leveraged to respond to unknown hazardous sce-
narios (i.e., the contingency management actions).

* Finally, scenario-based design approaches involve procedu-
rally generating scenarios for the system to respond to, which
can come from the representation of the system itself (e.g.,
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failures in individual or joint components) [17, 18] or some
combination of randomly or selectively-generated parame-
ters (internal or external) [19–21]. While these methods
enable designers to uncover further scenarios they may not
otherwise, they are limited in terms of the sampled distribu-
tions and the modelled failure dynamics (which may differ
in the real system).

Of these, the scenario-based approaches align best with the
framework of using dynamic simulations to determine the sys-
tem’s post-fault recovery performance (e.g., in the resilience tri-
angle [6]). One open research question for the scenario-based
methods is how to best generate the set of scenarios to analyze
the system over. While prior work in this area has demonstrated
the incorporation of resilience with respect to events that origi-
nate outside the system (e.g., changing planetary conditions [19],
adversarial attacks [20–22]), when designing the contingency
management of a system, there has been little to translate this
perspective into the traditional engineering process, where the
hazards of interest arise from internal failure mechanisms which
lead to system failure. Conversely, while traditional risk-based
design approaches (e.g., FMEA, FFDM) enable one to consider
the system’s ability to handle identified fault modes, they are lim-
ited in their ability to discover new modes. As a result, these
methods are most effective during the redesign of an existing
system with operational hazard data [23, 24]. When designing
a new system, however, there is much less data that can be used
to inform design. Hence, to aide resilient design, there is an op-
portunity to use scenario-based approaches to help the designer
discover new modes which they might not otherwise identify.
The main contribution of this work is the development of a

syntheticmode generation approachwhich leverages fault simula-
tion to enable the designer to not just consider the consequences
of discrete identified fault modes, but a faulty state-space re-
sulting from the underlying failure mechanisms of the system.
Because this assessment happens in simulation, a large number
of potential fault modes can be evaluated rapidly, making it pos-
sible to exhaustively evaluate system resilience over the space of
hazard-producing parameters. We further demonstrate how to
evaluate the performance of these approaches in a model of an
autonomous rover whose task is to follow line markings by using
cluster analysis to compare the space of consequences revealed
by this approach and manual identification. The next sections
present background about risk-based design and resilience simu-
lation (Section 2), the mode generation approach (Section 3), the
evaluation of different mode generation approaches in the rover
model (Section 4), and the discussion of and conclusions from
this evaluation (Sections 5 and 6).

2. BACKGROUND

To contextualize how this approach fits within the risk-based
design process and previous approaches for resilience simulation,
this section covers how fault risk is considered in engineering
design and how existing fault simulation approaches have been
leveraged in this process.

2.1 Risk-based Design
Removing risk is an inherent part of the engineering pro-

cess. Traditional mechanical engineering analysis is often ori-
ented around preventing defined modes of failure like stress and
fatigue [25]. General consideration of risk is traditionally taken
into account in the early engineering process using a Failure
Modes and Effects Analysis (FMEA) where the failure modes
are identified, effects are determined, and the overall risk evalu-
ated by estimating the likelihood and severity [5, Chp. 10]. The
FMEA is a tabular analysis across the entire system, and can be
developed for the functions, components, and manufacturing pro-
cesses for the system as the design process advances through the
conceptual, embodiment, and construction design stages [5, Chp.
10]. While the FMEA is a helpful risk identification tool, it can
be time-consuming, difficult to iterate on, and prone to designer
biases–especially the designer’s lack of knowledge in the fault
mode brainstorming process [26].
Simulation-based design approaches can help resolve these

limitations by automating the evaluation of failure consequences
with a model that determines how a fault causes hazardous states
given the component/functional dependencies and/or system be-
havior. With a fault simulation, one can thus automatically gen-
erate the FMEA iteratively over time as the system changes with-
out having to go through a detailed expert-driven analysis each
time [27]. Fault simulation approaches also enable one to evalu-
ate a larger set of fault scenarios (such as joint fault modes [28]
or faults injected over a range of model parameters e.g. injection
times [29]) to reveal more information about how and in what cir-
cumstances hazardous scenarios unfold. In this paper, we further
build on these simulation-based hazard identification approaches
to generate new modes and further reveal the faulty state-space
inherent to a given system’s behavior and parameters.

2.2 Fault Simulation for Resilience
Simulation is used in the resilience-based design process to

evaluate the system response to hazardous scenarios. A num-
ber of prior formalisms have been developed for fault simu-
lation [30], including network topology models [31], failure
logic/graph-based error propagation [32], dynamic behavioral
simulation [33, 34], and stochastic simulation [35]. In early
design, it is often necessary to consider the high-level hazards in-
herent to the conceptual design of the system. To accomplish this,
frameworks such as Functional-Failure Identification and Prop-
agation [36], Inherent Behavior of Functional Models [37], and
Function-based Failure Propagation [38] have been developed
which propagate faults through the high-level function structure
of the system to understand the risks [39]. This work uses the
fmdtools package and framework to evaluate faults, which builds
on this work and is capable of embodying a number of simulation
formalisms by using an object-oriented dynamic representation
of the system structure and behavior [40].
One of the more common applications of fault application

in practice is software design, where it is used to ensure that
the software will continue to perform well to hazards that may
inevitably occur in operations [41, 42]. Since software can run on
a number of different machines and faults can additionally come
from external attacks, software flaws, and operator errors [42],
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one may not be able to accurately predict the distributions of the
underlying faults [43]. Thus, while a number of software fault
injection tools use fault distributions based on the underlying
physics of failure for the underlying hardware, random sampling
possible faults [43–46] and orchestrated attack approaches [47]
are also used. In some situations (where the relative probability of
faults iswithin the sameorder ofmagnitude), the results from fault
mode sampling are quite similar to the results one would get if
the underlying distribution is known [43]. These same processes
are used in the field of Chaos Engineering, the main difference
being that Chaos Engineering approaches test the software in
production, rather than in a controlled test setup [48].
The difference between using fault injection to incorporate

resilience in software systems and a general engineered system is
the physical constraints which shape the underlying design trade-
space and hazard-space. In software system fault injection, the
faulty state-space is often defined by potential hardware modes
(e.g. bit-flips) which creates a large faulty state-space (because
of the large numbers of bits), the distribution of which is rela-
tively uniform. In the early design context, on the other hand,
the modes are not fully identified and the underlying distribution
is not necessarily known very well. The physics of failure of
the system will make it such that some modes are very prevalent
while others are not. Additionally, the space of potential design
solutions available in early design is quite large and often does
not come “for free” as it would in software design–fail-safes and
redundancies could come at the cost of significant loss of effi-
ciency. Thus, to best leverage the adaptation presented in this
work, it is important to consider the costs associated with pos-
sible failure mitigations–if a mitigation comes with significant
costs, it may be necessary to balance this cost against the cost of
unknown failures (for which more data would be preferred). If
the mitigations come at no cost, precise valuation does not have
to be considered. For example, designing the contingency man-
agement in the control system in Fig. 1, requires no consideration
of trade-offs because each individual fault state is unique and new
fault information only helps the rover decide what to do in that
particular instance.

3. METHOD

Synthetic mode generation augments the traditional fail-
ure mode identification process sampling the faulty state-space,
which is composed of performance-effecting parameters which
can lead to failures if perturbed, to generate a set of potential fault
modes. That is, instead of identifying the specific, discrete modes
which lead to failure, the designer identifies behavior-affecting
fault states. These fault states are given domains for nominal and
off-nominal behaviors. The synthetic modes are then constructed
by systematically permuting the fault states within these ranges,
and simulated to reveal the corresponding set of consequences.
This information can then be iterated over in the design process
as shown in Fig. 3, with the designer adding features or changing
variables to reduce the severity of the modelled consequences.
The next sections explain the underlying health-state formalism,
mode elaboration approach, and its use in the design process in
more detail.

3.1 Formalism
To understand the fault mode elaboration approach, consider

the notional model shown in Fig. 1, which illustrates the under-
lying formalism. As shown, a function may be composed of a
control system and a component. The component comprises the
physical behaviors (f1, f2, and f3) of the system, which translate
the inputs of the function X into outputs Y at each time in the sim-
ulation. The high-level control system controls the component
behavior by switching between modes depending on the current
variable states. In Fig. 1, for example, the system alternates be-
tween mode m1 and m2 depending on the value of input variable
X3, which in turns controls the action variable a and thus the be-
haviors in equations f1 and f2. These attributes effectively define
the nominal operations of the system. Hazardous operations are
defined using fault states, which are variables (h1, h2, and h3)
that modify the behaviors of the component by taking on different
values than in the nominal state. Depending on the behaviors,
these states can be given continuous (e.g., range (0...2)) or dis-
crete (e.g.,−1, 0, 1, 10) domains. A hazardousmode (e.g.,𝐻1,𝐻2
... 𝐻𝑛) in this instance is thus a tuple of fault states (h1,h2,h3)
where at least one state is off-nominal. These hazards may further
be controlled by the control system hazard management, which
may switch the modes of the system (e.g., m1 to m2) or cause it to
enter specialized hazard management modes depending on states
(e.g., S1 or S2) detected by the system.
To illustrate this formalism, consider the case of a household

lamp. In this system, the function of providing light is embod-
ied by a component (light bulb) which translates input electrical
potential into visible light, and is controlled by a control sys-
tem (light switch), which determines whether electricity flows
through the bulb based on states input by the user. Fault modes
then arise through physical modification of the component be-
havior (e.g., burning out, damaged contacts, excess heat, etc.),
which would correspond to changes in the underlying equations
(e.g., setting circuit inverse resistance, and thus energy flow, to
zero). Typically, hazard management (in the instance of a burned
out mode) would be accomplished by the user detecting that the
bulb is burned and replacing it.

3.2 Mode Elaboration
Hazards in the system are thus represented as modifications

of the component fault states away from the nominal state, as
shown in Fig. 1. The set of possible fault modes is thus the set of
possible permutations of the fault states in the function. This set
can be defined as having the form of 𝐻:

𝐻 = {[ℎ1, ...ℎ𝑗 , ...ℎ𝑚] ≠ 1⃗, ℎ𝑗 ∈ 𝐷𝑗 } (1)

where 𝐷𝑗 is the range of possible states for the heath state ℎ𝑗 . This
set can become quite large, since it includes not only the single
permutations of fault states, but every possible joint-permutation
of fault states as shown in Fig. 1. Thus, as the number of fault
states 𝑚 (and possible values 𝐷) increases, the number of poten-
tial fault modes increases by O(𝐷𝑚). As a result, as the faulty
state-space increases in size, it may become necessary to reduce
model computational costs and lower the number of states needed
to query by (1) constraining the set (e.g., specifying exclusivity
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h1 = 1, ~{1,0, -1}
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h3 = 1, ~{-10, (0..1), 10}
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f1: Y1 = X1 * X2 * h1 * a
f2: Y2 = X2^2 * h2 * a
f3: Y3 = X3 * h3

a

Control System

operational modes
m1: a=1
m2: a=0

mode transitions
if X3 = 1: m1
elif X3 = 0: m2

hazard management
if [X,h] in S1: m1 - > m2
elif [X,h] in S2: m2 ->m1

X

Hazard Modes 

One-state H1=[[0,1,1],[1,0,1]...] 
Two-state H2=[[0,0,1],[1,0,0]...] 
...
N-state Hn=[[-1,0,10],[0,2,-10]...] 

FIGURE 1: EXAMPLE FUNCTION BEHAVIOR AND STATE REPRE-
SENTATION

between perturbations of identified fault states), (2) only consid-
ering a subset of 𝑛 joint perturbations at a time, or (3) sampling
from the set in a way that admissibly represents the set of haz-
ards for the purpose of the analysis. In particular, existing theory
and/or lab data establishing the relationships between fault states
should be used to narrow the space of modes to physically real-
izable combinations of fault states.

3.3 Process
Designing a system using this approach follows the process

shown in Fig. 3. In this process, one first develops the fault model
and then iterates over the model features to produce a resilient
design–a typical approach for a risk-based design process. It be-
gins by first creating a nominal model with its respective modes
and behaviors. These fault states (and their domains) are first
identified (using the form of the equation, rather than past experi-
ence) and added to the system’s behavioral equations. While this
identification is within the designer’s judgement, there are several
rules which may be employed to identify these states systemati-
cally. Fault states are factors which modify the behavioral equa-
tions of the system through multiplication/division (representing
amplification/reduction) and addition/subtraction (representing a
constant drift). Defining the domain of fault states can further
result from identifying the feasible and meaningful limits of the
underlying equations. That is, the fault state domain should be
restricted such that the resulting range of output values is phys-
ically realizable (e.g., if a factor value would lead to undefined
or infinite output variables from the function, that value should
be removed from the range) and the results in meaningful out-
put (e.g., inputs for periodic functions need only be defined over
the period). Additionally, depending on the desired mode sam-

h1

h2

nom highlow0rev

rev

low

nom

high

Full Faulty
State-Space

Reduced (Single-State)
Faulty State-Space

Mode Legend 
  Identified 
  Elaborated
  Actual

FIGURE 2: GENERIC FAULTY STATE-SPACE REVEALED BY MODE
ELABORATION APPROACHES

pling approach, it may be helpful to limit the set of possible fault
state values to discrete quantities of interest (e.g., low, nominal,
high, etc) rather than treating the domain as continuous. While
this restricts the possible set of modes, it also gives the designer
more ability to selectively consider specific health-state values
and value combinations, and can help manage the computational
expense by reducing the size of the domain. After these modes
are generated, the designer proceeds to simulate the model over
these modes to assess the resilience of the system. Since the
faulty state-space generated is large, the modes (and their ef-
fects) must be assessed in aggregate. Based on this analysis, the
designer changes the behavior, operations, and/or hazard man-
agement controls to improve the distribution of system resilience
metrics across the responses. This continues until the design is
satisfactorily resilient.
The main difference between this approach and the conven-

tional FMEA approach is that instead of identifying fault modes–
defined, known patterns characterizing the states of the system
as it fails–one instead identifies fault states which could impact
the performance of the system and lead to hazards and associates
a set or range of perturbations with these states. The resulting
hazard assessment thus includes a much larger set of modes than
can be manually identified, as illustrated in Fig. 2. As shown, in
the future (designed) system, there will be a set of modes which
will arise in operations. While a number of modes can be iden-
tified by the designer, some of them will not, and others will
be misidentified as possible modes which will not be realized
in the actual system. In the approach presented here, the entire
faulty state-space (or some defined subset or sample) is instead
elaborated. This increases the set of modes considered in the
analysis–catching more modes than would otherwise be identi-
fied, but also including a much larger set of modes which may
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FIGURE 3: RESILIENCE ASSESSMENT AND DESIGN PROCESS
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FIGURE 4: ROVER MODEL STRUCTURE

not (or may not be likely to) arise in the true system. To limit the
space of potential modes to realizable hazards, it is thus helpful to
identify constraints on both health-state combinations and ranges
from the physical limitations on and known/tested relationships
between these fault states.

4. DEMONSTRATION
To demonstrate the mode generation approach, we use a

model of an autonomous rover (Sec 4.1) to show how a model
can be set up, the resulting faulty state-space uncovered when the
possible modes are elaborated and simulated, and a comparison
of this analysis with a more traditional mode identification-based
approach.

4.1 Rover Model
Todemonstrate this framework, this paper presents the design

of an autonomous rover. This rover was modelled at a high level
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FIGURE 5: FAULTY STATE-SPACE UNCOVERED BY THE DIFFER-
ENT FAULT MODE GENERATING METHODS

to perform a basic autonomous driving task, with the functional
model of the model shown in Fig. 4. As shown, this model
encompasses the rover power and control systems, as well as
its drive system, avionics, and interactions with its environment
(i.e., movement and position with respect to a map). The task is
to follow a given line from a given starting location to a given
end location. While many different input lines can be used for
different routes, the route used in this paper for demonstration
purposes follows a simple L-Curve as shown in Fig. 7. If the
rover deviates from the center line, it may go off course and crash
into its surroundings. When the distance from the center line is
greater than 1m, the rover can no longer see the center line and
stops moving, because the rover has crashed. The major fault
effect considered here is thus how far the rover deviates from
the center line in fault scenarios–with the priority being fault
scenarios which directly lead to a crash.

4.2 Approach Setup
To address these faults (and show the value of synthetic

mode sampling), this work uses three different approaches for
generating fault modes:

* a manual identification approach, where a few select modes
were manually identified by the user

* a set elaboration approachwhere a few discrete perturbations
were identified for each fault state of the function, which
were combined to form the space of synthetic modes

* an range elaboration approach where ranges were identified
for each fault state of the function, which were then elabo-
rated and combined at a high resolution to form the space of
synthetic modes
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FIGURE 6: FAULTY TRAJECTORIES OVER FAULTY STATE-SPACE

For simplicity of demonstration, this analysis focused solely
on faults originating from the Drive function, the goal of which is
tomove and turn the rover given external power and control inputs
for velocity and heading. It also focused on a single fault time
where the rover is in the middle of turning (rather than sampling
several times). In the drive system, the following fault states were
defined to define the faulty state-space:

* friction, which is resistance that makes the rover require
more power to move a given distance

* transfer, which is the ability of the rover to move forward in
a given time-step at a level of input power

* drift, which is the misalignment of the rover trajectory from
its intended heading.

The resulting fault state combinations from the mode sampling
approaches are shown in Fig. 5. As shown, the three identified
modes are:

* stuck, where the rover is blocked from moving forward,

* stuck_left and stuck_right, where the left and right
side of the rover is blocked from moving, respectively, and

* elec_open, where the power is disconnected from the rover
motors.

The set and range elaboration approach cover a much larger por-
tion of the faulty state-space, with many more combinations of
fault state variables. However, this increased coverage comes at
the cost of simulation expense and tractability. Thus, it is impor-
tant to understand what is gained by elaborating these additional
states. For the purposes of comparison, the next subsection will
discuss the simulation of these scenarios to determine if these
approaches can represent the faulty state-space better.

4.3 Analysis Comparison
Simulating each of these fault modes in the model at a given

time results in the fault trajectories shown in Fig. 6. As shown,
the manually-identified modes mainly result in the rover stop-
ping at the fault injection location, with one (stuck) resulting
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FIGURE 7: DISTANCE OF ROVER FROM CENTER LINES IN SCE-
NARIOS

in the rover advancing further but not reaching the goal. In
the set elaboration approach, several more trajectories are un-
covered in which the rover makes it closer to the goal. In the
range elaboration approach, a much larger space of trajectories
are uncovered–including ones where the rover turns around and
travels along the line backwards. The corresponding distribution
of line distances (the metric for identifying when crashes occur)
for each approach is shown in Fig. 7. As shown, the raw number
of scenarios in the range elaboration approach is orders of mag-
nitude higher than the set elaboration and manual identification
approaches, resulting in many more scenarios which result in a
crash. Additionally, the coverage of the space of the severity of
failures (i.e., the distance from the line) was much larger for the
range elaboration approach compared to the other approaches,
with a range of 0.0m to 1.6m instead of 0.3m to 1.3m for the set
approach and 0.3m to 1.4m for manual identification. As a result,
relying on manual identification or the set elaboration approach
in this instance would have resulted in missing the possible sever-
ity ranges of less than 0.3m and greater than 1.3m entirely. This
ability to identify a broader range of scenarios is important be-
cause (1) it helps one better identify the true worst-case scenario
possible and (2) low-severity failures can often play an important
role throughout the product lifecycle if they occur more often
than expected by driving up maintenance cost and making more
severe joint-fault modes more likely.
While the range elaboration approach uncovers a wider range

of fault severities, it should be noted that the vast majority (note
the log scale in Fig. 6) are still within the range expected from the
set elaboration approach and manual identification–only a few
additional severities are caught in the tails of the distribution.
However, given the range elaboration approach has such a high
resolution, one may wonder if this has actually uncovered more
meaningful hazard information. That is, simulating a large num-
ber of fault state combinations at high resolution may result in
a large number of scenarios that essentially play out in the same
way and do not add anything more to the analysis. To evaluate
the extent to which the range approach is affected by this, the next
section uses clustering to identify and group similar simulation
results.
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4.3.1 Cluster Analysis. Clustering was used to identify
similar sets of results where the fault state combinations caused
a similar set of results. To perform this evaluation, the DBSCAN
algorithm [49] in scikit-learn [50] was used, which grouped the
final locations of the simulations in terms of x-y coordinates. The
DBSCAN algorithm was used to identify duplicates because it
(as a density-based algorithm) identifies densely-packed clusters
of points and neglects outliers (as opposed to other clustering
methods, which group all points spatially into a set number of
categories). As shown in Fig. 8, the algorithm identified five
clusters (and the -1 cluster, which is made of data points which
do not fit with any of the others). Figure 9 shows the distribution
of scenarios in the different fault generation approaches across
these clusters. As shown, the vast majority of the scenarios in the
range elaboration approach occur in the 0 cluster, which repre-
sents scenarios where the rover stops in the immediate vicinity of
the location where the fault was injected. However, it also better
covers the space of clusters than the set elaboration and manual
identification approaches, since every cluster is represented and
many more scenarios still are included in the -1 cluster, which

by definition are non-duplicate scenarios. From the designer’s
perspective, they would not have learned about 3 of these clusters
(due to the lack of scenarios) if they used manual identification,
and 2 clusters if they used the set elaboration approach, leaving a
significant gap in terms of their understanding of potential risk.
While spanning the space of clusters is important (since it shows
that unique fault trajectories were identified), identifyingmultiple
scenarios within each cluster is not necessarily a waste if it helps
to identify the worst-case consequences that could result from
that cluster. Table 1 shows the number of scenarios found in each
cluster for each approach, the spatial coverage of this cluster, and
the worst-case line distance identified. Coverage loss is measured
using the metric in equation 2, which is the proportion of the x-y
range which is lost from the approach 𝑎 compared to the overall
ranges identified.

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑎𝑥,𝑎) − (𝑥𝑚𝑖𝑛,𝑎 − 𝑥𝑚𝑖𝑛)
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑎𝑥,𝑎) − (𝑦𝑚𝑖𝑛,𝑎 − 𝑦𝑚𝑖𝑛)
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

(2)

As shown in Table 1, the identified and set approaches perform
poorly on this metric, except in Cluster 0 and 1 because these ap-
proaches have only a few scenarios in the other clusters compared
to the range approach. Additionally, the worst cases identified by
the set elaboration and manual identification approaches are of-
ten less hazardous than the worst cases identified by the range
elaboration approach, with a severity of less than one. So, if
one was using manual identification, they would have only con-
sidered Cluster 4 to have a high severity (distance from the line
greater than 1m) scenario, missing the worst-cases faults in the
rest of the clusters (and as a result, would not even be aware of
the existence of the rest of the clusters). While the set elaboration
approach performs better than manual identification for this, the
range elaboration approach performs best. Thus, even though
there are many duplicates in the range elaboration approach for
each cluster, these duplicates enable it to better represent the haz-
ards within the cluster in terms of the representing the variation
within the cluster, and thus identifying the worst cases that could
result from a mode of a given type.

4.3.2 Summary. A summary of the results provided by each
approach is shown in Table 2. As shown, the set elaboration ap-
proach simulated a much larger number of scenarios than manual
mode identification, while the range elaboration approach sim-
ulated over an order of magnitude more scenarios than the set
elaboration approach. This results in a much larger computa-
tional cost. While this is not a significant burden for this model,
it could result in significantly more costs if more parameters
were included or if the simulation itself were more computation-
ally expensive. However, the use of these approaches uncovered
substantially more hazardous trajectories, which was reflected
both in the number of clusters represented in these approaches
as well as the number of scenarios which did not fit in any clus-
ter. In general, while the elaborated-set approach represented
an improvement on manual fault identification, many more were
identified by the elaborated-range approach. Of the failure clus-
ters that were elaborated in the range elaboration approach, only
a small proportion of them were identified beforehand, and even
the set elaboration approach was not able to represent the full per-
cent. Thus, even though the range elaboration approach requires
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TABLE 1: CLUSTER COVERAGE

Cluster Identified Set Range
-1 # Scenarios 0 1 38

Coverage Loss 1.00 1.00 0.00
Worst-Case 0.00 1.03 1.25

0 # Scenarios 3 17 919
Coverage Loss 0.43 0.18 0.00
Worst-Case 0.90 1.03 1.08

1 # Scenarios 1 4 7
Coverage Loss 1.00 0.10 0.00
Worst-Case 0.63 1.05 1.15

2 # Scenarios 0 0 5
Coverage Loss 1.00 1.00 0.00
Worst-Case 0.00 0.00 1.38

3 # Scenarios 0 0 9
Coverage Loss 1.00 1.00 0.00
Worst-Case 0.00 0.00 1.07

4 # Scenarios 1 1 6
Coverage Loss 1.00 1.00 0.00
Worst-Case 1.29 1.29 1.40

5 # Scenarios 0 1 6
Coverage Loss 1.00 1.00 0.00
Worst-Case 0.00 1.05 1.37

TABLE 2: OVERALL COMPARISON OF APPROACHES

Identified Set Range
Scenarios 5 35 1099
Comp. Time (s) 0.24 0.96 35.10
% Clusters 42.86 71.43 100.00
Unclustered 0 1 38

a much larger number of scenarios–many of which are essentially
duplicates–it uncovers a much larger portion of the faulty state-
space than would be possible to view otherwise. Even though
there are many approximately duplicate scenarios, more informa-
tion is also uncovered.
This is likely an artefact of the fault states explored–while

we would expect some fault states to produce relatively consistent
results at different levels (e.g., friction should just slow the rover
down in different ways), a specific level of drift can cause a
great variety of possible results, since it additionally modifies the
direction of the rover. As a result, some level of drift can, for
example, make the rover turn around and travel backwards, as
shown in Fig. 6. However, this type of result is very sensitive
to the precise value of the fault state parameter and is thus only
detectable by elaborating (or exploring) the full space. This shows
how full faulty state-space elaboration can identify more modes
which would not be considered otherwise–by uncovering specific
values of fault state parameters which change the faulty behavior
of the system.

5. DISCUSSION
The synthetic mode generation approach presented here has

a number of implications to resilience-informed design. The
design of resilience is often taken from the perspective that the

designer does not necessarily know the probability distribution
of the hazards that the system may be subjected to. Thus, to min-
imize risk, a very broad and generic tolerance and adaptiveness
needs to be built into the system to enable it to respond well to
all hazards it could encounter. In this sense, from the perspec-
tive of resilience, it is very important to uncover new knowledge
of the faulty state-space, even if those faults seem unrealistic or
improbable. As shown in the previous section, synthetic mode
generation can encourage this by elaborating an entire range of
fault state combinations for hazard simulation and assessment,
rather than the small list that can be directly identified by a de-
signer. This approach can essentially be seen as the translation of
resilience simulation and chaos engineering approaches–where a
large number of externally-driven hazardous scenarios are pre-
sented to a system–to the traditional engineering design scenario
where the hazards to prevent are internal to the system (i.e.,
component failures). While this method would be infeasible to
perform manually due to the large space of modes, performing
this sort of analysis in a computational environment is entirely
practicable because the determining of fault mode consequences
is performed by a computationally-inexpensive simulation.
However, from a risk-based design perspective, there are as-

sumptions embedded in this approach which are important to
consider. Given a probability distribution has not been given or
assumed for fault state combinations, it may be difficult to under-
stand how to weigh individual worst-case failure trajectories that
only arise at particular fault state parameter value combinations:
they could be highly improbable because of the narrow range
under which they are realized (if the multivariate distribution is
uniform), or they could be highly likely (if the range of the proba-
bility distribution where they are realised is very dense). Thus, to
consider the risk of these events, an appropriate probabilitymodel
should be set up and sampled with the modes that appropriately
consider parameter ranges and range combinations.
The previous section shows that this approach can uncover

meaningful information about the faulty state-space, which can
help the designer understand how to most comprehensively mit-
igate potential failure events. For example, when viewing all
of the different possible trajectories from the manually-identified
modes, a designer may set a requirement that the system shut
down if it deviates too far from the line, under the assumption
that this would prevent it from crashing. However, this would still
leave open the hazardous faulty behavior uncovered by the mode
sampling approach in which the rover follows the line backwards.
A more comprehensive and safer requirement might instead be
for the rover to not deviate too far from its intended trajectory
(position over time) while staying acceptably close to the line.
A major challenge for applying this method is how best to

specify and sample the faulty state-space. First, it may not be clear
how to determine the limits of the domain for each fault state, or,
more broadly, determine what constraints limit the domain of
possible joint fault state values. This can lead to difficulties–on
one hand, if the domain for health-states are defined too narrowly,
the approach loses its ability to capture faults that are outliers. For
example, in the design of a car, the designer may have an imag-
ined range of hazardous operating temperatures that could prove
incorrect if the car ended up being operated during an extreme
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whether event. As a result, they would leave out potential result-
ing fault modes in this process. On the other hand, if the domain
is specified too broadly, the analysis may be dominated by fault
modes which are impossible to realize (e.g., operating tempera-
tures below 100K or above 4000K). As a result, it is important
for the designer to appropriately exercise judgement over ranges
(as they would manually identifying modes). Second, it may
not be clear how best to sample the set of faults modes from the
faulty state-space. From the previous section, we know that using
the range elaboration approach with high resolution increases the
amount of risk-related information that can be extracted, but these
increases come at significant computational cost. When the fault
sampling approach elaborates the entire set of fault modes from
ranges, designers need to balance computational cost with knowl-
edge increase. While this can be done on the basis of cost-benefit
assessment (i.e., quantifying the value of hazard information), it
also highlights the need for more efficient sampling methods. For
example, in the analysis process, one may choose the resolution
of fault states first by performing a sensitivity analysis to identify
the influence of each fault state on the outcome (putting lower
resolution on lower-impact states) and then successively increas-
ing the resolution step by step until there is not much change in
the hazard-related information to gain.

6. CONCLUSIONS
In conclusion, this work presented a method to synthetically

generate fault modes for resilience analysis and resilience-based
design. This approachworks by elaborating a faulty state-space–a
set of fault modes made up of parameters which affect the behav-
ior of the system. The resulting space is much larger than a list
of fault modes which the designer might uncover, but it also has
a greater potential to reveal discrete faulty behaviors which can
arise in the system. This is shown in the rover example in Sec-
tion 4, where synthetic mode elaboration approaches are shown to
find a larger quantity of potential hazardous outcomes, revealing
previously-unknown hazardous behaviors, and better identifying
worst-case scenarios for each behavior. Furthermore, among
these approaches, it was shown that elaborating the full space
within a range can better identify these scenarios than manually
specifying specific values for the states up-front. However, both
of these increases in hazard information come at the expense of
simulation time, which increases substantiallywith every increase
in resolution–an important consideration when this approach is
used throughout a complex or computationally-expensive model,
or as a part of an iterative design process.

6.1 Limitations and Future Work
This approach opens a number of potential directions for fu-

ture work. Because of the computational expense of synthetic
mode generation, and the potential for essentially identical dupli-
cate modes to be generated and evaluated, future work needs to
extract the high-level modes uncovered in an approach like this
so that they can (1) be tractably understood and accounted for by
the designer and (2) be more readily simulated at a lower compu-
tational cost. In this work, clustering was used to identify groups
of modes which were essentially representative of each other.
However, given there is a distribution of modes within each clus-

ter, it may not be clear how to represent the cluster health-states
and parameter values as a whole. Future work should thus de-
termine how to best represent these groups for tractable analysis
and design.
Reducing computational cost is also an important consider-

ation for optimization. Since sampling modes generates more
hazard information, it could lead to more optimal designs if used
in an optimization loop. On the other hand, it could slow the opti-
mization process downwhile not meaningfully changing the opti-
mal variables. Future works should show how much value can be
gained through increasing the faulty state-space to optimize over
and help designers understand when to include increased faulty
state-space resolution in the resilience optimization. Finally, to
mitigate the trade-off between faulty state-space information and
computational cost, future work should develop strategies which
efficiently map out the faulty state-space by searching for param-
eters which lead to different results. Approaches such as monte
carlo sampling, latin hypercube sampling, bayesian optimization,
adaptive stress testing [21], etc., should all be explored to find
how to most efficiently represent the faulty state-space without
wasting computation on essentially duplicate fault modes.
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